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Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status.
They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish.
Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing consid-
erable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of
the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus,
Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban
landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the
importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for
alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphavi-
ruses, highlighting the key viral targets and host components that participate in alphavirus replication and the
molecular functions that were used in drug design. Together with describing the importance of these targets, we
review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been dis-
covered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.

1. Introduction

1.1 The alphaviruses as human pathogens

Alphaviruses belong to the Togaviridae family, are mainly
arthropod-borne viruses that are transmitted by vectors such as
mosquitoes and can be found widely throughout the world except
Antarctica.1–3 Alphaviruses cause various clinical manifestations
ranging from febrile illnesses to neurological diseases.4 Infections
with Old World alphaviruses such as Chikungunya virus (CHIKV),
Semliki Forest virus (SFV), O’nyong nyong virus (ONNV), Sindbis
virus (SINV), Mayaro virus (MAYV) and Ross River virus (RRV) com-
monly cause febrile illness and painful arthralgia or polyarthral-
gia.5 In contrast, encephalitis is mainly caused by New World
alphaviruses such as Venezuelan equine encephalitis virus (VEEV),
Eastern equine encephalitis virus (EEEV) and Western equine en-
cephalitis virus (WEEV).6

Functionally, an alphavirus particle comprises a single-stranded
positive-sense RNA and delivery system.7 The delivery system in-
volves a protein shell that consists of capsid protein (CP), glycopro-
teins and a host-derived envelope that is acquired when the virus
buds through a cellular membrane.7,8 This protein shell surrounds,
stabilizes and protects the positive-sense RNA genome, which

encodes non-structural proteins (nsPs) and structural proteins.2

The nsPs (i.e. nsP1, nsP2, nsP3 and nsP4) aid in the production of
new viral RNA strands, while the structural proteins consist of the
CP, envelope glycoproteins E1, E2, E3 and the residual polypeptide
6K, which ultimately make up part of the mature virion.2 Table 1 il-
lustrates the essential known functions of each alphavirus
protein.9

For any given virus, a detailed understanding of the processes
involved in its replication cycle is vital for the design of drugs that
selectively inhibit viral replication without interfering with host
cell function. As illustrated in Figure 1, the replication cycle of
alphavirus can be summarized in three main stages, which are
virus entry, intracellular replication, and maturation. At the be-
ginning of the replication cycle, alphavirus infects host cells by
engaging its E2 glycoproteins with the cell surface receptors and
then enters the cells via clathrin-mediated endocytosis.10 As the
virus-containing endosome matures, the acidic environment
that develops within the endocytotic vesicle destabilizes the en-
velope glycoprotein structure.2,11 The resulting conformational
change initiates fusion between the virus and late endosomal
membranes, leading to the emptying of the nucleocapsid into
the cytosol (Event 1).
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Table 1. Proteins encoded by alphavirus genome

Protein Structural and/or enzymatic functions Role in virus replication cycle

nsP1 membrane association, guanosine-7-methyltransferase (MT), guanylyltransferase (GT) RNA capping activity

nsP2 nucleotide triphosphatase, helicase, protease P1234 polyprotein processing

nsP3 macro domain di-phosphoribose 10-phosphate phosphatase activity

nsP4 RNA-dependent RNA polymerase production of viral RNAs

CP forms nucleocapsid core with the genomic RNA, trypsin-like protease formation of nucleocapsid

E1 forms part of a continuous isocahedral protein shell on the virion, glycoprotein mediation of membrane fusion

E2 forms part of a continuous isocahedral protein shell on the virion, glycoprotein interactions with host cell surface receptors

E3 peripheral glycoprotein regulates spike assembly147

6K residual polypeptide chain assists in E1 folding

+ve
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Figure 1. Schematic representation of the replication cycle of alphaviruses. Description of each numbered event indicated in the yellow squares is
outlined in the main article text. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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Once the nucleocapsid disassembles in the cytosol, the encap-
sidated genome gains access to the synthetic machinery of the
cell and intracellular replication proceeds. Alphaviruses use the cel-
lular machinery for the translation of viral polyprotein P1234 from
its full-length genomic RNA.2 This polyprotein is then processed
stepwise into individual nsPs through proteolytic cleavage by nsP2
(Event 2).12 Early processing of P1234 produces P123 and nsP4,
which associate to form the primary replication complex (RC),
which performs negative-sense RNA synthesis (Event 3).13 P123 is
further processed to produce the individual nsPs, which associate
with nsP4 to form a mature RC (Event 4).13,14 The mature RC regu-
lates the synthesis of positive-sense RNA as well as the transcrip-
tion of subgenomic 26S mRNA using the negative-sense RNA as
template (Event 5).15 Simultaneously, the CP-pE2–6K-E1 structural
precursor is also translated from the subgenomic 26S mRNA.16

At the maturation stage, the CP is first cleaved from the struc-
tural polyprotein by polyprotein processing17 and assembled with
the newly synthesized positive-sense single-stranded RNA mol-
ecule to form the nucleocapsid (Events 6 and 7, respectively).18

The pE2 and E1 molecules are then translocated into the endo-
plasmic reticulum for post-translational modifications (Event 8).19

Prior to the arrival of the pE2–E1 heterodimer at the plasma mem-
brane, the pE2 is cleaved to E2 and E3 by furin in the Golgi appar-
atus to activate the infectivity of the virus.20 The post-modified
envelope glycoproteins then translocate to the plasma mem-
brane21 and assemble with the mature nucleocapsid.22 During the
budding phase, the assembled virion exits the host cell and ac-
quires a host-derived lipid envelope containing the integral mem-
brane glycoproteins E1 and E2 (Event 9).23

1.2 Re-emergence of CHIKV

Prior to 2005, CHIKV was considered a relatively less important
viral infection because it was mainly confined to localized out-
breaks in Asia and Africa.24 It was not until 2005–06, when CHIKV
re-emerged and caused a large outbreak and infected up to 40%
of the population on the French island of La Réunion, that the se-
verity of the nature of CHIKV transmission was realized.25 The
spread of CHIKV was accelerated by increasing globalization,
whereby CHIKV was introduced into non-endemic regions by trav-
ellers returning from CHIKV-epidemic regions.26 In ,10 years,
CHIKV had re-emerged as a global pathogen, spreading from
Africa throughout the Indian Ocean Islands,27 the Pacific Islands28

and the Americas,29,30 causing millions of cases in almost
100 countries.31–34 Although death due to CHIKV infection is rare,
clinical cases in Asia, especially in countries where health services
and procedures are poorly developed, have resulted in high
morbidity.1

2. Progress towards the development of
small-molecule inhibitors of alphaviruses

There is no recognized antiviral therapy to treat alphavirus infections.
The current treatment, i.e. administration of non-steroidal anti-
inflammatory drugs (NSAIDS) and paracetamol, only alleviates the
symptoms of the disease. Over the past 50 years, there have been
reports on small-molecule alphavirus inhibitors for development as
potential antivirals.1,35–37 Nearly half of them were discovered and
obtained from natural sources.38 There are many virus-specific and

host targets involved in virus replication that can be targeted by anti-
viral therapy. Direct-acting inhibitors are designed to act on virus-
specific targets, i.e. the nsP(s) and structural protein(s), while host-
targeting inhibitors inhibit the functions of host-derived proteins that
are actively involved in alphavirus replication. Figure 2 illustrates the
list of direct-acting and host-targeting inhibitors and their
mechanisms of action in disrupting virus attachment and entry,
intracellular replication and virus maturation and budding. Table 2
summarizes the in vitro antiviral properties of these inhibitors
described in terms of CC50 (i.e. concentration of inhibitor required for
the reduction of cell viability by 50%) and EC50 or IC50 (i.e. concentra-
tion of inhibitor required to produce 50% of the total anti-alphaviral
effect) unless stated otherwise.

3. Direct-acting inhibitors

3.1 Inhibitors of virus attachment and entry

Doxycycline, a semi-synthetic tetracycline antibiotic, is commonly
used to treat bacterial infections. This drug was discovered to have
synergistic in vitro anti-CHIKV effects when administered with riba-
virin (i.e. around 3-fold improvement in EC50 values compared with
doxycycline or ribavirin alone).39 Doxycycline inhibited virus attach-
ment and computational studies revealed that doxycycline binds
to E2 glycoprotein, hence impairing the important conformational
changes of E2 protein for binding to the cell surface receptors.39

The observed synergistic effects of doxycycline and ribavirin could
be due to doxycycline targeting the entry stage and ribavirin tar-
geting the intracellular replication stage.

Arbidol (Figure 3) was originally licensed in Russia for treatment
of influenza and other respiratory viral infections.40 Time-of-
addition studies showed that arbidol demonstrated greater anti-
viral activity against CHIKV when treatment was before infection,
suggesting that arbidol blocks the earliest stages of the CHIKV rep-
lication cycle (i.e. virus attachment and/or virus entry).41

Structure–activity relationship (SAR) studies of similar analogues of
arbidol were also investigated.42 Of these analogues, two arbidol
tert-butyl ester derivatives, 1 and 2, possessing a sulphoxide group,
demonstrated similar activity to arbidol but better cytotoxic pro-
files (Figure 3).42 Signs of resistance were observed when cells in-
fected with a mutant CHIKV were treated with arbidol.41 Since the
position of this mutation was localized in the E2 domain, where
interactions between E2 and cell receptors occurred, it was
believed that arbidol and its derivatives demonstrate anti-CHIKV
activity through blocking the interactions between E2 and surface
receptors during CHIKV attachment.

Phenothiazine compounds, i.e. chlorpromazine, ethopropazine,
methdilazine, perphenazine, thiethylphenazine and thioridazine,
are drugs that have been used in the treatment of psychotic and
allergy diseases (Figure 3). When these compounds were tested in
an entry inhibition assay that employed a heat-sensitive SFV strain
(SFVts9-Rluc), an effective inhibition of SFV entry into baby hamster
kidney (BHK) cells was observed.43 One of these phenothiazines,
chlorpromazine, has been reported to inhibit HCV entry by blocking
the formation of clathrin-coated pits at the plasma membrane for
clathrin-mediated endocytosis of viral particles.44,45 Hence, it was
believed that the inhibition of SFV entry is likely to be the conse-
quence of misassembly of clathrin lattices in the presence of these
phenothiazine compounds.43
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Chloroquine, a commonly used antimalarial drug, has been
extensively investigated against viral infections such as HIV.46 This
drug demonstrated significant in vitro inhibition of SFV, SINV and
CHIKV infections.47–49 The antiviral action of chloroquine involves
inhibition of virus entry by increasing the endosomal pH above the
critical value needed for the low-pH-dependent fusion reaction to
occur, hence preventing the fusion of E1 protein and transfer of
virus nucleocapsid into the cytoplasm.47 However, chloroquine
was not effective when administered in mice infected with SFV.
Instead the drug enhanced SFV replication in vivo and aggravated
the disease.50 In addition, results of a double-blind placebo-
controlled randomized trial in CHIKV-infected patients did not yield
convincing data on its efficacy.51

Obatoclax, an anticancer drug, is an antagonist of the prosur-
vival Mcl-1 protein, which triggers apoptosis in cancer cells. This
drug was screened against alphavirus infections, i.e. SINV, SFV and
CHIKV, and demonstrated anti-alphaviral activity at submicromolar

concentrations.52 Both time-of-addition and entry inhibition assays
showed that this drug had inhibitory activity against SFV entry.52

Mechanistically, this drug neutralizes the acidic environment of the
late endosomes and hence inhibits virus fusion.52 In addition, resist-
ance studies after 30 rounds of passaging SFV in the presence of
obatoclax obtained a partially resistant mutant that has mutations
at the amino residues, i.e. L369 and S395, found in the E1 mem-
brane fusion protein.52

3.2 Inhibitors of virus replication and protein synthesis

Among the [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones that were
evaluated in a screening programme against CHIKV infection
in vitro, a lead compound, [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-
one 3 (Figure 3), was identified and found to possess antiviral activ-
ity against various CHIKV strains in vitro.53 Interestingly, these
small-molecule inhibitors are selective towards inhibition of CHIKV

ER

PE2-E1

Golgi
Apparatus

Furin activation of PE2-E1 spike

Nucleus

DOXY, Arbidol
and derivatives 1-2

Chloroquine,
OLX, Suramin

Phenothiazines

Suramin

Virus attachment and entry

Nucleocapsid core
assembly

Virus maturation and
budding

Compound 14,
PCA

5-NT, FL23,
FL3, Sulfonyl
amidine 1 m

Decanoyl-RVRK-
chlromethyl ketone

+ve

P1234 P123 nsP4 nsP1 nsP2 nsP3 nsP4

Mature RC

+ve
-ve +ve

Subgenomic RNA

Structural PolyproteinCapsid PE2 6K E1

Primary RC
CCG32091,
Indole 16,

Harringtonine

Intracellular replication

Cordycepin

CID15997213, ML336,
Favipiravir, MBZM-N-IBT,

6-Azauridine, (-)-Carbodine,
Ribavirin, MPA, BFA,

Lanatoside C, Digoxin

Compound 13

Thiazolidinones,
Hydrazides,

Compound 12

Compound 3, Sinefungin

ID1452-2

Figure 2. Different stages of the alphavirus replication cycle (virus entry and attachment, intracellular replication and virus maturation) targeted for
the development of direct-acting and host-targeting inhibitors of alphaviruses. This figure appears in colour in the online version of JAC and in black
and white in the print version of JAC.
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Table 2. Biological data of selected small-molecule direct-acting and host-targeting inhibitors

Compound name Active against In vitro efficacy In vivo efficacy Reference(s)

Inhibitors of virus entry

doxycycline CHIKV EC50 10.9 lM against CHIKV replication in Vero

cells; EC50 4.52 lM (with ribavirin)

considerable reduction in

pathological signs and virus

titre in blood of infected

mice

39

arbidol and its derivatives 1

and 2

CHIKV EC50 30–35 lM against CHIKV-induced CPE in Vero

cells

ND 41,42

phenothiazines SFV EC50 11.3–25.1 lM against SFV replication in BHK

cells

ND 43

chloroquine CHIKV IC50 7.0 lM against CHIKV-induced CPE upon pre-

treatment in Vero cells

did not demonstrate clinical

efficacy in infected patients

47,51,148,149

SINV SINV replication was reduced by 20% at 0.1 mM in

BHK cells

ND 48

SFV EC50 0.05 mM against SFV replication in BHK cells enhanced SFV replication in

infected mice

49,50

obatoclax CHIKV EC50 0.03 lM against CHIKV replication in BHK cells ND 52

SFV EC50 0.11 lM against CHIKV replication in BHK cells ND 52

SINV virus titre was reduced 5-fold with 0.5 lM in BHK

cells

ND 52

Inhibitors of virus replication and protein synthesis

[1,2,3]triazolo[4,5-d]pyrimi-

din-7(6H)-one 3

CHIKV CC50 .668 lM; EC50 0.75–2.9 lM against CHIKV

replication in Vero cells

ND 53

VEEV EC50 6.8 lM against VEEV replication in Vero cells ND 54

thiazolidinone derivatives

4–8

CHIKV IC50 0.1–10.0 lg/mL against CHIKV-induced CPE in

Vero cells

ND 57

hydrazides 9 and 10 CHIKV EC50 4.3-4.9 lM against CHIKV-induced CPE in Vero

cells

ND 58

hydrazide 11 CHIKV CC50 .200 lM; EC50 1.5 lM against CHIKV replica-

tion in BHK cells

ND 59

peptidomimetic 12 CHIKV EC50 16.4 lg/mL against CHIKV-induced CPE in

Vero cells

ND 61

CID15997213 VEEV CC50 .25 lM; EC50 1–2 lM against VEEV-induced

CPE in BHK cells

survival rate in infected mice

improved from 0% to 60%

62

WEEV EC50 10 lM against WEEV-induced CPE in BHK cells ND 62

ML336 VEEV EC50 0.03 lM against VEEV-induced CPE in BHK

cells

survival rate in infected mice

improved from 20% to 80%

63

ID1452-2 CHIKV EC50 31 lM against CHIKV replication in human

embryonic kidney (HEK) 293T cells

ND 65

favipiravir WEEV EC50 7.5 lM against WEEV replication in Vero cells survival rate in infected mice

improved from 20% to 40%

67,68

VEEV EC50 11 lM against VEEV replication in Vero cells ND 68

EEEV EC50 18 lM against EEEV replication in Vero cells ND 68

CHIKV EC50 2–12 lM against CHIKV replication in Vero

cells

survival rate in infected mice

improved from 0% to 60%–

80%

68

MBZM-N-IBT CHIKV CC50 .800 lM; EC50 38.68 lM against CHIKV-

induced CPE in Vero cells

ND 69

secopregnane steroid

glycoside 13

SINV EC50 1.5 nM against SINV replication in BHK cells ND 70

EEEV EC50 2 nM against EEEV-induced CPE in BHK cells ND 70

ribavirin SFV EC50 47.0 lg/mL against SFV-induced CPE in Vero

cells

ND 93

CHIKV EC50 83.3 lg/mL against CHIKV-induced CPE in

Vero cells

ND 93

Continued
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Table 2. Continued

Compound name Active against In vitro efficacy In vivo efficacy Reference(s)

ribavirin-50-sulfamate SFV IC50 10 lM against SFV-induced CPE in Vero cells survival rate in infected mice

improved from 0% to 92%

95

6-azauridine CHIKV EC50 0.8 lM against CHIKV replication in chick em-

bryo cells

ND 93

SFV EC50 1.6 lM against SFV replication in chick embryo

cells

ND 93

(#)-carbodine VEEV EC50 0.3 lg/mL against VEEV-induced CPE in Vero

cells

slight, but significant exten-

sion in mean time to death

was observed after prophy-

lactic treatment

98

mycophenolic acid CHIKV IC50 0.2 lM against CHIKV-induced CPE in Vero

cells

ND 103

harringtonine CHIKV EC50 0.24 lM against CHIKV replication in BHK cells ND 106

digoxin CHIKV EC50 48.8 nM against CHIKV replication in U-2-OS

cells; only showed cytotoxic effect at 1 lM

ND 108

RRV EC50 126.5 nM against RRV replication in U-2-OS

cells

ND 108

SINV EC50 198.9 nM against SINV replication in U-2-OS

cells

ND 108

CCG32091 WEEV CC50 .200 lM; IC50 9.3 lM against WEEV replicon

in BSR-T7 cells

ND 110

indole-2-carboxamide 15 WEEV CC50 89.9 lM; IC50 6.5 lM against WEEV replicon in

BSR-T7 cells

ND 111

indole-2-carboxamide 16 WEEV CC50 69.9 lM; IC50 0.58 lM against WEEV replicon

in BSR-T7 cells

survival rate in infected mice

improved from 10% to 30%

112,113

VEEV virus titre was reduced 10-fold with 2.5 lM in

BE(2)-C cells

ND 113

anthranilamides 17 and 18 WEEV CC50 .75 lM; IC50 0.56–1.6 lM against WEEV repli-

con in BSR-T7 cells

ND 114

VEEV virus titre was reduced 10-fold with 25 lM in

HEK293 cells

ND 114

Inhibitors of virus maturation

dioxane-based compound

14

SINV CC50 .1 mM; EC50 1–3.4 lM against CHIKV replica-

tion in BHK cells

ND 72,73

picolinic acid CHIKV viral load was reduced by up to 2 logs with 2 mM in

Vero cells

ND 75

Inhibitor of multiple stages of virus replication cycle

suramin CHIKV CC50 .700 lM in BHK cells and U2OS cells; EC50

79–80 lM against CHIKV CPE in Vero cells

showed reduced viral burden

and decreased foot swel-

ling in infected mice

78,79,81

SFV EC50 40 lM against SFV-induced CPE in Vero cells ND 79

SINV EC50 141 lM against SINV-induced CPE in Vero

cells

ND 79

Modulators of cellular functions that assist virus replication

WP1130 SINV virus titre was reduced by nearly 2 logs after pre-

treatment with 5 lM in Vero cells

ND 120

WP1130 derivatives 19 and

20

SINV virus titre was reduced by nearly 2 logs after pre-

treatment with 5 lM in Vero cells

ND 121

Ag-126 VEEV virus titre was reduced by 4 logs after pretreat-

ment with 10 lM in U87MG cells

ND 123

EEEV virus titre was reduced by 1 log after pretreatment

with 10 lM in U87MG cells

ND 123

WEEV ND 123

Continued

Review

2978



replication and not of related viruses, such as SINV and SFV.53

Delang et al.54 discovered that compound 3 demonstrates inhib-
ition of CHIKV replication at a post-entry step, other than viral
protein translation or viral RNA synthesis. Since they could not
obtain enzymatically active CHIKV nsP1, they investigated
the mechanism of 3 against VEEV nsP1 and results showed that
3 inhibited the activity of VEEV nsP1, specifically the in vitro guany-
lyltransferase (GT) activity, hence causing significant inhibition of
VEEV replication.54 In addition, a CHIKV mutant possessing a P34S
substitution in nsP1 was also found to be highly resistant to the
antiviral effect of compound 3.54

S-Adenosyl methionine (AdoMet) and S-adenosyl homocyst-
eine (AdoHcy) are natural substrates of alphavirus nsP1 mRNA cap-
ping machineries. Being an analogue of AdoMet and AdoHcy,
sinefungin has been shown to be a potent inhibitor of RNA capping
activities.55 Sinefungin was evaluated against methyltransferase
(MT) and GT activities in VEEV nsP1 in an enzymatic assay and
demonstrated reasonably good activities against MT and GT.56 As
demonstrated in the studies, sinefungin is likely to function at two
levels, i.e. it inhibits methyltransfer by competing with the methyl
donor, AdoMet, and blocks the activation of AdoHcy in the GT
reaction.56

In the past decade, small-molecule inhibitors of CHIKV repli-
cation with inhibitory effects against nsP2 have been reported.
Thiazolidinones, i.e. compounds 4–8 (Figure 3), demonstrate
antiviral activities against CHIKV and limited cytotoxic liabilities

at their active concentrations.57 A molecular docking study
revealed that these inhibitors established crucial hydrophobic
interactions with S2 and S3 pockets of CHIKV nsP2 and hydrogen
bonding interactions with a key residue (Tyr1047), suggesting
that these thiazolidinone derivatives could be inhibitors of CHIKV
nsP2 protease.57

In another strategy for small-molecule drug discovery, a virtual
screening method was utilized. A homology model of CHIKV nsP2
based on a VEEV nsP2 protease template was created and
screened with a commercially available library of �5 million com-
pounds for binding activities with the protease active site. Of these,
compound 9 (Figure 3), which possesses a hydrazide structure,
demonstrated significant inhibition in both virus yield and CHIKV-
induced cytopathic effect (CPE) reduction assays.58 Using hydra-
zide 9 as a lead, an SAR approach was adopted by designing and
evaluating a series of hydrazide compounds. Replacement of the
cyclopropane ring in hydrazide 9 with an alkene moiety resulted in
hydrazide 10 (Figure 3), which demonstrated a slightly improved
antiviral profile.58 A new class of hydrazide-based nsP2 inhibitors
was also designed and generated by employing computational
pharmacophoric replacement and using hydrazide 9 as a lead.59

Of these, hydrazide 11 (Figure 3) not only showed inhibition of the
cleavage of peptide substrate by CHIKV nsP2 in a fluorescence res-
onance energy transfer (FRET)-based cell-free protease assay, but
also demonstrated anti-CHIKV activities at low micromolar con-
centrations.59 Interestingly, reduction of both viral RNA synthesis

Table 2. Continued

Compound name Active against In vitro efficacy In vivo efficacy Reference(s)

virus titre was reduced by 2 logs after pretreat-

ment with 10 lM in U87MG cells

berberine CHIKV CC50 202.6 lM; EC50 4.5 lM against CHIKV replica-

tion in HEK 293T cells

showed reduced joint inflam-

mation in infected mice

126

ONNV CC50 .800 lM; EC50 29.2 lM against ONNV replica-

tion in CRL-2522 cells

ND 126

SFV virus titre was reduced by nearly 4 logs with 3 lM

in BHK cells

ND 127

SINV virus titre was reduced by 3–4 logs with 3 lM in

BHK cells

ND 127

CND0335 and CND3514 CHIKV CC50 .50 lM; EC50 2.2–3.3 lM against CHIKV-

induced CPE in HuH-7 cells

ND 128

SKI-417616 SINV virus titre was reduced by over 3–5 logs with 10 lM

in HEK293 cells

ND 122

leptomycin B VEEV virus titre was reduced by 5 logs after pretreat-

ment with 45 nM in U87MG cells

ND 140

KPT-185, KPT-335 and KPT-

350

VEEV CC50 .10 lM; EC50 0.09–0.62 lM against VEEV rep-

lication in Vero cells

ND 141

bortezomib VEEV virus titre was reduced by 4 logs after pretreat-

ment with 0.1 lM in U87MG cells

ND 143

WEEV virus titre was reduced by 2 logs after pretreat-

ment with 0.1 lM in U87MG cells

ND 143

EEEV virus titre was reduced by 3 logs after pretreat-

ment with 0.1 lM in U87MG cells

ND 143

ND, not determined.
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and infectious virus production was observed when cells were pre-
treated with hydrazide 11, suggesting there could be other modes
of action associated with this compound.59 Moving forward, it
would be interesting to analyse the inhibitory properties of the indi-
vidual cis/trans isomers of hydrazide 11 as stereochemistry could
be a major determinant of compound activity.

A peptidomimetic strategy was also employed in the design of
small-molecule inhibitors of CHIKV nsP2 in which these peptidomi-
metic inhibitors were modified from specific amino acid se-
quences, such as Ala1861-Gly1862-Gly1863-Tyr1864 (AGGY),
which is the natural substrate of CHIKV nsP2 protease.60,61 The

studies led to the identification of peptidomimetic 12 (Figure 3),
which demonstrated a maximum of 100% inhibition of CHIKV rep-
lication at 68.2 lg/mL concentration.61 Molecular modelling re-
vealed that peptidomimetic 12 binds to CHIKV nsP2 via covalent
interaction between its a–b unsaturated ketone functionality and
the catalytic residue S1013 in nsP2.61

Quinazolinone compound CID15997213 (Figure 3) demon-
strates potent in vitro activity against various VEEV strains (TC-83
and V3526) and WEEV as well as good in vivo antiviral efficacy.62

A mutation at two key residues (Y102C and D116N) in the N-ter-
minal region of nsP2 in a drug resistance study indicated that the

Arbidol
Phenothiazines

3

9 10

11 12

CID15997213

ID1452-2
Favipiravir MBZM-N-IBT

PCA14

13

ML336

1: R = 2,6-Cl
2: R = 2-CF3

4: R = 2-CH3-C6H4
5: R = 4-CH3-C6H4

6: R = C10H7 (naphth-2-yl)
7: R = 2-NO2
8: R = 3-Me

Figure 3. Chemical structures of selected direct-acting inhibitors. Inhibitors of virus attachment and entry: arbidol and its derivatives 1 and 2 and
phenothiazines. Inhibitors of virus replication: compounds 3–12, CID15997213, ML336, ID1452-2, favipiravir, MBZM-N-IBT and seconpregnane steroid
glycoside 13 are inhibitors of virus replication. Inhibitors of virus maturation: compound 14 and picolinic acid.
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site of action of CID15997213 could be the nsP2 viral domain.62

CID15997213 was utilized as a starting point for a classical struc-
ture–activity optimization study due to its preliminary promising anti-
VEEV activity and good physiochemical profile. In the study, amidine
ML336 (Figure 3) was identified as possessing nearly a 7-fold
improvement in antiviral potency over the best quinazolinone-based
analogues and good in vivo efficacy.63 Mechanistic studies using
mutant VEEV, which carried a mutation in nsP2, showed that ML336
possibly targets a critical function of nsP2/nsP4 in the VEEV RC, and
hence inhibits viral replication.63

nsP2 is not only involved in viral RNA synthesis by being a cofac-
tor of the RC, but it is also a virulence factor that blocks cellular gene
transcription, i.e. transcriptional shutoff by inducing the degradation
of the Rpb1, a catalytic subunit of RNA polymerase II.64 Employing a
high-throughput phenotypic functional assay to identify small mol-
ecules targeting nsP2-mediated transcriptional shutoff, a natural
product derivative, ID1452-2 (Figure 3), which partially blocks nsP2
activity and inhibits CHIKV replication in vitro, was identified when
screened with a chemical library of 3040 molecules.65

Favipiravir, an analogue of pyrazine (Figure 3), has been
reported to have broad-spectrum antiviral activity against various
RNA viruses, including WEEV and CHIKV.66 Favipiravir not only
demonstrated potent in vitro and in vivo activities against CHIKV
and WEEV infections,67,68 but also demonstrated inhibitory activ-
ities against CHIKV RNA synthesis in [3H]uridine labelling experi-
ments.68 A phenotypic resistance to favipiravir was also observed
when cells were infected with a mutant CHIKV genotype (with a
K291R mutation in CHIKV nsP4). This suggests that favipiravir pos-
sibly inhibits CHIKV replication via interference with RNA-
dependent RNA polymerase (RdRp) activity.68

A molecular hybrid of isatin-b-thiosemicarbazone and benzimi-
dazole, MBZM-N-IBT (Figure 3), was developed for investigation
against in vitro CHIKV infection.69 This hybrid compound not only
reduced viral protein and RNA production at 200 lM concentration,
but also inhibited CHIKV infection in the early and late phases of
replication, which indicates multiple mechanisms for its anti-
CHIKV activity.69 In addition, molecular docking studies revealed
favourable binding affinities of MBZM-N-IBT with the homology
models of CHIKV nsP1, nsP3 and nsP4.69

A class of natural products (i.e. secopregnane steroid glaucoge-
nin C and its monosugar-glycoside cynatratoside A of Strobilanthes
cusia and three new pentasugar glycosides of glaucogenin C of
Cyananchum paniculatum) were found to possess effective inhib-
ition against alphaviruses such as SINV and EEEV at nanomolar
concentrations.70 These steroid-containing compounds, including
secopregnane steroid glycoside 13 (Figure 3), suppress the expres-
sion of SINV subgenomic RNA (sgRNA), predominantly without af-
fecting the accumulation of viral genomic RNA.70 From the study,
the mode of action of these compounds may involve alteration of
the structure of the sgRNA promoter, thereby affecting the binding
of the transcription complex to the sgRNA promoter, resulting in a
decreased expression of sgRNA.70

3.3 Inhibitors of virus maturation

Dioxane was discovered as a suitable ligand that bound nicely to the
hydrophobic pocket of the SINV CP in protein crystallization stud-
ies.71 Employing the crystal structure of this hydrophobic pocket in a
molecular docking study, a series of dioxane-based antivirals that

were predicted to bind to the hydrophobic pocket were synthesized
and evaluated against SINV replication.72,73 Although the most
potent dioxane-based compound, 14 (Figure 3), demonstrated in-
hibition against SINV replication, it did not demonstrate any inhib-
ition of the nucleocapsid assembly in the CP assembly assay.72,73

Picolinic acid (PCA; Figure 3) was previously reported to have
antiviral properties against HIV and human herpes simplex virus.74

In a molecular docking study, PCA showed stronger binding affinity
with the conserved hydrophobic pocket of homology-modelled
CHIKV CP as compared with dioxane.75 PCA also showed strong
binding affinity with purified CHIKV CP in isothermal titration calor-
imetry, surface plasmon resonance and fluorescence spectros-
copy studies.75 PCA was non-toxic up to 2 mM and demonstrated
anti-CHIKV activity by causing significant inhibition of viral RNA pro-
duction and plaque formation at 2 mM concentration.75 Taking
these findings together, PCA may inhibit CHIKV maturation via
interfering with CP formation.

3.4 Inhibitor of multiple stages of virus replication cycle

Suramin, a symmetrical sulphonated naphthylurea compound,
was first used as an anti-parasitic agent for the treatment of
African trypanosomiasis in the 1920s. Since then, research on sura-
min has gained momentum after its anticancer and antiviral po-
tential was discovered between the 1970s and 1990s.76,77 Its
antiviral activity against CHIKV, SFV and SINV was recently demon-
strated.78,79 Suramin restricted CHIKV multiplication via inhibition
of CHIKV RNA synthesis.79 Furthermore, various studies also dem-
onstrated that suramin interferes with post-attachment stages of
the CHIKV replication cycle (i.e. virus entry or the fusion step).78–80

An SAR study on suramin showed that removal of any moieties
from suramin resulted in a loss of activity or 3- to 10-fold drops in
activities.79 A molecular docking study showed that suramin docks
in the cavity between CHIKV E1 domain II and E2 domain C. This
interaction may inhibit the process of virus release, resulting in
reduced cell–cell transmission.78 Treatment with suramin was
shown to reduce viral loads as well as reducing foot swelling, in-
flammation and cartilage damage in CHIKV-infected C57BL/6
mice.81 The clinical efficacy of suramin in ameliorating CHIKV-
induced arthritis in patients would be worth exploring in the near
future.

4. Host-targeting inhibitors

4.1 Inhibitors of virus entry

5-Nonyloxytryptamine (5-NT; Figure 4), a C5 unbranched nonyl-
substituted serotonin, has been shown to possess affinity for most
serotonin receptors.82 In antiviral evaluation studies against
in vitro reovirus infection, 5-NT impeded virus entry and delayed
intracellular transport of incoming virions by affecting the distribu-
tion of early endosomes, thereby leading to an inhibition of virus in-
fection.83 5-NT exhibited potent anti-CHIKV activity,83 which
strongly suggests that serotonin receptor signalling could be one
of the crucial regulatory factors involved in the entry of viruses of
diverse families, including CHIKV.

Synthetic flavaglines (i.e. FL23 and FL3) and sulfonyl amidine
1 m are known to bind to host cellular receptors such as prohibitin
(PHB),84,85 which a number of different pathogens, including
CHIKV, dengue virus (DENV) and HIV, use for entry into the host
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cell.86–88 These compounds (Figure 4) were assessed for antiviral
evaluation on CHIKV production in PHB-expressing cells, and
significantly reduced CHIKV production.89 In addition, co-
localization studies between PHB and CHIKV in the presence of
these compounds showed interference in CHIKV E2-PHB binding.89

4.2 Inhibitors of virus replication and protein synthesis

Nucleoside analogues (containing sugars such as ribose or deoxyri-
bose) are by far the most important class of antiviral drugs.90,91

Ribavirin (Figure 4) was one of the first anti-alphaviral inhibitors
reported when it was show to reduce SFV-induced CPE in chick
embryo fibroblasts.92 This compound was once considered as a
treatment for alphaviral infections when studies showed that the
combination of IFN-a and ribavirin had a subsynergistic antiviral
effect on CHIKV and SFV replication.93 A number of mechanisms

associated with ribavirin have been proposed. Of these, the pre-
dominant mechanism of action is inhibition of inosine-50-mono-
phosphate dehydrogenase (IMPDH), which leads to a depletion of
cellular GTP pools and is needed for virus replication.94 A derivative
of ribavirin, ribavirin-50-sulfamate (Figure 4), was also described to
inhibit SFV replication.95 Another nucleoside analogue, 6-azauri-
dine (Figure 4), is a broad-spectrum antimetabolite that inhibits
both DNA and RNA virus replication of CHIKV and SFV,93 while
replacement of the adenine or guanine core in a nucleoside with
4-fluoroimidazole resulted in 5-fluoro-1-b-D-ribofuranosylimida-
zole-4-carboxamide (5-FICAR; Figure 4), which showed antiviral
activity against SINV.96

The carbocylic analogue of cytidine, carbodine (Figure 4), has
been shown to deplete CTP pools by inhibiting CTP synthetase (which
converts UTP into CTP) and thereby inhibits RNA synthesis in the repli-
cation cycle of a range of DNA and RNA viruses.97 Two enantiomeric

5-NT

Ribavirin-5„-sulfamate

Mycophenolic acid

CCG32091

Harringtonine
Digoxin

6-Azauridine 5-FICAR (–)-Carbodine Cordycepin

Flavagline FL3 Flavagline FL23
Sulfonyl amidine 1 m Ribavirin

15: R = (R) α-Phenylethyl
16: R = (4-Pyridyl)ethyl

17: R = 4-Chlorophenyl
18: R = 4-Chlorobenzyl

Figure 4. Chemical structures of selected host-targeting inhibitors. Inhibitors of virus entry: 5-NT, flavaglines FL3 and FL23 and sulfonyl amidine 1 m.
Inhibitors of virus replication: ribavirin, ribavirin-50-sulfamate, 6-azauridine, 5-FICAR, (#)-carbodine, cordycepin, mycophenolic acid, harringtonine,
digoxin, CCG32091 and compounds 15–18.
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pure carbodine compounds [(!)-carbodine and (#)-carbodine] were
screened against VEEV-induced CPE.98 Interestingly, (!)-carbodine
did not exhibit any activity whereas (#)-carbodine demonstrated
potent in vitro and in vivo antiviral efficacy.98 Cordycepin (30-deoxya-
denosine; Figure 4) is known to influence replication of several viruses
via reducing the poly(A) content of viral mRNA.99,100 However, anti-
viral studies against SFV infection demonstrated that cordycepin did
not specifically inhibit the synthesis of poly(A) sequences; instead it
inhibited the synthesis of the virus RC.101

Mycophenolic acid (Figure 4), a weak organic acid and well-
known immunosuppressive agent, was first isolated from the fun-
gus Penicillium stoloniferum and demonstrated broad-spectrum
antiviral activity against replication of several viruses, including
CHIKV.102,103 Similar to ribavirin, the mechanism of action of myco-
phenolic acid in vitro is based on inhibition of cellular IMPDH activ-
ity.94,103 Brefeldin A, a macrolide lactone antibiotic produced by
the fungus Eupenicillium brefeldianum, inhibits SINV protein syn-
thesis and RNA replication, possibly due to its interference with the
formation of vesicles that were required for viral RNA synthesis.104

Harringtonine (Figure 4), a cephalotaxine ester derived from the
Japanese plum yew, Cephalotaxus harringtonia, is known to be an
inhibitor of eukaryotic protein synthesis.105 It not only demon-
strated dose-dependent inhibition of CHIKV during the early events
of CHIKV replication after virus entry, but significantly reduced
CHIKV RNA and the synthesis of nsP3 and E2 proteins at its non-
cytotoxic concentrations (1 or 10 lM).106 The mechanism of action
of harringtonine has been suggested not to be specific to CHIKV, in-
stead being exercised through inhibition of the eukaryotic large
ribosomal unit, thereby suppressing viral protein translation, lead-
ing to a decrease in the levels of RCs and viral RNA.106

Lanatoside C, an approved cardiac glycoside that acts by
inhibiting the Na!-K!-ATPase ion pump, was demonstrated to
have potent inhibitory activity against various RNA viruses, such as
DENV, CHIKV and SINV.107 As optimum levels of intracellular Na!

and K! in the cytosol environment are important for proper repli-
cation of various DNA and RNA viruses, increased levels of intracel-
lular Na! and reduced intracellular K! caused by lanatoside
C affected the replication of CHIKV and SINV.107 Similarly, another
inhibitor of the Na!-K!-ATPase ion pump, digoxin (Figure 4),
showed enhanced inhibition of CHIKV when extracellular Na! was
introduced, but exhibited no or marginal inhibition of CHIKV when
extracellular K! was introduced.108 Digoxin displayed a broad-
spectrum inhibitory effect against other alphaviruses, such as RRV
and SINV.108 In addition, mutation of the valine at residue 209 in
nsP4 to isoleucine was observed in digoxin-resistant CHIKV popula-
tions, suggesting that digoxin could be inhibiting CHIKV replication
by disrupting RNA synthesis.108 Although digoxin is known to be
cytotoxic owing to its narrow therapeutic index in treating heart
diseases,109 the observed in vitro CHIKV inhibition by digoxin was
not due to its cytotoxicity (i.e. toxicity only occurred at a dose
20 times its EC50 for antiviral activity).108 Preclinical studies using
an in vivo mouse model might be employed to verify the margin
between its toxicity and antiviral efficacy.

To improve the poor in vitro metabolic properties of the reported
inhibitor of WEEV, thieno[3,2-b]pyrrole CCG32091 (Figure 4),110

a class of indole compounds, i.e. bioisosteres of thieno[3,2-b]pyr-
role, was evaluated for activity against the WEEV replicon.111

The investigation led to the discovery of an indole analogue,
(R)-enantiomer 15 (Figure 4), which not only possesses better

metabolic stability in mouse liver microsomes (MLMs) as compared
with CCG32091 (half-life 31 versus 1.7 min), but also potent anti-
viral activities, a good cytotoxic profile and in vivo efficacy.111

In subsequent SAR studies, various structural modifications, such
as varying substituents at the N1 and C2 position of the indole core
as well as scaffold hopping (i.e. replacement of the indole with pyr-
role, benzimidazole and imidazole), were made.112 The investiga-
tion led to the discovery of indole-2-carboxamide 16 (with a
C2 terminal pyridinyl group; Figure 4), which exhibited 10-fold im-
provement in potency as compared with 15 in a WEEV replicon
assay.112 Mechanistically, both classes of thieno[3,2-b]pyrrole and
indole compounds, i.e. CCG32091 and 16, did not directly inhibit
WEEV RdRp or other viral enzymatic activities; instead they possibly
targeted a host factor that modulates a cellular cap-dependent
translation pathway such as the eukaryotic initiation factor 2
signalling pathway.113

Continuing the efforts to improve the physiochemical properties
that contribute to the in vivo blood–brain barrier (BBB) permeability
of indole 16, the indole core was replaced with a lower molecular
weight core structure such as pyrrole or a simple phenyl ring.114

Through these efforts, two anthranilamide analogues, 17 and 18
(Figure 4), were discovered as possessing better metabolic stability
in MLMs (half-life 15–19 versus 9 min), improved aqueous solubility
and nearly equivalent passive permeability as measured in a
BBB–parallel artificial membrane permeability assay without losing
anti-WEEV potency.114

4.3 Inhibitors of virus maturation

Earlier reports showed that during alphavirus maturation the enve-
lope glycoprotein precursor, pE2, is usually cleaved at short multi-
basic motifs by furin or furin-like convertases.115–117 To inhibit the
maturation of CHIKV virions, a synthetic peptide mimic of the con-
served sequence (K/R)X(K/R)R# of the cleavage site of CHIKV pE2,
namely decanoyl-RVRK-chloromethyl ketone (FI), was screened
for anti-CHIKV activity. This peptidomimetic behaved like furin in-
hibitors, which induce inhibition of CHIKV infection by preventing
the processing of pE2.118 Interestingly, FI also showed inhibition of
CHIKV entry when used as a pretreatment, suggesting there could
be other modes of action associated with FI.118

4.4 Modulators of cellular functions that assist
virus replication

Deubiquintinases (DUBs) are a class of cysteine proteases involved
in proteasomal degradation and regulation of cellular processes
such as the unfolded protein response.119 Studies showed that
many viruses depend on the ubiquitin (Ub) cycle by hijacking cellu-
lar Ub-modifying enzymes, including DUBs, to assist their post-
entry events.119 To investigate the relationship between DUBs and
virus infection, an inhibitor of DUB, WP1130 (Figure 5), was
evaluated to determine whether DUBs promoted norovirus infec-
tion.120 Results showed that WP1130 inhibited a proteasome-
associated DUB known as USP14 and restricted replication of
several RNA viruses, including SINV, through the IRE1-dependent
decay of viral proteins, which was activated upon inhibition of
DUBs.120 Derivatives of WP1130 possessing fluoro-substitution or
no substitution on the pyridinyl group and a solubilizing group on
the phenyl group were explored to improve the aqueous solubility
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of WP1130.121 Of these, derivatives 19 and 20 (Figure 5) signifi-
cantly reduced virus titres in SINV-infected Vero cells.121

The mitogen-activated protein (MAP) signalling pathway has
been suggested to be activated by viruses, which potentially con-
fers a prosurvival status on the infected cells in order to have a
productive infection cycle for generating sufficient progeny
virions.122–125 For this reason, an inhibitor of the MAP kinase, extra-
cellular signal-regulated kinase (ERK), Ag-126 (Figure 5), was eval-
uated and found to possess inhibitory activity against VEEV
replication in its non-toxic concentration range during early and
late events of the virus replication cycle.123 Another natural prod-
uct, berberine (Figure 5), was also found to impede alphavirus repli-
cation through inhibiting the phosphorylation of ERK, thereby
affecting the egress of progeny virions, since it did not affect virus
entry and enzymatic activity of the viral RC.126 In vivo antiviral effi-
cacy studies of berberine revealed that it could behave as both an
antiviral agent (i.e. reducing viral load in infected mice) and an
anti-inflammatory agent (i.e. decreasing joint swelling in infected
mice).126 Interestingly, berberine demonstrated broad-spectrum
antiviral activity against other Old World alphaviruses such as SINV
and SFV,127 while Ag-126 demonstrated broad-spectrum antiviral
activity against New World alphaviruses such as EEEV and

WEEV.123 On the other hand, a kinase inhibitor library containing
4000 compounds was screened against in vitro CHIKV infection
and among the 72 primary hits, 6 compounds containing benzo-
furan, thiazole and pyrrolopyridine core structures were identified.
Of these, the benzofuran CND0335 and pyrrolopyridine CND3514
(Figure 5) exhibited significant reduction in virus titres at 20 lM.128

Activation of the D4 dopamine receptor generates a series of
downstream signals in which phosphorylation of ERK occurs, which
in turn regulates viral replication during the replication cycles of
a range of DNA and RNA viruses.129–131 Treatment with an antag-
onist of D4 dopamine receptor such as SKI-417616 (containing
a dihydrodibenzothiepine scaffold; Figure 5) in DENV-infected cells
inhibited the phosphorylation of ERK, which results in the inhibition
of virus replication (especially at the early stage of the replication
cycle).122 In addition, it inhibited the replication of SINV at 1 or
10 lM concentration,122 which suggests that D4 dopamine recep-
tor signalling could be one of the regulatory factors involved in the
replication of alphavirus.

Before the degradation of a target mRNA, argonaute (Ago) pro-
teins and microRNAs (miRNAs) along with other co-factors become
incorporated into the RNA-induced silencing complex (RISC), which
in turn associates with the target mRNA.132,133 The association

WP1130

Berberine

ACF HS-10 SNX-2112 Geldanamycin

KPT-185 KPT-335 Bortezomib

CND0335 CND3514
SKI-417616

19: R = H
20: R = F

Ag-126

Figure 5. Chemical structures of selected host-targeting inhibitors that are modulators of cellular functions that assist alphavirus replication.
Inhibitors of virus fusion and/or replication: WP1130 and its derivatives 19 and 20, Ag-126, berberine, CND0335, CND3514, SKI-417616, ACF, HS-10,
SNX-2112, geldanamycin and bortezomib. Inhibitors of virus assembly: KPT-185 and KPT-335.
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between cellular miRNAs, miRNA processing machinery and VEEV
replication was shown when a marked decrease in VEEV replica-
tion was observed in the absence of Ago2.134 Acriflavine (ACF;
Figure 5)—a mixture of trypaflavine and proflavine—was found to
inhibit the association between Ago2 and other co-factors that as-
sist in RNA loading onto the RISC, thereby reducing VEEV replica-
tion.134 Interestingly, ACF demonstrated broad-spectrum antiviral
activity against WEEV and EEEV, suggesting that it could act upon
a pathway that is conserved among the encephalitic alphavi-
ruses.134 However, ACF treatment in infected BALB/c mice did not
significantly reduce virus replication.134 This could be due to its
short biological half-life, which accounted for the differences be-
tween its in vivo and in vitro effects in VEEV infection.135

HSP-90, which assists in proper folding of viral proteins and sta-
bilizes these proteins against heat stress, plays an important role
in the replication of many DNA and RNA viruses.136,137 HSP-90 is
involved in the CHIKV RC by interacting with nsP3 and nsP4 to facili-
tate virus replication.138 For this reason, HSP-90 inhibitors such as
HS-10, SNX-2112 and geldanamycin (Figure 5) were investigated
and found to inhibit CHIKV replication.138

VEEV CP was known to associate with cellular proteins such as
host trafficking proteins [i.e. cellular importin a/b, chromosomal
maintenance 1 (CRM1) and nuclear pore complex], which have the
unique ability to block the nuclear import of transcription factors
required for an antiviral response, and the export of newly synthe-
sized cellular mRNA.139 Hence, host trafficking proteins are viable
targets for antivirals designed specifically to interrupt the inter-
action between CP and these proteins. Nuclear transport inhibitors
such as mifepristone, ivermectin and leptomycin B have been
shown to inhibit VEEV replication by altering VEEV CP localization
and activity.140 Of these, leptomycin B, a well-documented CRM1
inhibitor and Streptomyces metabolite, was very potent in restrict-
ing the CP to the nucleus, making it unavailable at the cytoplasm
to form viable virions.140 Since leptomycin B is rather cytotoxic,
there is a need to investigate a new generation of CRM1 inhibitors.
Hence, a series of selective inhibitors of nuclear export (SINE) com-
pounds, such as KPT-185, KPT-335 (Figure 5) and KPT-350, which
are analogues of selinexor, was explored.141 These compounds
confine VEEV CP to the nucleus, leading to a depletion in the
amount of cytoplasmic CP (i.e. intracellular CP) and released CP (i.e.
extracellular CP), as demonstrated in western blot analyses.141

This leads to a decrease in virus assembly and/or release of mature
virions. Serial passaging of VEEV-infected cells in the presence of
KPT-185 resulted in mutations within the nuclear localization and
nuclear export signals in the CP (i.e. T41I, K64E or K64M), confirm-
ing that this SINE compound exerts its antiviral activity by targeting
CP localization.141

Bortezomib (Figure 5) is a dipeptidyl boronic acid that specific-
ally and reversibly inhibits the ubiquitin proteasome.142 As a result,
the early stage of the VEEV infectious cycle was affected by borte-
zomib during the fusion stage, when the VEEV CP was K48 ubiquiti-
nated for proteasomal degradation for the release of the viral
RNA.143 Bortezomib treatment also decreased the multiplication
of other virulent New World alphaviruses.143

5. Conclusions and perspectives

A number of reported direct-acting and host-targeting inhibitors of
alphaviruses have been highlighted, with the emphasis on their

mechanisms of action. These include drugs that are already on the
market and currently used for the treatment of other diseases,
such as doxycycline, phenothiazines, chloroquine, obatoclax, sura-
min and digoxin, which have been discovered in drug repurposing
screens. The challenge here is to improve the potency of these
compounds against CHIKV while retaining good drug-like proper-
ties. The inhibitory activities of the tested compounds against
alphavirus ranged from strong to weak inhibition depending on
the type of assay used, with secopregnane steroid glycoside
13 being the strongest inhibitor, with EC50 1.5 and 2 nM against
SINV replication and EEEV-induced CPE, respectively, while sura-
min displayed the weakest activity against SINV-induced CPE, with
EC50 141 lM. Despite the selective antiviral activity of direct-acting
inhibitors such as favipiravir, CID15997213 and ML336 against the
functions of alphavirus elements compared with host cellular tar-
gets, the use of direct-acting inhibitors in treatment regimens can
lead to the rapid selection of resistant viruses. On the other hand,
host-targeting inhibitors such as digoxin, bortezomib, berberine,
Ag-126 and SINE compounds represent an alternative approach,
and may increase the barrier to resistance and achieve broad-
spectrum antiviral coverage against a range of alphaviruses.
However, a possible downside is the potential on-target toxicity, as
exemplified by digoxin, an inhibitor of the Na!–K!-ATPase ion
pump, which shows toxicity at concentrations as low as 1 lM.

Besides developing small-molecule inhibitors as therapy
against alphaviruses, other forms of unconventional antiviral ther-
apy, such as RNA interference (RNAi)-based therapy and antiviral
immunotherapy, can be considered. Given the ability to specifically
silence any gene of interest in the viral RNA, thereby preventing
viral proteins from being translated, short interfering RNAs (siRNAs)
and miRNAs, which constitute RNAi-based therapy, offer several
advantages over conventional drugs as potential therapeutic
agents by overcoming patient compliance and drug toxicity
issues.144 As the innate immune system plays a central role in the
progression and control of alphavirus infection, small-molecule
immunomodulators such as DD264, G10 and 5,6-dimethylxanthe-
none-4-acetic acid, which stimulate expression of antiviral pro-
teins, have also been explored as potential therapeutic agents
against alphavirus infection.145,146 With the recent advances in
RNAi technology and developments in the characterization of the
receptors and pathways of the innate immune system associated
with alphavirus infection, it should be possible to develop highly
targeted RNAi-based and immunomodulatory therapies for the
treatment of alphavirus infections.
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