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Epithelial tissue elongation by convergent extension is a key motif of animal morphogenesis. On
a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells
adhere to each other and maintain the tissue layer under actively generated internal tension. To
resolve this apparent paradox, we formulate a model in which tissue flow occurs through adiabatic
remodelling of the cellular force balance causing local cell rearrangement. We propose that the
gradual shifting of the force balance is caused by positive feedback on myosin-generated cytoskeletal
tension. Shifting force balance within a tension network causes active T1s oriented by the global
anisotropy of tension. Rigidity of cells against shape changes converts the oriented internal rear-
rangements into net tissue deformation. Strikingly, we find that the total amount of tissue extension
depends on the initial magnitude of anisotropy and on cellular packing order. T1s degrade this order
so that tissue flow is self-limiting. We explain these findings by showing that coordination of T1s
depends on coherence in local tension configurations, quantified by a certain order parameter in
tension space. Our model reproduces the salient tissue- and cell-scale features of germ band elonga-
tion during Drosophila gastrulation, in particular the slowdown of tissue flow after approximately
twofold extension concomitant with a loss of order in tension configurations. This suggests local cell
geometry contains morphogenetic information and yields predictions testable in future experiments.
Furthermore, our focus on defining biologically controlled active tension dynamics on the manifold
of force-balanced states may provide a general approach to the description of morphogenetic flow.

Shape changes of epithelia during animal development
involve major cell rearrangements, often manifested as a
“convergent extension” of cell sheets. On the the coarse
scale, convergent extension looks much like the lami-
nar shear flow of an incompressible fluid in the vicinity
of a hyperbolic fixed point (see Fig. 1A). Indeed, pre-
vious work has combined hydrodynamic equations for
the mesoscale cell velocity field with active stress fields
to model morphogenetic tissue flow [1–4]. Yet in con-
trast to a fluid, epithelia are under internally gener-
ated tension – revealed by laser ablation [5] – and, like
solids, maintain their shape against external forces. Tis-
sue flow is achieved through local cell intercalation (T1
neighbor exchange processes, see Fig. 1B) driven by the
concerted mechanical activity of individual cells. Cells
generate forces via actomyosin contractility in the corti-
cal cytoskeleton at the adherens junctions between cells
(Fig. 1C). Moreover, the adherens junctions can remodel
through the turnover of its constituent molecules. Taken
together, this implies that interfaces in the cell array can
change their length and tension independently. This be-
havior is fundamentally different from (Hookean) springs,
where tension and length are related by a constitutive
relationship. Instead, one can imagine cellular interfaces
as “microscopic muscles” which are controlled by the re-
cruitment and release of myosin motors.
Vertex models generally describe epithelial tissue as a

polygonal tiling of cells where the vertex positions are
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the dynamical variables [6, 7]. The forces that drive the
vertex motion are commonly derived from passive area
and perimeter elasticity supplemented with additional
active tensions [8–10]. However, the muscle metaphor
for cellular interfaces suggests that they form a me-
chanical network dominated by active tension (Fig. 1D).
This network rapidly equilibrates to a force balanced
state [5, 11, 12], stabilized by mechanical feedback loops
[13, 14]. In such an active tension network, passive elas-
ticity plays a subdominant role. The need for stabilizing
feedback loops arises because active tensions are unteth-
ered from interface lengths. Indeed, on an abstract level,
these feedback loops are not unlike the regulatory mecha-
nisms that control and stabilize skeletal musculature [15].

Here, we propose that tissue flow can be understood
in the terms of an adiabatic remodeling of internal active
force balance. Force balance in the cortical tension net-
work defines a manifold of cellular tiling geometries on
which tissue deformation unfolds. We propose that dy-
namics in the force-balance manifold driven by positive
feedback on the cortical tensions. This view is supported
by analysis of high quality live imaging data [16] from
Drosophila gastrulation presented in the companion pa-
per [17]. Specifically, tension inference has provided ev-
idence for the role of positive tension feedback during
active T1 events. Numerical simulations of cell quar-
tets show that such a feedback mechanism is sufficient to
drive the T1 process. However, the question of coordina-
tion of T1s across the tissue – required to drive coherent
tissue flow – has remained unanswered. To address this
question, we develop a model of tissue mechanics in the
tension-dominated regime and demonstrate via numeri-
cal simulations how positive feedback drives convergent
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extension. We show that order of the cell packing is nec-
essary for coordinating T1 processes, and hence efficient
convergent extension. T1s destroy this order such that
the extent of tissue flow is self limiting. Thereby, our
model reproduces the experimentally observed elongation
of the germband where the arrest of flow is concomitant
with a transition from an ordered to a disordered cell
packing [17].

METHODS

A minimal model based on force balance and cell
geometry.

Our model is based on the assumption that on the
timescales relevant to morphogenetic dynamics, the dom-
inant active forces in the epithelium (generated by con-
tractile myosin-2 motors in the adherens junctions, see
Fig. 1C) are approximately balanced. In particular,
we assume that adhesion forces between the epithelial
layer and its substrate (the fluid yolk in the case of the
Drosophila embryo) caused by the relatively slow mor-
phogenetic motion, are negligible. Hence, all forces must
be balanced within the transcellular network of cellular
junctions. We model the tissue in the general framework
of vertex models (see e.g. [7]) as a polygonal tiling of the
plane with tri-cellular vertices rijk, where each polygon
represents a cell i (see Fig 1D). Since we focus on a set-
ting where active cortical tensions dominate over passive
elasticity, we write the elastic energy differential of this
network as

δE({rijk}|{Tij}) =
∑
ij

Tijdℓij−p
∑
i

dAi+ε
∑
i

dEC(Si),

(1)
where ε is a small parameter that separates the scale of
active and passive mechanical contributions. EC(Si) ac-
counts for the passive elasticity of the cells and will be
specified below; ℓij = ||rij || is the length of the inter-
face between adjacent cells i and j and Tij is the cor-
tical tension at that interface. Importantly, in contrast
with the standard vertex model, where edge tension is
defined by a constitutive relation corresponding to a pas-
sive Hookean perimeter spring, we take cortical tensions
to be controlled independently of the interface lengths.
The tension dynamics is described in the next section.
The second term in Eq. (1) accounts for the effective in-
plane pressure p of the cells that, by maintaining the
total surface area (sum over individual cell areas Ai), en-
sures that the tissue as a whole does not collapse. We
assume that pressure differences between cells are small
and therefore absorb them into EC(Si).
We further assume a separation of scales between

the timescale on which the elastic energy relaxes and
the timescale on which the tissue deforms macroscopi-
cally. In other words, we assume relaxational dynamics
γ∂trijk = − ∂E

∂rijk
, with a relaxation rate γ−1 much faster

than all other timescales in the system. (Rather than
frictional dissipation, one could use viscous dissipation
here). Quasi-static force balance then implies

∂E
∂rijk

= 0. (2)

Solving this equation to zeroth order in ε yields a force-
balance constraints at each vertex. These constraints im-
ply that the tension vectors Tij = Tijeij at each vertex
sum to zero and hence form a triangle. Since neighboring
vertices share the interface that connects them, the cor-
responding tension triangles share an edge. Therefore,
all tension triangles have to fit together to tile the plane:
they form a triangulation that is dual to the the cell tiling
[13, 18, 19]. In force balance, angles at real-space vertices
are complementary to tension triangle angles. Therefore,
given a tension triangulation {Tij}, minimization of the
elastic energy E at zeroth order in ε fixes the angles at
all vertices in the cellular tessellation. Importantly, fix-
ing the angles at vertices does not fully determine the
cell tessellation, i.e. the rijk remain underdetermined, as
this leaves the freedom to change the interface lengths ℓij
while preserving all angles. The resulting isogonal modes
thus account for interface length changes under constant
tension [13], which is possible thanks to the turnover of
cytoskeletal elements. The isogonal modes can dilate and
shear cells (Fig 1F) and thus contribute elastic energy of
order ϵ via the cell shape energy EC(Si). By our hypoth-
esis, this contribution is substantially smaller than the
active cortical tensions such that isogonal deformations
act as “soft modes” with relatively large deformations
produced by small forces. Cells resist shape distortions
due to rigid cell-internal structures such as microtubules,
the nucleus [20], and intermediate filaments [21]. To ac-
count for this passive cell elasticity, we propose an energy

EC(S) = λ[Tr(S − S0)]
2 + µTr[(S − S0)

2], (3)

in terms of the cell shape tensor

Si =
∑
k∈Ni

rik ⊗ rik
ℓik

, (4)

where Ni is the set neighbors of cell i. The shape tensor
is defined such that it is invariant under subdivision of
interfaces. The reference tensor S0 controls the target
cell shape and is given by S0 = 3ℓ0 I for an isotropic
hexagonal cell with side length ℓ0.

Minimization of
∑
iEC(Si) while keeping all angles

fixed determines the isogonal degrees of freedom and
therefore determines the quasi-stationary cell tessella-
tion for a given tension triangulation (Fig 1F). A sim-
ple counting of degrees of freedom shows that there is
one isogonal degree of freedom per cell [13]. Therefore,
the isogonal modes can be parametrized by an “isogonal
function” that takes a scalar value in each cell. The isog-
onal displacement of a vertex is defined in terms of the
values of this isogonal function in the three adjacent cells
(see Eq. (17)).
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External forces will deform the cell tessellation by act-
ing on the isogonal modes. We can therefore relate cell
rigidity and tissue rigidity by analyzing the energy spec-
trum of isogonal modes for a given tension triangula-
tion (see SI Sec. III B). The two isogonal modes with
the lowest energy correspond to uniform pure shear (see
Fig. S10A). From these eigenmodes, we find a linear re-
lationship between the cell and tissue shear moduli (see
Fig. S10B).

Positive feedback and adiabatic dynamics

On the timescale of morphogenetic flow, tensions
change due to the recruitment and release of molecular
motors, driving the remodeling of the force balance geom-
etry encoded in the tension triangulation. To complete
the model, we need to specify the dynamics that governs
the tensions on this slow timescale. Based on previous ex-
periments [22] and models [10, 23], we propose a positive
feedback mechanism where tension leads to further re-
cruitment of myosin and thus further increase in tension.
This self-amplifying accumulation of myosin on individ-
ual interfaces is limited by the competition for a limited
pool of myosin within each cell. To mimic this local com-
petition for myosin in a computationally simple way, we
constrain tension dynamics to conserve the perimeter of
each tension triangle, i.e. the sum of tensions at each
vertex (ijk). For an individual triangle with tensions

T̃1, T̃2, T̃3, we consider the dynamics

τT∂tT̃α = T̃nα − 1

3

3∑
β=1

T̃nβ , with α = {1, 2, 3} (5)

Note that this feedback mechanism has a “winner-takes-
all” character, where the longest edge in the tension tri-
angle always outgrows the other two, as illustrated in
Fig 1G. This is only one of of many possible models: be-
low we will shall also investigate a positive tension feed-
back that saturates and leads to qualitatively different
tissue dynamics.
Force balance requires that that all tension triangles

fit together to form a flat triangulation [13]. The trian-
gulation is parameterized by a set of 2D tension vertex
positions ti, so that the tension on edge (ij) is given
by Tij = ||ti − tj ||. In each iteration of the simulation,
the tension vertices ti are determined by fitting the bal-
anced tensions Tij to the intrinsic tensions T̃ij using a
least squares method. In addition, the intrinsic tensions
T̃ij relax to the balanced tensions Tij with a rate τ−1

balance
(see SI Sec. IV for details). This “balancing” of the ten-
sion triangulation effectively accounts for small pressure
differentials and additional feedback mechanisms (such
as strain rate feedback [13]) which maintain the tension
network in a state compatible with force balance. The
rate at which these mechanisms act is controlled by the
timescale τbalance which we assume to be much smaller

than the timescale τT on which tension evolve due to
positive feedback.

The above dynamics is autonomous in tension space
until an edge in the cell tessellation reaches length zero.
At this point, a cell neighbor exchange (T1 transition)
occurs, corresponding to an edge flip in the tension trian-
gulation. After this topological modification, the tension
dynamics continues autonomously again until the next
T1 event. To determine the active tension (i.e. myosin
level) on the new interface formed during the cell neigh-
bor exchange, we assume continuity of myosin concen-
tration at vertices as described in the companion paper
[17] and in SI Sec. IV. The active tension is not suffi-
cient to balance the total tension on the new interface,
such that passive elements of the cortex (e.g. crosslink-
ers) are transiently loaded. The resulting passive ten-
sion relaxes due to remodeling with timescale τp (see SI
Sec. IV for details). This relaxation causes the elongation
of the new interface as it transiently counteracts positive
tension feedback and thereby prevents the new interface
from immediately re-collapsing after a T1.

This concludes the description of the computational
model. A brief overview over the parameters an their
effects, several of which will be discussed in detail below,
is given in SI Table I and Fig. S7.

RESULTS

Cell packing order facilitates self-organized
convergent–extension flow

In the companion paper [17], we have shown that posi-
tive tension feedback can drive an active T1 transition in
a cell quartet where the inner interface is initially under
slightly higher tension than its neighbors. The simula-
tions in Ref. [17] were performed in a quartet of identi-
cal cells, representing a perfectly regular lattice of cells.
However, any real tissue will exhibit some degree of ir-
regularity. Investigating the effect of this disorder is key
to understand convergent extension on the tissue scale.
To this end, we perform simulations of irregular cell ar-
rays. All parameters are set to the same values as in
the companion paper, where the time scale τT was cal-
ibrated to fit the tension and interface length dynamics
of active T1s during Drosophila gastrulation. We start
with simulations of a freely suspended patch of tissue to
investigate the role of initial tension anisotropy and order
in the cell packing. Further below, we will present sim-
ulations that combine active with passive tissue regions,
mimicking the Drosophila germ band and the adjacent
amnioserosa tissue.

Starting with a slightly perturbed hexagonal cell pack-
ing, the tissue patch undergoes convergent extension
elongating the tissue perpendicular to the initial orien-
tation of global tension anisotropy (Fig. 2A). The tissue
flow is driven by self-organized cell rearrangements (ac-
tive T1 transitions) whose rate rapidly increases, reach-
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FIG. 1. Tissue mechanics dominated by cortical tension. A Convergent extension of epithelial tissue by cell interca-
lations (T1 processes, B). C A single cell from a columnar epithelium with the actomyosin cortex at the adherens junction
belt generating tension T along cell-cell interfaces. Gray sphere represents the nucleus. D In force balance, the tensile forces
Tij at each vertex must sum to zero, thus linking the tensions to the angles at which the interfaces meet. E Force balance
implies that the tensile force vectors at each vertex form a triangle. Triangles at neighboring vertices share an edge and thus
form a triangulation that tiles the plane. The angles in the tension triangulation are complimentary to the angles in the tissue.
F Outline of our tissue model with mechanics dominated by actively regulated cortical tensions. Tension dynamics in adiabatic
force balance are formulated as a geometric model of the tension triangulation which determines the angles at vertices. The
remaining isogonal (angle-preserving) degrees of freedom are governed by cell-shape elastic energy, which accounts for (passive)
non-cortical elasticity and penalizes dilation and shearing. G We propose tension dynamics governed by positive tension feed-
back where the longest edge in a tension triangle grows at the expense of its neighbors.

ing a maximum, and then decreases to a lower, but
non-zero, value (Fig. 2D). Large-scale tissue deforma-
tion stalls after approximately 2-fold convergent exten-
sion (as measured by the square root of the aspect ratio
a = width/height, Fig. 2C) while cells continue rearrang-
ing. This suggests that T1s at this stage are no longer
coherently oriented and therefore do not contribute to
net tissue deformation. Indeed, the efficiency of T1s at
driving convergent extension drops after the T1 rate has
peaked (Fig. 2D).

As cells rearrange, the tissue becomes increasingly dis-
ordered, as indicated by the loss of global tension anisot-
ropy and the decreasing fraction of cells with six neigh-
bors, p6 (Fig. 2E). We define the tension anisotropy ten-

sor Q = 2
3

∑3
α=1 Tα⊗Tα directly from the tension geom-

etry (Q can be thought of as the metric tensor of the of
the tension triangulation). Averaging the deviatoric part

Q̃ = Q− 1
2TrQ over the cell array, we obtain a measure

of global tension anisotropy ||⟨
√
2Q̃⟩|| ∈ [0, 1].

To test the role of initial order in the cell packing, we
initialize the simulation from a random Voronoi tessel-
lation, which results in slower convergent–extension flow
and arrest of flow at a smaller amount of total tissue-
scale deformation (Fig. 2B, C and Movie 2). Notably,
tension anisotropy rapidly vanishes without the transient

increase observed in the simulation starting with a more
ordered cell packing (Fig. 2E). While the early dynamics
depends sensitively on the initial condition, we find rapid
convergence toward a common disordered steady state.

A common measure for the degree of order in a polyg-
onal tiling is the cell shape index (s = P/

√
A, with cell

perimeter P and area A), shown in Fig. 2F. This shape
index is high when cell shapes are elongated or irregular
and approaches the minimal value s ≈ 3.72 for a regular
hexagon. The shape index has a particular relevance in
vertex models employing an area-perimeter based elastic
energy [7, 24]. In these models, the target shape index
is a control parameter that drives a solid to fluid transi-
tion [24]: a high target shape index (s0 > s∗0 ≈ 3.81) is
associated with tissue fluidity since it allows for cell rear-
rangements, while a low cell target shape index gives rise
to a solid state. In both cases, the observed shape index
is controlled by the target shape index. In contrast, in
our simulations with actively driven T1s, disorder, and
thus a high observed shape index, is the consequence of
cell rearrangements, rather than their cause. Notably, we
find more tissue flow when the observed shape index is
initially low (Fig. 2F). The question of the solid vs fluid
character of tissue will be addressed in more detail in the
last part of the results section and in the discussion.

To systematically investigate the role of tension anisot-
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FIG. 2. Extent of tissue flow depends on initial cell-scale order and tension anisotropy. A, B Simulation snapshots
of tissue patches with free boundaries starting from an (irregular) hexagonal cell array (A) and a disordered cell array (B)
generated from a random Voronoi tessellation. The net deformation is significantly smaller in the latter case. In both cases
the final configuration is disordered. Each snapshot shows the top half of the tension triangulation and the bottom half of the
corresponding cell array. Note the the initial initial tension triangulation is stretched along the x direction and compressed
along the y direction as a result of the prescribed initial tension anisotropy. C Convergent extension is slower and ceases at
a smaller net deformation for a disordered initial condition (cyan line) compared to the initially ordered case (purple line).
Shaded bands indicate standard deviation over N = 3 simulation runs with Ncells ≈ 103 cells each. D Plotting the rate of tissue
convergent extension against the T1 rate provides a measure for the efficiency of T1 transitions. For the initially ordered tissue,
the efficiency of T1s is starts out near the theoretical optimum but drops to zero as the tissue becomes disordered. For the
disordered initial condition, T1s are inefficient from the beginning. The theoretical bound (for cells retaining isotropic shape)
is a factor of

√
3 elongation for 2 T1s per cell as illustrated in the inset cartoon. E Decreasing hexagon fraction (solid lines)

and global tension anisotropy (dashed lines) indicate the decay of order in the cell arrays. Notably, in the initially ordered
cell array, tension anisotropy transiently increases due to positive tension feedback (solid purple line). At late times both
simulations converge to zero global tension anisotropy and identical coordination number statistics (inset). F As order is lost,
the cell-shape index s converges to that of a random Voronoi tessellation sV (dashed black line). Note that the critical shape
index for the rigidity transition in the “classical” vertex model [24], s∗0 ≈ 3.81 (dot-dashed orange line), does not feature in our
results. Lines show the median, shaded bands indicates quartiles.

ropy and cell packing order on self-organized convergent
extension, we generate tension triangulations from ran-
dom hard disk packings at different packing fractions ρ
[25, 26]. Specifically, we sample the positions of the ten-
sion vertices ti from a hard disk process, and then con-
struct the corresponding Delaunay triangulation. At low
packing fraction, the hard disc process generates highly
irregular triangulations with broadly distributed coordi-
nation numbers (see Fig. 2B). In contrast, at sufficiently
high packing fraction ρ ≳ 0.72, the disks adopt a crys-
talline hexagonal packing such that p6 ≈ 1. The plot
at the bottom of Figure 3A shows how the degree of
order continuously varies with ρ between these two ex-
tremes. To tune the initial tension anisotropy, the trian-
gulation is sheared with magnitude s (displacing vertices
by ti 7→ diag(

√
1 + s, 1/

√
1 + s) ti).

The heatmap in Fig. 3A (top) shows the dependence
of convergent extension on the initial configuration con-

trolled by ρ and s. The the total extent of convergent
extension, quantified by the net change in aspect ratio√
afinal/ainitial increases continuously with both the ini-

tial order and the magnitude of tension anisotropy. As we
have seen above, both these quantities decrease as cells
rearrange (cf. Fig. 2E). In fact, when plotting the remain-

ing extent of convergent extension
√
afinal/a(t) against

p6(t) and ||⟨
√
2Q̃(t)⟩||, we find trajectories that approx-

imately lie in a common plane and converge to a fixed
point at vanishing anisotropy ||⟨

√
2Q̃⟩|| ≈ 0 and p6 ≈ 0.4

(Fig. 3B). Based on these results, we hypothesize an
empirical law for feedback-driven convergent extension,
based on the instantaneous hexagon fraction and tension
anisotropy:√

afinal
a(t)

≈ cQ||⟨
√
2Q̃(t)⟩||+ c6p6(t) (6)

With the coefficients determined by a linear fit, Eq. (6)
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FIG. 3. Hexagon fraction and tension anisotropy predict tissue flow. A The total amount of convergent-extension
(overall tissue aspect ratio change afinal/a(0)) increases as a function of cell packing order (controlled by hard disk packing
fraction ρ used to generate the Voronoi seed points) and initial tension anisotropy (controlled by a strain s applied to the tension
triangulation). The hard disk packing fraction ρ controls the fraction of hexagonal cells (bottom). The purple and green stars

indicate the initial condition parameters used for Fig. 2A and B. B Hexagon fraction, p6, and tension anisotropy ||⟨
√
2Q̃⟩||

decrease as cells rearrange and eventually converge to a fixed point where anisotropy vanishes and the hexagon fraction matches
a random Voronoi tessellation (∼ 0.4). At this point, convergent-extension flow, as measured by the remaining change in tissue
aspect ratio afinal/a(t), stalls (cf. Fig. 2C, E). The trajectories approximately collapse onto a plane, suggesting that a linear

relationship can predict the convergent-extension in terms of p6 and ||⟨
√
2Q̃⟩||; see Eq. (6). C Correlation between predicted

and observed change in aspect ratio. Data points are from simulations with initial conditions, spanning the entire parameter
diagram in (A), showing that the prediction works across many different initial conditions. Points with the same color indicate
different time point from the same simulation.

predicts the remaining extent of convergent extension
with less than 10% mean absolute error (Fig. 3C). The
empirical relation Eq. (6) is specific to the particular
choice of microscopic tension dynamics employed in the
simulations. A more systematic investigation of such
empirical laws linking microscopic (p6, ||⟨

√
2Q̃(t)⟩||) and

macroscopic (a(t)) quantities goes beyond the scope of
this work but is an exciting avenue for future research.

Above, we have focused on degree of order in the
topology (i.e. coordination numbers) of the triangulation,
quantified by p6 and controlled by the packing fraction of
the hard disk seeding process. A more mild form disorder
is due to random displacements of the triangulation ver-
tices while keeping the topology fixed. The topological
constraint dictates that the vertex displacements must
be relatively small, and we find that they have a corre-
spondingly small effect on the convergence-extension flow
(see Fig. S7).

The model introduced above implements a specific
form of positive tension feedback, Eq. (5), in such a way
that total tension is conserved locally. We find qual-
itatively similar results for tension dynamics with dif-
ferent local conservation laws. Notably, positive feed-
back conserving areas of tension triangle instead of their
perimeters produces slightly more convergent extension
and exhibits an even stronger dependence of tissue flow
on the initial degree of order (see SI Sec. IIA). How tis-
sue dynamics depends on the parameters τbalance, µ, λ, n
is summarized in SI Table I and Fig. S7. We will re-
turn to the effect of specific parameters throughout the
following sections.

Taken together, our model reproduces several salient
features of germ-band extension in the Drosophila em-
bryo. We find that convergent extension driven by pos-
itive tension feedback is self-limiting and naturally ex-
plains the transition from the fast to the slow phase of
germ-band extension [17]. It also reproduces that the
slowdown of convergent extension is concomitant with
an increase in cell-scale disorder, approaching a maxi-
mally disordered state [17, 27]. Our model suggests that
the transient fast phase of flow is facilitated by an ini-
tial hexagonal packing of the cells. In the Drosophila
embryo, this packing results from physical interactions
of the spindle apparatuses during the syncytial cell di-
vision cycles that precede cellularization [28, 29]. Quan-
tification of hexagonal order in the experimental data are
show in Fig. S1. We predict that disrupting the initial cell
packing will cause GBE to become slower. The experi-
mental data analysis in Ref. [17] also demonstrates the
presence of large-scale tension anisotropy of the order of
20% before the onset of convergent extension, which in
the model is required to orient tissue flow. More broadly,
our results suggest that convergence extension via pos-
itive tension feedback may generally be self-limiting, as
also observed in a recent model [10].

Order in local tension configurations

So far, we have focused on the role of initial topological
order in the cell packing. In the Drosophila germ band,
we additionally observed a more subtle form of geomet-
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ric order—a particular pattern of alternating high and
low tensions [17]—that precedes the onset of cell rear-
rangements. This cell-scale tension pattern is not appar-
ent initially but arises dynamically in conjunction with
an increase in overall tension anisotropy which suggests
that this tension pattern arises from the positive tension
feedback. As we show in the following, systematically
quantifying the local configurations of cortical tensions
provides a method to constrain physical models of cell
rearrangements in epithelia.
Local tension configuration parameter. The elemen-

tary motifs of a cell-scale tension pattern are the tension
configurations at individual vertices. In force balance,
the tension vectors at each vertex form a triangle. This
allows one to characterize the tension configuration based
on the shape of the tension triangle: acute triangles corre-
spond to tension cables (adjacent high tension interfaces)
while obtuse triangles correspond to an isolated high ten-
sion interface which we refer to as a tension “bridge”.
The latter configuration is the elementary motif of an al-
ternating pattern of high and low tensions as illustrated
in Fig. 4A.
To quantify the relative abundance of these motifs,

we define a local tension configuration (LTC) parameter
that measures how anisotropic and how acute vs obtuse
the tension triangle is. Given the three tension vectors
Tα, α = 1, 2, 3 that form the tension triangle, we first
use the force-balance condition

∑
αTα = 0 to define the

reduced barycentric vectors, combined into a 2×2 matrix

T =

(
τ1
τ2

)
=

1√
2N

(
T x1 − T x2 T y1 − T y2√

3T x3
√
3T y3

)
. (7)

where the normalization factor N ensures ||T||2 =
Tr[TTT ] = 1. This normalization fixes the arbitrary
overall tension scale. Note that T is not a symmetric ma-
trix and that its indices belong to different spaces: the
first labels the barycentric component and the second the
Cartesian coordinate. We now carry out a singular value
decomposition (SVD):1

T = R(ψ) ·
(√

s1 0
0

√
s2

)
·RT (ϕ), (8)

where R(α) is the rotation matrix with angle α, singular
values s1 > s2 > 0 by convention, and s1 + s2 = 1 be-
cause we have normalized the tension vectors. We now
introduce the complex order parameter

s̃ eiψ̃ := (s1 − s2) e
i|3ψ mod−π 2π|, (9)

which provides a complete description of the triangle’s
intrinsic shape. (In the exponent, a modx b = (a −

1 This decomposition was used in Ref. [30] to quantify tissue strain
rates from a cell-centroid-based triangulation. However, the in-
formation contained in the “LTC phase” ψ was not utilized there.

x mod b) + x is the modulo function with offset x). Ap-
plied to tension triangles, this defines an LTC order pa-
rameter that informs about the configuration of tensions
at a vertex.

The magnitude s̃ = s2−s1 = ||
√
2Q̃|| ∈ [0, 1] measures

the triangle’s anisotropy (note that Q = TTT) and the

reduced “LTC phase” ψ̃ measures the triangle’s degree
of acuteness vs obtuseness. Its definition is such that the
redundancy in ψ due to permutations of the triangle edge
labels 1, 2, 3 in Eq. (7) is removed. We note that the sign
of 3ψ mod−π 2π indicates the chirality of the triangle’s
shape, which might be useful to detect chiral symme-
try breaking on the cellular scale, e.g. in the Drosophila
hindgut [31].

Geometrically, the SVD of T can be understood as a
sequence of transformations that map an equilateral ref-
erence triangle (with one edge parallel to the x-axis) to
the target triangle (Fig. 4B). The reference triangle is
first rotated by an angle ψ, then stretched along the x-
and y-axis with factors s1 and s2, and finally rotated
again by an angle −ϕ (the minus sign results from the
convention in defining SVD). ϕ therefore determines the
triangle’s axis of anisotropy while ψ determines the orien-
tation of the shear axis to one of the edges of the original
equilateral triangle. For ψ = 0, the shear is orthogonal
to a triangle side, yielding an isoceles obtuse triangle. In-
creasing ψ makes the resulting triangle more acute, until
maximal acuteness is reached at ψ = π/3.
Generalized Delaunay condition (T1 threshold). Be-

fore we use the LTC parameter to quantify the tension
space dynamics from simulations and experiments, we
define a condition in the LTC space for when a T1 tran-
sitions will hapen. This T1 threshold puts a constraint
on the local tension configurations that we expect to ob-
serve. Moreover, it will allow us to quantify how tension
dynamics causes active T1s by driving the local tension
configurations towards the T1 threshold.

Let us for a moment neglect the isogonal modes. From
the tension triangulation we construct the corresponding
Voronoi tessellation whose vertices are the circumcircle
centers of the triangles as illustrated in Fig. 4D. The
edges of the Voronoi tessellation are orthogonal to those
of the triangulation, which implies that it obeys the force
balance constraints, and can be used as a reference for
the family of cell arrays compatible with the tension tri-
angulation. The length of a Voronoi edge corresponding
to a pair of adjacent triangles is given by

ℓref =

√
3 ℓ0T

2
(cotβ + cotβ′), (10)

where T length of the shared triangle edge interface and
ℓ0 fixes the length scale such that ℓ0 is the edge length of
a regular hexagonal cell, corresponding to equilateral ten-
sion triangles with T = 1. ℓref changes sign at β+β′ = π,
which gives the “Delaunay condition” β + β′ < π. In
the absence of isogonal strain, a cell neighbor exchange
(corresponding to an edge flip in the triangulation) oc-
curs at this threshold. In Fig. 4C, the gray line indi-
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FIG. 4. Triangle shape space characterises the local tension motifs that underlie cell rearrangements. A We
distinguish two tension patterns, “cables” and “bridges”, by their elementary motifs of tension configuration at individual
vertices. These configurations can be quantified in terms of the tension triangle shapes which we use to define a local tension
configuration (LTC) parameter. B Shape decomposition of a triangle into a sequence of three transformations acting on an
equilateral reference triangle. The angle ψ and the shear factors s1,2 determine the intrinsic shape of the triangle while the angle

ϕ determines its orientation in space. C The intrinsic shape of triangles can be quantified by a complex order parameter s̃ eiψ̃,
where the LTC magnitude s̃ is proportional to the triangle’s anisotropy and the LTC phase ψ̃ distinguishes obtuse and acute
triangles. The gray line indicates the Delaunay condition for a pair of identical triangles. Along this line, the circumcenters of
the two triangles coincide, corresponding to a fourfold vertex in the Voronoi tessellation. This line therefore defines a threshold
for T1 events in the case of vanishing isogonal strain. D Circumcircle construction of the Voronoi edge length (purple) from a
pair of adjacent (tension) triangles (red). Circumcircles are indicated by gray dashed lines. The actual physical length ℓ is the
sum of the Voronoi reference length ℓref , and a contribution from isogonal strain ∆ℓiso. In the illustration, ∆ℓiso/ℓ0 is negative.
E T1 threshold as a function of the isogonal strain ∆ℓiso/ℓ0. Positive isogonal strain shifts the threshold to higher tension
anisotropy.

cates this threshold for a pair of identical triangles (i.e.
β = β′ = π/2). Notably, the threshold is at a much
smaller anisotropy magnitude s̃ for tension cables (small

ψ̃) than for bridges (large ψ̃), implying that tension ca-
bles are less efficient at driving intercalations than ten-
sion bridges.
In passing, we note that the Delaunay condition can

be used to perform simulations of a simplified model
that neglects the isogonal modes and operates entirely
in tension space. Simulations of this Tension-Driven
Voronoi model, run orders of magnitude faster than the
full model since minimizing the passive elastic energy to
determine the isogonal degrees of freedom is the com-
putationally most expensive step (see also SI Sec. IID).
In the tension-driven Voronoi model, the physical con-
figuration is constructed from the tension triangulation
Delaunay–Voronoi duality, i.e. ℓ = ℓref . Neighbor ex-
changes are then governed by the standard Delaunay con-
dition similarly to the self-propelled Voronoi model which
has been introduced as a simplified version of the clas-
sical vertex model [32, 33]. The fundamental difference
between the tension-driven Voroni model and the self-

propelled Voronoi model is that the dynamics is driven
by cortical tensions in the former while driven by self-
propulsion forces acting on a substrate in the latter.
How does the Delaunay condition generalize in the

presence of isogonal strain? The length of the central
interface, ℓ, can be decomposed into two contributions

ℓ = ℓref +∆ℓiso, (11)

where the isogonal contribution ∆ℓiso accounts for isogo-
nal modes while the (Voronoi) reference length is given by
Eq. (10). Note that ∆ℓiso not an edge-autonomous quan-
tity but depends on the isogonal mode (parametrized by
the isogonal function) in the four cells surrounding the
interface. In practice, ∆ℓiso can be estimated from the
average isogonal strain tensor in a local tissue patch [17].
Now an interface collapses if the physical length reaches
zero: ℓref + ∆ℓiso = 0. This generalizes the Delaunay
condition.

To find the resulting T1 threshold in the LTC space,
we need to express the tension T on the cell quartet’s
inner interface in terms of the angles α, α′, β, β′. Rea-
soning that on average the two tension triangles in a
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quartet will be similar, we consider the simplified case
α = α′, β = β′. Normalizing by the average tension we
find T = 3 sin(β)/(sinα + sinβ + sin(α + β)). Since the
problem is now reduced to the shape of one triangle, the
T1 condition ℓref(α, β) + ℓiso = 0 defines a threshold line
in the LTC space. Figure 4E shows the T1 threshold as
a function of the isogonal strain ℓiso/ℓ0. The critical ten-
sion anisotropy drops to zero as ℓiso/ℓ0 approaches −1,
the critical isogonal strain for purely passive T1s which
takes place for isotropic tension (i.e. equilateral tension
triangles). Vice versa, positive isogonal strain shifts the
T1 threshold to higher magnitude of tension anisotropy.
In principle, the above geometric reasoning can be gen-
eralized to an arbitrary tension “kite” composed of two
different tension triangles. However, the shape space of
such kites is four dimensional (since there are four inde-
pendent angles α, α′, β, β′) which precludes the intuitive
visualization that the single-triangle LTC space provides.

Winner-takes-all feedback drives formation of tension
bridges. With the LTC order parameter and the T1
threshold in hand, we can now quantify the dynamics
of tensions in the simulations (see Fig. 5A) and experi-
ments (see companion paper Ref. [17] and Fig. S2). Be-
cause isogonal strain shifts the T1 threshold, it will have
a significant effect on the LTC order parameter distribu-
tion. We therefore performed simulations where we im-
pose the isogonal strain observed in the Drosophila germ
band [17]. The germ band is stretched by the invagi-
nation of the adjacent mesoderm tissue causing isogo-
nal strain along the axis of tension anisotropy (dorsal–
ventral). This shifts the T1 threshold towards stronger
tension anisotropy s̃ (cf. Fig. 4E).

At the beginning of the simulation, the local tension
anisotropy s̃ is small and there is no bias towards ca-
bles or bridges. Positive tension feedback amplifies local
anisotropy and thus drives the tension configurations to-
wards the T1 threshold (Fig. 5A). At the onset of T1s,
we observe an increased fraction of tension bridges, in
agreement with the experimental observations (8 min in
Fig. 5A). At late times, where the tissue becomes highly
disordered, the distribution in LTC space shifts more to-
wards tension cables (30 min). As we will see below, this
late time distribution is reproduced by a random De-
launay triangulation. Time traces of the median anisot-
ropy s̃ and (weighted) median LTC phase ψ̃ show qualita-
tive agreement with data from the Drosophila germ band
[17], see Fig. 5B. In fact, a quantitative agreement can
be achieved by shifting the median anisotropy and LTC
phase by constant offsets, as indicated by the dashed lines
in Fig. 5B. These offsets may be a consequence of noise
in the experimental data, which we support in Fig. S7
with simulations that incorporate Langevin noise in the
tension dynamics.

To understand how tension bridges emerge transiently,
consider the shape dynamics of a single, isolated tension
triangle governed by winner-takes-all feedback Eq. (5).
Starting from a configuration with nearly equal tensions,
i.e. a nearly equilateral tension triangle, winner-takes-

all feedback causes the highest tension (longest edge in
the triangle) to grow at the expense of the other two.
The triangle is thus driven towards an increasingly obtuse
shape, as illustrated in Fig. 5C. Visualizing this dynam-
ics as a flow in LTC space, shows that it drives the ten-
sion configurations towards the T1 threshold and thereby
causes the cell rearrangements. The single-triangle sim-
ulation successfully predicts early dynamics of the LTC
distribution until the onset of cell rearrangements (see
Fig. 5B, C’). While positive tension feedback explains the
emergence of tension bridges at the single-vertex level, it
is not enough to produce an alternating pattern of ten-
sions across cells. This pattern requires that the elemen-
tary tension configuration motifs (bridges) fit together
coherently, i.e. their tension anisotropy is aligned across
cells. This requires that the coordination number of a
majority of cells is 6, i.e. that most cells are hexagons.
This explains why hexagonal packing order is required to
drive coherent T1s that underlie rapid convergent exten-
sion.

For a highly ordered initial packing, i.e. a nearly hexag-
onal lattice of cells, the lattice orientation relative to the
axis of mean tension anisotropy determines the initial
fraction of tension bridges. It is maximal when one side
of the hexagonal cells is parallel to the orientation of
tension anisotropy and minimal when one side is perpen-
dicular (see Fig. S6). In simulations we find that this
initial bias only weakly affects the initial rate of tissue
extension and has no significant effect at later times.

In the simulation discussed above we imposed isogonal
strain to account for the transient stretching of the germ
band by the invaginating mesoderm. In simulations with-
out imposed isogonal strain, the bridge fraction does not
transiently increase (see Fig. S7). This is because the T1
threshold is at a significantly lower anisotropy for ten-
sion bridges than for tension cables and this difference
is more pronounced for vanishing isogonal strain, caus-
ing tension bridges to be rapidly eliminated by T1s (see
gray line in Fig. 5C). We therefore predict that T1s will
happen at a lower tension anisotropy (and lower tension-
bridge fraction) in a tissue with no isogonal strain, e.g.
in a twist mutant embryo where mesoderm invagination
is abolished.

Loss of order in local tension configurations. Above,
we have seen that the cell array becomes disordered as
cells rearrange. The coordination number statistics and
average shape index approach a random Voronoi tessel-
lation (cf. Fig. 2E, F). This suggests that we can char-
acterize the the corresponding tension triangulations as
random Delaunay triangulations. Their statistics of such
a triangulation depend on the underlying stochastic point
process. We use the same hard disk sampling method as
above, controlled by the packing fraction ρ to generate
a family of Delaunay triangulations. The triangle shape
statistics (characterized by the LTC parameter) found
at late times both in simulations and in the Drosophila
germ band are reasonably well reproduced by a random
Delaunay triangulation seeded from a hard disks with
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FIG. 5. Dynamics LTC order in simulations and the Drosophila germ band. A Heat maps showing the distribution
of local tension configurations in a simulation with imposed isogonal strain matching the experimental observations. Data
aggregated from N = 6 simulation runs of ∼ 103 cells each. B Driven by winner-takes-all feedback, the magnitude of
tension anisotropy magnitude s̃ (top) and the tension bridge fraction (measured by the LTC phase ψ̃l; bottom) increase.
The bridge fraction decreases as the tissue becomes disordered due to cell rearrangements. Solid lines show the median of the
LTC distributions where the phase ψ̃ is weighted with the magnitude s̃. The width of bands showing the standard error is
comparable to the line width. Shifting the median from simulations by a constant offset (see dashed orange lines) yields a
quantitative match to the experimental data. C Shape dynamics of a single tension triangle driven by winner-takes-all feedback
rapidly drives the tensions towards the T1 threshold with a slight bias towards tension bridges. C’ LTC distribution predicted
by single-triangle simulation reproduces the LTC distribution at the onset of cell rearrangements in full tissue simulations (cf.
distribution at 8 min in A). D A random Delaunay triangulation seeded from hard disks with a packing fraction ρ = 0.2
reproduces the late-time distribution in simulations.

ρ ≈ 0.2 (Fig. 5D, D’ and Fig. S3). This observed “ran-
domization” in tension space suggests that the triangle
edge flips can be statistically understood as a random
“mixing”. Notably, the late-time distribution exhibits a
bias towards tension cables. The loss of tension bridges
causes active T1s to become incoherent and incompati-
ble between adjacent cells, contributing to a slowdown of
tissue extension found in tissue scale simulations and in
the germ band [17].
Taken together, we find that the time course of LTC

distribution agrees between the model and the experi-
mental data. Next, we show how changing various as-
pects of the model affects the LTC distribution, high-
lighting that the LTC parameter can be used to distin-
guish different tension dynamics based on statistical sig-
natures of cell-scale observations.
Saturating tension feedback leads to tension cable for-

mation and reduced convergence extension. So far, we
used a “winner-takes-all” local tension feedback mech-
anism, Eq. (5), which drives the formation of tension
bridges as illustrated in Fig. 5C. In contrast, when pos-
itive feedback rapidly saturates, adjacent high tension
interfaces no longer compete, thus leading to the for-
mation of tension cables (Fig. 6A; see SI Sec. II C for
details). The trajectories in LTC space obtained from

single-triangle simulations show that saturating feedback
is less efficient at driving the local tension configuration
towards the T1 threshold. Indeed, tissue scale simula-
tions with such feedback produce very little convergent
extension (see Fig. 6B, D and Movie 3). The rate of
T1 transitions is significantly reduced (Fig. 6E), and in
contrast to “winner-takes-all” feedback, a significant por-
tion of T1 transitions (approximately 20%) is reversible,
i.e. the newly formed edge rapidly re–collapses (see SI).
Reversible T1s, which have been observed in certain mu-
tant genotypes [34], can therefore emerge due to altered
local tension dynamics. Furthermore, the LTC distri-
bution develops a significant bias towards tension ca-
bles (Fig. 6C, F). More generally, this suggests that flow
in LTC parameter space, obtained from single-triangle
simulations, predicts the efficiency of a given tension-
feedback laws at driving T1s.

Tension-triangulation model reproduces Drosophila
axis elongation in a simplified geometry

So far we have considered a patch of active cells with
free boundary conditions. However, the epithelium of
the early Drosphila embryo forms a closed surface that
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extension. A Local tension configurations are driven towards tension cables due to saturation of positive feedback. Compared
to winner-takes-all feedback, this resulting tension dynamics is significantly less efficient at the local configuration towards the
T1 threshold (cf. Fig. 5C).B In a tissue simulation, saturating feedback generates only little convergent extension (quantification
in D). The initial configuration is shown semi-transparent in the background. Cell color indicates coordination number (cf.
Fig. 2A) C The late-time LTC distribution shows a strong cable bias and differs significantly from the random Delaunay
distribution emerging in simulations with winner-takes-all feedback (cf. Fig. 5D. D–F Time series quantifications showing
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significantly reduced T1 rate (E) and a strongly increased fraction of tension cables (F). Note that in contrast to Fig. 5, the
simulations were performed without an imposed isogonal strain such that no significant formation of tension bridges is observed
for winner-takes-all feedback.

is approximately an elongated ellipsoid. Therefore, de-
formation of one tissue region has to be compensated
by an opposite deformation of another region. For ex-
ample, on the Drosphila embryo, the dorsal amnioserosa
is passively stretched along the dorso-ventral (DV) axis
and compressed along the anterior-posterior (AP) axis to
compensate the convergence extension of the germ band.
In the following, we investigate the interplay of active
and passive tissue deformations.
To mimic the cylindrical geometry of the embryo’s

trunk (Fig. 7A) we simulated a rectangular tissue patch
with “slip walls” at the top and bottom boundary
(Fig. 7B). Along the slip walls, cell centroids, marked
by black disks, are restricted to move along the wall.
These boundary conditions fix the DV extent of the tis-
sue, corresponding to the fixed circumference of the em-
bryo. We divide the tissue into active and passive re-
gions to account for the different mechanical properties
of the lateral ectoderm and the dorsal tissue which be-
comes the amnioserosa [2, 17]. (The simulation domain is
mirror symmetric with respect to the x-axis, correspond-
ing to the left-right symmetry of the embryo.) Cortical
tensions are governed by positive feedback in the active
region and by tension homeostasis in the passive region.
Further, passive cells (subscript p) are taken to be soft
µp = 0.2µa, λp = 0.2λa compared to active cells [35]. In

addition, we allow interface angles in the passive region
to slightly deviate from those imposed by the tension tri-
angulation, reflecting the fact that the overall scale of
cortical tensions is lower in the passive tissue [2]. We
initialize the simulation with a slightly perturbed hexag-
onal packing of cells (motivated by the experimental ob-
servations, see Fig. S1) and the experimentally observed
tension anisotropy aligned along the DV axis [17].

Starting from this initial condition, the simulation re-
produces salient features of the tissue-scale dynamics in
the embryo (see Fig. 7C and Movie 3). In the active
region (“lateral ectoderm”) active cell rearrangements
drive tissue extension along the AP axis and contraction
along the DV axis. The passive region (“amnioserosa”)
is stretched along the DV axis, accommodating the fixed
circumference of the embryo. Notably, this stretching
leads to T1s in the passive region as is visible from the
highlighted cells in Fig. 7C. On the tissue level, the cou-
pling of active and passive regions gives rise to the tissue
flow pattern characteristic of Drosophila germ-band elon-
gation [2] as shown in Fig. 7E.
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FIG. 7. Combining active and passive tissue regions. A, B The ellipsoidal geometry of the Drosophila embryo (A)
is mimicked by a simplified simulation geometry corresponding to an unrolled cylinder (B), whose azimuthal axis corresponds
to the dorso-ventral (vertical) axis of the embryo. The different behaviour of the dorsal amnioserosa (AS) and the lateral
ectoderm (LE) tissue is represented by the passive and active region in the simulation domain respectively. C Positive feedback
in the active region amplifies an initial DV anisotropy of tension and thus drives extension along the AP axis. Since the
embryos circumference is fixed (implemented via a slip wall at the dorsal boundary), the passive region is stretched along the
DV axis. Only half of the simulation domain is shown, corresponding to one lateral side of the left-right symmetric embryo.
Three-by-three patches of cells are highlighted to show cell rearrangements (cf. Movie 3). D Tissue deformation, as measured
by the change in aspect ratio of the active region, a(t)/a(0), stalls after an elongation (and perpendicular contraction) by a
factor ∼ 1.6. Shading indicates standard deviation over N = 3 simulation runs of Ncells ≈ 750 cells. E Trajectories of cell
centroids showing the tissue scale flow, resembling the characteristic flow of Drosophila germ-band extension [2].

Tissue extension by active T1s requires large-scale
mechanical patterning and cell shape elasticity

The total tissue extension found in the simulations that
combine active and passive tissue regions is smaller than
the extension of active tissue patches with free bound-
aries (compare Fig. 7D and Fig. 2C). This suggests that
the passive tissue resists deformation. Indeed, cells in the
active region are slightly elongated along the DV axis, in-
dicating that the passive tissue pulls on them. In the fol-
lowing, we further investigate the role of the spatial mod-
ulation of the cells’ mechanical properties along the DV
axis. Figure 8A’ shows a simulation without DV modula-
tion where all cells are active. Positive tension feedback
drives active T1s everywhere, as is manifest in the de-
formation of the tension triangulation (Fig. 8A’, right).
However, because of the slip-wall boundary conditions,
the tissue cannot contract along the DV axis so that
T1s do not result in convergence extension (see Movie 4;
quantification in Fig. 8D). Instead, cell rearrangements
are compensated by isogonal deformations resulting in
elongated cell shapes (as quantified in Fig. 8E). We pre-
dict that this scenario will be realized in Toll[RM9] mu-
tant embryos where all cells around the embryo’s circum-

ference adopt a ventro-lateral fate [27], as illustrated in
the cartoon in Fig. 8A.

The stretching of cells leads to a buildup of elastic en-
ergy (see Fig. S9). Eventually the increasing frustration
leads to convergence issues in the numerical simulation
for t ≳ 20 min. In Toll[RM9] mutant embryos, some of
this elastic energy is released by the formation of folds
(buckling) [27] which our 2D simulations cannot capture.
A partial compensation of cell rearrangements by cell
shape changes might be observed in the germ band of
mutants where the soft amnioserosa is abolished (e.g. in
dpp[hin46] mutants).

An interesting observation from the above simulations
is that the length dynamics of collapsing and emerging
interfaces is not significantly affected by the lack of tissue-
scale mechanical patterning (Fig. 8B), even though there
is no tissue extension. Interface elongation in the absence
of tissue elongation has previously been observed in ex-
periments where germ band extension has been blocked
by cauterization near the posterior pole [8, 36]. We mimic
the experiments of Ref. [8] by adding slip walls to the
anterior and posterior boundary of the simulated tissue
(Fig. S8) to block tissue extension. In this scenario, we
also observe that newly formed interfaces extend, but
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length dynamics of collapsing and emerging interfaces do not significantly depend on whether the tissue as a whole deforms (WT)
or is blocked from undergoing convergent extension (no DV modulation). Purple band shows one standard deviation. Time 0 is
the moment of interface collapse. C Orientation of collapsing and emerging interfaces showing that only the orientation of the
latter is qualitatively affected by tissue-scale modulation of activity. The orientation of emerging interfaces is slightly biased
along the DV direction in the absence of a passive tissue, while it is biased in AP direction in the WT case. D Convergent
extension is strongly suppressed in absence of DV modulation of activity (“No DV”) and when active cells have vanishing
shear modulus (µa = 0; see F and G). a(t) measures the aspect ratio of the active tissue region. E Histograms of cell shape
elongation measured by relative difference, (SDV,DV − SAP,AP)/(SDV,DV + SAP,AP), of the AP-AP and DV-DV components of
the shape tensor S. In the WT case (cf. Fig. 7), cells remain nearly isotropic while they become significantly oriented along the
DV axis when DV modulation of activity or rigidity of active cells are abolished. F When the active cells have no shear rigidity
(µa = 0), cell rearrangements are compensated by isogonal cell elongation (quantified in E) without incurring an elastic energy
build-up. Thus, almost no tissue scale convergent-extension takes place. G Net amount of convergent extension as a function
of the shear modulus of active cells shows that active cells need to be stiffer than the surrounding passive tissue for active T1s
to drive efficient convergent extension.
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with a slightly different dynamics than in WT. In fur-
ther agreement with experimental observations, we find
that the orientation of extending interfaces is no longer
biased along the AP axis when tissue extension is blocked
(see Fig. 8C). Since interface extension in our model is a
purely passive process, we conclude that no active mech-
anisms – such as medial myosin pulses [8] – are necessary
for the elongation of new interfaces. Instead, interface
elongation results from the fundamental temporal asym-
metry of the intercalation process, i.e. the low level of
active tension on the new interface (see companion pa-
per [17]).
Rather than abolishing the DV modulation of activ-

ity, one can also change the passive elastic properties
of the cells. Recall that in the model, the resistance of
cells against deformations is described by the cell-shape
elastic energy, Eq. (3) parameterized by the Lamé coeffi-
cients λ (resistance to area changes) and µ (resistance to
shear deformation). Fig. 8F shows a simulation where the
shear modulus µa of active cells is set to zero, so that the
cells do not resist (area-preserving) elongation. Active
T1s can therefore be fully compensated by cell elonga-
tion through isogonal deformations without incurring an
elastic energy. As a result, there is no net tissue deforma-
tion (see Movie 4). In other words, cell-shape rigidity is
required to maintain rotund cell shapes (i.e. resist isog-
onal shear deformations) and thus translate active T1s
into net tissue deformation. The tissue deformation by
isogonal modes is determined by a a balance of external
forces and internal resistance of cells the shape changes.
Here, the external forces acting on the active tissue re-
sult from the passive tissue’s resistance to deformation,
which is in turn set by shear modulus µp. The ratio
of the shear moduli in the active vs the passive region,
µa/µp, determines how much the active region deforms
(see Fig. 8G). Only when the cells in the active tissue are
more rigid than those in the passive region (µa/µp > 1),
is it energetically favorable to isogonally deform the pas-
sive region rather than the active region. This predicts
that GBE can be impaired by stiffening the dorsal tissue
(amnioserosa).

DISCUSSION

We formulated a cell-scale model for epithelial tissue
dynamics based on the assumptions of adiabatic force
balance in the regime of dominant cortical tensions. Ex-
perimental evidence [17, 22, 37] suggests that the cortical
cytoskeleton which generates this tension behaves more
like a muscle, where the tension level is set by active regu-
lation, rather than a spring, where tension is a function of
length. Subscribing to these assumptions has two impor-
tant consequences: First, feedback loops are required to
achieve and stabilize a force-balanced configuration [13].
This is in contrast to a network of springs where the
relation between length and tension (the constitutive re-
lationship) ensures that force balance is reached by min-

imization of the elastic energy. Second, force balance of
cortical tensions does not fully constrain the tissue as is
allows for isogonal (angle-preserving) deformations which
change the lengths of interfaces without changing the an-
gles at which they meet in vertices [13]. These isogonal
degrees of freedom of the cortical network are governed
by non-cortical mechanical stresses, arising e.g. from pas-
sive cell elasticity, representing cell-internal structures
such as the nucleus [20], microtubules, and intermedi-
ate filaments [21]. We find that this internal rigidity is
essential to transduce cell intercalations into tissue-scale
deformation. In the absence of cell resistance against de-
formation, intercalations are compensated by cell shape
changes. Our findings suggest that epithelial tissue flows
not like a fluid (where the shear modulus vanishes) but
rather as a plastically deforming solid, whose remodeling
is driven internally while resisting external forces. Ep-
ithelial tissue can thus be regarded as an active solid.

Our model formulates a theory of active elasticity
where the dominant (cortical) stresses are not governed
by constitutive relationships. It builds explicitly on the
geometric relation (duality) between tension space and
real space afforded by the force balance condition. Stabi-
lizing feedback mechanisms that maintain adiabatic force
balance are implicit in our model as we constrain the ten-
sion dynamics to the space of force-balanced configura-
tions (flat tension triangulations). Tension dynamics is
formulated as geometric dynamics of the tension trian-
gulation driven by local positive feedback. This feedback
amplifies a weak initial tension anisotropy and thus drives
cell shape dynamics that result in cell intercalations (T1
processes). Force balance provides the non-local coupling
that allows for coordination of forces and cellular behav-
iors across the tissue. On the tissue scale, self-organized
active T1s are oriented by global tension anisotropy and
thus drive convergent–extension flow. As T1s drastically
remodel tension geometry, they gradually degrade the
orientational cue provided by initial tension anisotropy.
Thus, tissue flow arrests after a finite extent of conver-
gent extension that depends on the initial degree of order
in the cellular packing and the magnitude of initial ten-
sion anisotropy. This central finding suggests that cell
geometry is a repository of morphogenetic information
that may encode the final tissue shape.

Mechanically self-organized tissue dynamics provide an
elegant explanation of Drosophila germ band elongation
and its arrests after about two-fold elongation. Impor-
tantly, geometrically formulated tension dynamics can
be directly compared with experimental data on the cell
scale [17]. To this end, we have introduced the LTC
order parameter for the local configuration of tensions.
Comparing the LTC time courses between experiments
and simulations, we find excellent agreement, suggesting
that our model reproduces the dynamics of germ band
extension also on the cell scale. Specifically, our order
parameter distinguishes two motifs of local tension con-
figurations “tension cables” where multiple high tension
interfaces meet in a vertex and “tension bridges”: high
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tension interfaces surrounded by low tension interfaces.
Tension bridges are the elementary motif of the alter-
nating pattern of tensions that choreographs active T1s
across the tissue.
The dynamics in tension configuration space depends

on the nature of the positive tension feedback. Winner-
takes-all feedback efficiently drives the local tension con-
figuration toward the T1-threshold via the formation of
tension bridges. By contrast, when feedback saturates at
too low relative tension, it causes formation of tension
cables, which have previously been suggested as a driver
for convergent extension. However, our simulations and
analysis of local tension configurations show that tension
cables are inefficient at driving convergent extension, as
adjacent interfaces “compete” to contract. Indeed, ar-
rest of convergent extension due to the formation of ten-
sion cables is also observed in a recent computational
study [10]. Contraction of tension cables leads to for-
mation of “rosettes” where five or more cells meet in a
single vertex. While it has been suggested that rosettes
are important for epithelial convergent extension [37, 38],
recent whole-embryo analysis of Drosophila gastrulation
[16, 17] shows that rosettes contribute significantly less
to tissue extension than T1s and appear in conjunction
with disorder which arrests tissue flow. Our simulations
corroborate these empirical findings. Moreover, tension
cables are often found to form at boundaries between
distinct tissues and at segment boundaries where they
prevent mixing between the adjacent tissues, i.e. prevent
cell rearrangements [39–42]. In contrast to tension ca-
bles, which clearly stand out in microscopy images (e.g.
of fluorescently labelled myosin), tension bridges are hard
to spot as they rapidly contract. This might be a reason
why the role of tension bridges has not been appreciated
before. The tension configuration parameter introduced
here facilitates a statistical analysis across many cells and
allows one to distinguish different local tension dynamics
(e.g. winner-takes-all vs saturating feedback).
Our scenario for GBE is based on local self-

organization driven by mechanical feedback. Self-
organized T1s are facilitated by the initial order in the
cell packing and are oriented by an initial global tension
anisotropy but do not require cell-scale genetic instruc-
tions [27, 43]. We expect that this tension anisotropy,
whose presence we confirmed experimentally in Ref. [17],
is due in part to the anisotropic static “hoop” tension re-
sulting from the internal turgor pressure in the embryo,
and to the dynamic effects of ventral furrow formation
[14]. To create global tissue flow, local self-organization
must be modulated by large-scale pre-patterning of cell
behaviors. In the early Drosophila embryo, this is man-
ifested in the dorso-ventral patterning system that spec-
ifies the tissues with different mechanical properties and
modulates mechanical feedback loops [14]. Classical work
shows that the direction of GBE can indeed be reversed
by flipping the orientation of DV patterning [44]. In sim-
ulations on a cylindrical geometry without droso-ventral

patterning, mimicking a Toll[RM9] mutant, active T1s
occur in the absence of tissue flow. Instead, the cell rear-
rangements are compensated by cell shape deformations.
Notably, these simulations also show that T1 resolution
does not require isotropic contractions of the cells’ api-
cal area by “medial” myosin pulses [8]. Taken together,
our model provides unified picture for Drosophila GBE
that bridges the cell and tissue scales. The integration of
bottom-up self-organization and top down genetic con-
trol emerges as a common theme in development [45].

Our model predicts that disrupting the hexagonal
packing of nuclei prior to cellularization will cause slower
GBE. Interesting candidates to test this prediction are
“nuclear fallout” mutants where some nucelei leave the
blastoderm surface and thus introduce defects in the cel-
lular packing [46]. Another option might be the tran-
sient and partial disruption of microtuble organization
with small molecule inhibitors [47]. We expect that these
experiments can be used to challenge and subsequently
refine the model.

An important challenge for future work is to iden-
tify the (molecular) mechanisms that stabilize the force-
balanced configuration on short timescales while driving
controlled remodeling on long timescales. In our model,
maintenance of force balance was achieved via the “flat-
tening” of the tension triangulation which subsumes the
complex regulatory feedback loops operating in the corti-
cal cytoskeleton. The underlying mechanics of the inter-
play of actin fibers, myosin motors, passive crosslinkers
(such as spectrins [48]) and mechanical feedback media-
tors (such as α-catenin [49]) remain poorly understood.
We hope that the insights from the geometrical model
and the quantification of local tension configurations [17]
will help develop more fine-grained models that explicitly
account for these details.

Finally, a general open problem is coarse-graining of
discrete tissue models to a continuum theory. The geom-
etry of the tension triangulation and isogonal modes may
provide a fruitful new perspective on this problem. Such
future efforts will also help make contact between adia-
batic remodeling of tensions in force balance and existing
continuum models of tissue dynamics that are based on
viscoelasticity, where active stress are balanced by vis-
cous dissipation and friction [1, 2, 50].
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Supplementary Material

I. ANALYSIS OF EXPERIMENTAL DATA

A. Experimental data source

Whole embryo cell segmentation and tracking data was obtained from the repos-
itory DOI:10.6084/m9.figshare.18551420.v3 deposited with Ref. [16]. We analyzed
the dataset with ID number 1620 since it had the highest time resolution (15 s)
and covered the longest time period (50min), starting ca. 7min before the onset of
ventral furrow invagination.

B. Hexagonal packing and hexatic order

We quantify order of the cell arrangement in the tissue by two measures: (i) the
fraction of six-sided cells, that one might loosely call “hexagonal packing order”
and (ii) the hexatic order parameter measuring bond-orientational order. Hexago-
nal packing order is a topological quantity – it depends only on the neighborhood
relations between cells but not on their exact shape. In contrast, hexatic order
(defined below) is a geometric measure, that is sensitive to the cell shapes. Ini-
tially, the majority of cells have six neighbors (Fig. S1A, 0 min), and the density
of topological defects, manifested as non-hexagonal cells, is relatively low. During
VF invagination, the number of defects increases only slightly (25 min) since there
are only very few intercalations [17]. During GBE, the number of defects increases
significantly as a consequence of T1s. Towards the end of GBE, the distribution of
cell-coordination number approaches that of a random Voronoi tessellation seeded
with a Ginibre random point process (see Fig. S1B and B’).
Hexatic order. The hexatic order parameter (also called “bond orientational

order parameter” [53]) for a cell with n vertices is defined as

ψ6 =
1

n

n∑
k=1

exp(6iθk), (12)

where θk is the angle between the DV axis and the vector pointing from the cell’s
centroid to vertex k. For a cell with regular hexagonal shape the magnitude of ψ6

reaches its maximum |ψ6| = 1. The phase argψ6 indicates the orientation of the
hexagon. In contrast to the coordination number, which is a purely topological
measure, the hexatic order parameter depends on the cell shape. We find that
the hexatic order parameter to be low in magnitude and exhibit no long-range
correlations as is apparent from Fig. S1C. Effectively, the presence of non-hexagonal
cells act as obstructions to long range correlations of geometric order. We quantify
the range of correlations in hexatic order by coarse graining over patches of cells
with different radii (measured in the by the neighborhood degree). Before the onset
of GBE, the coarse grained order parameter decays as a power law of the patch
radius law with an exponent that close to −0.75, a value found also for MDCK cells
and in simulations using multiphase-field models [54]. (We find the same result
using the distance-weighted hexatic order parameter introduced in Ref. [54].) At

https://figshare.com/articles/dataset/Deconstructing_Gastrulation_-_Data/18551420/3
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FIG. S1. Coordination number and hexatic order of cells. A Initially (0 min), the ma-
jority of cells are hexagonal (light gray). During GBE (25–50 min), topological defects
proliferate, resulting in increasing numbers of non-hexagonal cells. Semitransparent gray
overlay marks cells that invaginate. B and B’ Fraction of hexagonal cells as a function
of time (B) and histogram of cell-coordination number (B’) in the lateral ectoderm. The
histograms show pooled data from the time periods 0–15 min and 45–50 min highlighted
in B. Lines indicate the coordination number distributions for Voronoi tessellations gener-
ated from three different random point processes: hard disk (packing fraction 0.54 near the
theoretical maximum for sequential placement [51]), Ginibre [52], and Poisson. C Hexatic
order is low, and shows no long-range correlation. It further decreases as GBE progresses.
Hue and brightness code for the phase (argψ6) and magnitude (|ψ6|) of the hexatic order
parameter, respectively.
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FIG. S2. Comparison of local vs regional tension inference. A Local tension inference
at a single vertex through complementarity of angles at a single vertex (left) and in the
corresponding tension triangle (right). The relative tensions (edge lengths of the tension
triangle) are found via the law of sines. B Regional tension inference for a patch of three
cells. The interfaces (and corresponding tensions) shared between them are highlighted
by bold lines. The triangulation property of the tensions yields one additional constraint
for each cell because for each cell there is a loop in the tension triangulation which has
to close. One such loop is highlighted. These additional constraints make the regional
inference more robust. C Comparison of the LTC distributions for regional and local
tension inference in the Drosophila germ band. Distributions are from data collected over
the indicated time intervals. Germ band elongation starts at ca. 25 min. The last row
shows single-vertex inference based on vertex positions smoothed using a moving average
(1.25 min interval). D Mean anisotropy magnitude (top) and LTC phase (bottom) for the
three inference variants. Note the systematically lower LTC phase, i.e. lower fraction of
tension bridges, found using single-vertex inference.

the end of GBE, the decay exponent is smaller than −1, indicating a complete lack
of correlations in hexatic order between neighboring cells. This is expected from
the high number of non-hexagonal cells at this stage (Fig. S1B, 50 min).

C. Local and regional tension inference

To quantify the local tension configurations in experimental data from the
Drosophila germ band, we performed tension inference based on segmented cell
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LTC distribution for different ρ. Note that topological statistics such as coordination
numbers are much less sensitive to ρ. LTC distributions computed from meshes with 4000
cells.

outlines. In the companion paper [17], tension inference was done locally, directly
relating the angles at each vertex to the relative cortical tension via the law of
sines (see Fig. S2A). While this method is conceptually and computationally sim-
ple, it is sensitive to observational and dynamical noise in the angles. A more
robust approach is to perform tension inference in an extended region, which makes
the inference problem overconstrained [13]. In particular, there is one additional
constraint per cell because the tension triangles for each cell have to fit together
in force balance as illustrated in Fig. S2B. The overconstrained inference returns
tensions for the closest force-balanced configuration compatible with the observed
angles and thus removes small deviations from tensional force balance due to pres-
sure differentials, short-time fluctuations, and observational noise. (An alternative
method to remove observational noise is to apply a moving average on the vertex
positions before inferring tensions.) Since in our model cortical tensions are always
in exact tensional force balance, we use this overconstrained inference to compare to
simulations. Specifically, we use tension inference on all interfaces of the three cells
which meet at a given vertex to determine the local tension configuration parameter
at that vertex. Figure S2C shows the LTC distributions obtained from local and
regional inference. The LTC distributions are qualitatively very similar but they
differ quantitatively. In particular, the LTC phase ψ̃ has the same qualitative trend
with a transient increase before the onset of T1s but is systematically lower for
regional inference.

II. ADDITIONAL SIMULATION RESULTS

In this section we report additional results from the tissue scale simulations
and/or explain implementation details.
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A. Influence of isogonal stretching on the LTC distribution

Here, we consider the influence of the reference cell shape S0 which determines the
isogonal potential via the elastic energy. As discussed in the main text, isogonally
stretching or compressing cells along the axis of tension anisotropy can delay or
accelerate T1s by moving the T1-threshold in LTC space. As reported in the main
text, if we implement isogonal stretching by choosing an anisotropic S0, i.e. S0 =
3ℓ0 diag(1 − t, 1 + t), t ∈ [0, 1], we find that that a higher bridge bias emerges at
the early phase of convergent extension (Fig.5). We chose an anisotropic reference
shape t = 1/3 to model the isogonal stretching caused by the ventral furrow before
onset of GBE. In the experimental data, this isogonal stretch decays; analogously,
we linearly ramp the reference shape anisotropy down so that t = 0 at 50 minutes
simulation time. We note that our modelling of isogonal stretching is limited,
since it is encoded in a model parameter (S0) instead of being created dynamically,
for example by external forces applied to the boundary. Time traces of the LTC
parameter in the absence of isogonal stretching are show in Fig. S7) below.

B. Alternative forms of positive tension feedback

We now turn to discussing two variants of the triangle-intrinsic tension dynamics.
In the main text, we discussed two types of positive feedback, saturating and winner-
takes-all. In both cases, the overall scale of tensions was determined by keeping the
triangle perimeter P =

∑
α∈Iijk T̃α constant. This corresponds to a fixed amount

of total active tension that is only redistributed across edges. We can also consider
a model where the triangle area remains fixed. This can be implemented using the
gradient (JA)ij = ∂T̃ij

AIijk of the triangle area:

∂tT̃ij = τT
−1

T̃nij − 1

||JA||
∑
α∈Iijk

(∂T̃α
AIijk T̃

n
α )

 (13)

The overall dynamics of this model is very similar to Eq. 5 considered in the main
text. However, the tension feedback is “more aggressive” since now the total tension
(triangle perimeter) increases as the tension triangle becomes more anisotropic.
This mirrors a situation where in addition to the anisotropy also the total myosin
levels increase during GBE [55]. Therefore, one observes slightly larger amounts of
convergent extension for identical initial conditions.
Next, we considered adding small amounts of i.i.d. Gaussian noise to the cortical

tension dynamics, i.e. a stochastic, Langevin tension evolution

τT∂tT̃ij = T̃nij −
1

3

∑
α∈Iijk

T̃nα + ηij , (14)

with ηij ∼i.i.d. Normal(0, σ2) and ⟨ηij(t)ηkl(t′)⟩ = σ2δ(t− t′)δij,kl (15)

To integrate Eq. 14, we use the explicit Euler-Maruyama scheme. We find that the
convergent extension phenomenology is robust to low to moderate levels of noise
(i.e. σ < Tnij). However, higher σ leads to a final LTC distribution with somewhat
more anisotropic triangles, indicating larger disorder, and reduces the amount of
total convergent extension.
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Meshes from a Langevin simulation and from a simulation with an area-based
myosin pool mechanism are shown in Fig. S5. A quantitative analysis is shown in
Fig. S7.

C. Saturating tension feedback

Here, we present the details for the simulations of saturating tension feedback in
main text Fig. 5. We consider bistable tension dynamics of the form

τT
d

dt
Ṫ = −(T − T−)(T − Tc)(T − T+) (16)

where T− < Tc < T+ are the low, unstable, and high tension fixed point, respec-
tively. We set T− = 0, Tc = 1 matching the fixed points of the main feedback
model Eq. (5) we consider in this manuscript. The simulations with saturating
feedback correspond to T+ = 1.2, the control simulations are T+ = 3.33. Note that
we adjusted the time step and all other rate parameters of the simulation so that
Ṫ is similar across different choices of T+.

1. Irreversible and reversible T1 transitions

We note that in the case of saturating tension feedback, a relevant fraction of
T1s (approx. 20%) are reversible, i.e. the newly formed junction re-collapses,
which occurs in less than 1% of cases for non-saturating feedback. Only irreversible
T1s are counted in Fig. 6E. Because saturating feedback only very rarely produces
reversible T1s, all quantifications other than Fig. 6 show the total T1 count without
any filtering.
Reversible T1s are defined as follows. Consider an edge ij between cells i and

j, the central edge in a quartet of cells ikjl (in clockwise order). The collapse of
edge ij creates an edge kl. This T1 is considered reversible if kl collapses in turn
to give rise to a connection ij again, i.e. kl re–collapses before any of the outer
edges il, lj, ik, or ki, of the quartet have collapsed. In this case, the local quartet
topology returns to its original state. We also filter out nested sequences of multiple
reversible T1s, but such events are extremely rare.

D. Tension-driven Voronoi model

As mentioned in the main text, the only way the real-space vertices rijk feed
back into the tension dynamics is by determining when a T1 transition, and hence
a topological modification of the translation, occurs. Instead of obtaining the ver-
tex positions from angle-constrained minimization of an elastic energy, one can
construct them directly from the tension triangulation using the Delaunay–Voronoi
duality (vertices of the Voronoi tessellation, rijk, are the circumcenters of triangles
ti tj tk). The resulting tessellation obeys cortical force balance. The Voronoi cell
shapes are good approximation to those obtained by minimization of the cell shape
energy for an isotropic target cell shape S0. In particular, in the Voronoi tessella-
tion a T1 at an edge ij occurs when the sum of the opposing triangulation angles
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FIG. S4. Comparison of the tension-driven Voronoi model where the cell shapes are deter-
mined via Voronoi–Delaunay duality from the tension triangulation (blue) vs simulations
of the full model where cell shapes are obtained by minimizing the cell shape energy under
the angle constraints imposed by the tension triangulation (orange). Simulations were
initialized with an “ordered” tension triangulation (generated from hard disks at high
packing fraction ρ = 0.9) and initial tension anisotropy magnitude s = 0.2. The three
panels follow the same convention as Fig. S6B–D.

ϕijk + ϕijl > π. This condition is simple to check numerically, whereas the elastic
energy minimization is by far the numerically most costly and complicated step
in our simulations. The tension-driven Voronoi model therefore defines a compu-
tationally efficient model for tension-driven tissue dynamics. For instance, during
the construction of the tension dynamics model presented in this paper, we made
frequent use of the tension-driven Voronoi model for preliminary numerical exper-
iments. Note that by definition, it is not possible to incorporate isogonal strain in
this model, and hence neither passive tissue patches nor fixed boundary conditions
can be implemented. Further, in particular for disordered and anisotropic tension
triangles, the Voronoi prescription creates cell shapes that differ from those obtained
by energy minimization.

Figure S4 demonstrates that for simulations with free boundary conditions, as
performed in main text Fig. 2, the tension-driven Voronoi model behave very sim-
ilar to full elastic energy minimization. A mesh from a tension-driven Voronoi
simulation is shown in Fig. S5.

E. Effect of hexatic order orientation

When carrying out simulations in which the tissue is initially ordered, the initial
tension triangulation corresponds to a (rectangular) patch of a triangular lattice.
We can choose two possible orientations of the lattice plane with respect to the
tension anisotropy – one creating initially mainly tension cables, one mainly bridges.
This corresponds to the orientation of the hexatic order Ψ6 w.r.t. the axis of
tension anisotropy, and we refer to these orientations as “bridge” and “cable” initial
conditions. We find that the qualitative behavior of the model is independent of
this choice, and positive tension feedback is capable of creating coherently ordered
T1s even if future collapsing edges are not singled out in the initial condition. To
underline this point, Fig. 2 uses “cable” initial conditions. For the determination of
LTC distribution dynamics in main text Fig. 5, we pool simulations from cable and
bridge initial conditions. When showing snapshots from a simulation, the “parallel”
initial condition most easily creates the recognizable pattern of alternating high and
low tensions reported in the companion paper.



25

Control AT = const.  myosin pool

Voronoi simulation Langevin simulation

FIG. S5. Final tissue shapes (40 min simulation time) for the alternative tissue dynamics
models discussed in the SI. Simulations were initialized with an “ordered” tension trian-
gulation and initial anisotropy s = 0.2. Cells are colored by coordination number (same
color code as in Fig. 2A.

A quantitative comparison is shown in Fig. S6. We see that an initial bridge bias
leads to higher bridge fraction later on, and somewhat larger amounts of convergent
extension.

F. Interface extension is independent of tissue extension

As argued in the main text, interface extension after active T1s is not driven
by external forces (e.g. due to tissue elongation) but locally by cortical tensions.
Active T1s are fundamentally asymmetric in time: the collapsing interface has high
myosin levels, and the newly formed interface has very low levels. Since these low
levels are insufficient to balance the tensions of the surrounding interfaces, the new
interface extends.
Our simulations support the notion that interface extension does not depend on

tissue extension, even though our simulations contain no additional active mech-
anisms to elongate new interfaces. In the main text, we showed simulations of a
tissue geometry without a soft, passive region to compensate the convergence of the
active tissue (analogous to a Toll[RM9] mutant). Because of incompressibility, the
active tissue also does not extend. Nevertheless, new interfaces elongate at rates
very similar to control simulations (Fig. 8). We now support this conclusion with
an additional simulation. Mimicking experiments where tissue extension is blocked
by a cauterization fence [8], we block tissue extension by adding slip walls along
the AP boundaries of the tissue patch (Fig. S8A). For numerical reasons, we add
a small passive zone in front of these additional boundaries, and enforce the slip-
wall condition with a softer penalty than for the dorsal slip walls. This is done to
avoid direct conflicts between the boundary conditions and the angle constraints
from the triangulation. In these simulations, the active tissue does not extend, and
cells deform to compensate T1s (Fig. S8A). In a control simulations (Fig. 8), by 15
minutes, the tissue has elongated by 30% by the time shown. However, new inter-
faces still successfully extend (Fig. S8B), like in the Toll[RM9] simulations shown
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FIG. S6. Dependence of tissue dynamics on initial tension bridge vs tension cable bias.
A The orientation of a hexagonal array of cells relative to the axis of tension anisotropy
determines whether the anisotropic tensions manifest primarily as tension bridges (left)
or tension cables (right). B–D Quantification of simulations initialized with hexagonal
cell arrays with bridge bias (blue curves) and cable bias (orange curves). B Change of
tissue aspect ratio (solid lines, left axis) and T1 rate (dashed lines, right axis) show that
convergent extension is faster and more efficient (fewer T1s are required for the same shape
change) for an initial bridge bias. Shaded bands indicate standard deviation. C Magnitude
of mean tension anisotropy (solid lines, left axis) and hexagon fraction (dashed lines,
right axis). Shaded bands indicate standard deviation. D Mean local tension anisotropy
magnitude (solid lines, left axis) and median LTC phase (dashed lines, right axis) showing
the initial bridge/cable bias and eventual convergence of the LTC phase. Shaded bands
indicate standard error. Initial tension anisotropy magnitude s = 0.2.

in Fig. 8. The overall speed of intercalations is slightly reduced because of the
additional slip walls. Note that occasionally, we observe rupture of the simulated
tissue from the simulation boundary because of the internal forces generated by T1
transitions. Similar rupture events are seen in experiment.

III. ISOGONAL SHEAR AND TISSUE SHEAR MODULUS

As discussed in the main text, and shown in Fig. 8 our simulations show that a
non-zero cell-level shear modulus is required for extension via active T1s. Here, we
analyze the relation of cell-level and tissue-level shear modulus. Crucially, because
of the dominance of cortical tensions, a tissue patch in our model will respond
to externally applied forces via an isogonal deformation. We first show that an
isogonal deformation can create tissue-scale pure shear (on the level of cell centroid
displacement – the transformation of cell vertices is necessarily non-affine to preserve
angles). Then we show that these pure shear modes correspond to the response of
the tissue to external force by computing the Hessian of our cell elastic energy in
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builds up.

the subspace spanned by isogonal deformations, and measure the shear modulus.

A. Quadratic isogonal mode profile creates pure shear

To show that isogonal modes can create pure shear, not just dilation/contraction
of cells, we make use of the isogonal mode parametrization introduced in Ref. [13]. It
assigns an isogonal “potential” Θi to each cell, and calculates the cell displacements
from the Θi and the edge tension vectors. In the following, we will show that a
constant gradient in the isogonal potential generates a uniform translation in real
space. By integration, this implies that a quadratic spatial profile of the isogonal
potential creates a pure shear.
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Let us identify the real space edge unit vectors by the two adjacent cells eij = −eji
and denote the corresponding tensions as Tij . Then the tension vectors T̂ij = Tij êij
form a triangulation, where â denotes the normal vector to a, i.e. â.a = 0 and
||â|| = ||a||.

The isogonal displacement uijk of the real space vertices rijk (identified by the
three adjacent cells) is given by

rijk → rijk + uijk = rijk +
1

Sijk

[
ΘiTjk + (cyc.)

]
(17)

where Sijk = T̂ij .Tik is the area of the tension triangle (ijk).
First, observe that the uniform isogonal mode Θi = const. has no effect on the

vertex positions because

Tjk +Tki +Tjk = 0 (force balance). (18)

Now we aim to show that a constant gradient in Θi drives a uniform displacement
of the rijk. Specifically, by uniform gradient we mean Θi = ti.a, i.e. a linear
gradient in the tension space (ti is the position of the tension triangulation vertex

corresponding to cell i, such that T̂ij = tj − ti). To show that the displacement in
real space is uniform, it is enough to show that two adjacent vertices are displaced
identically. By induction, this implies that all displacements are identical. It is
therefore sufficient to consider a quartet of cells (i = 1−−4), corresponding to a
“kite” in tension space (note that â.b is identical to the wedge product a ∧ b.)

Because a constant can be arbitrarily added to all Θi, we can set Θ1 = 0 and
thus have Θi = T̂ij .a for i = 2, 3, 4. The displacements now read

u123 =
1

S123

(
T̂12.a T31 + T̂13.a T12

)
(19)

u134 =
1

S134

(
T̂13.a T41 + T̂14.a T13

)
(20)

To show that these displacements are identical, we project them onto two conve-
niently chosen, linearly independent vectors, namely T̂12 and T̂13. For the latter
we find

T̂13.u123 =
1

S123
T̂13.a T̂13.T12 = −T̂13.a, (21)

T̂13.u134 =
1

S134
− T̂13.a T̂13.T14 = −T̂13.a, (22)

where we used that T̂ij .Tij = 0 and applied the definition of Sijk.

Projecting (19) and (20) onto T̂12 gives

T̂12.u123 =
1

S123
T̂12.a T̂12.T31 = −T̂12.a (23)

T̂12.u134 =
1

S134

(
T̂13.a T̂12.T41 + T̂14.a T̂12.T13

)
(24)

To show equality of these two right-hand sides, we use that given T̂13.a and T̂14.a
we can find a and substitute the result into T̂12.a. We start by “expanding the
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identity” (
—T̂13—

—T̂14—

)
a =

(
T̂13.a

T̂14.a

)
⇒ a =

(
—T̂13—

—T̂14—

)−1(
T̂13.a

T̂14.a

)
(25)

Explicitly writing out the inverse matrix then gives

a =
1

T̂13.T14

 | |
T14 −T13

| |

(T̂13.a

T̂14.a

)
(26)

With this, we find the relation

T̂12.a = − 1

S134

(
T̂12.T41 T̂13.a+ T̂12.T13 T̂14.a

)
(27)

where we used Tij = −Tjk to flip the indices on T14. Comparing to (23) and (24)
now shows the identity of their RHSs.
Taken together, we have shown that

T̂12.u123 = T̂12.u134 and T̂13.u123 = T̂13.u134, (28)

Because T̂12 and T̂13 are linearly independent, it follows that u123 = u134. QED.
We just showed that a constant gradient in Θi corresponds to a uniform displace-

ment of the real space vertices rijk. We can therefore think of Θ(t) as a “potential”
for the isogonal displacement field: u ≈ ∇tΘ, where the approximation is valid for
slowly varying gradients and exact for constant gradients. The gradient ∇t is taken
in tension space because the function Θ(ti) = Θi is defined on the vertices of the
tension triangulation ti.
A pure shear aligned with the coordinate axes is given by a displacement field

u(r) = ε diag (1,−1).r and is therefore generated (approximately) by a quadratic
isogonal potential Θi = ε tTi .diag (−1, 1).t = ε [(t1i )

2 − (t2i )
2].

B. Isogonal Hessian and tissue-scale shear modulus

Above we have shown that isogonal modes can create a pure shear (on the level of
cell centroids). We now show that the tissue will respond to external forces by such
an isogonal shear. To do this, we assume that the tissue is initially at the elastic
energy minimum under the constraints of a given tension tension triangulation. In
this case, we can approximate the energy E by a quadratic function of displace-
ment by computing the Hessian. Since the tissue has to deform under the angle
constraints defined by the triangulation, only isogonal displacements are allowed,
and we will project the the Hessian onto the space of isogonal modes. The lowest
eigenvectors of the isogonal Hessian will then correspond to the modes excited by
external forcing.
The isogonal unit vectors convert the isogonal potentials into real-space displace-

ment of vertices: the isogonal potential Θj at cell j contributes a term ΘjI
jkl
j to the

displacement of vertex rjkl adjacent to j. The Ijklj are defined above in Eq. (17).
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FIG. S10. Cell-level shear modulus determines tissue level shear modulus.
A Large-scale tissue shear are the lowest energy isogonal modes. Reference configura-
tion (minimum energy for a given tension triangulation, left) and deformed configuration
(right, outline shows reference configuration), deformed according to the isogonal Hessian
eigenvector of one of the two lowest eigenvalues in an example tissue patch. B Tissue
level shear modulus is proportional to cell level shear modulus. Tissue level isogonal shear
modulus vs cell-level shear modulus for the tissue patch shown in A.

The isogonal Hessian reads:

Hil =
∑

(jk),(mn)

Iijki
∂2E({rabc})
∂rijk∂rlmn

Ilmnl (29)

With the same code used for the tissue-scale simulations, we can numerically
construct and diagonalize Hil. There are 3 trivial 0-modes which correspond to two
real-space translations and a globally constant isogonal parameter, which creates no
cell displacement. This is in accordance with the results from above and the fact that
the E only depends on differences in vertex positions. We find that the two lowest
non-trivial modes are pure shear modes (quadratically varying isogonal potential
Θi). They are shown for an example lattice in Fig. S10A. Finding pure shear modes
is not unexpected since they minimize the variation in vertex displacement across
the tissue, and the energy function E is convex (quadratic).

External forces, e.g. external shear, will excite the lowest eigenmodes of the
Hessian. The energy cost is determined by the Hessian eigenvalues, which therefore
define the shear modulus. In the example shown in Fig. S10A the eigenvalues of
the shear modes are 2 orders of magnitude smaller than the next eigenvalues. The
highest eigenvalues correspond to isogonal deformations localized to a single quartet.
The shear modulus can then be read of by the change in energy by a perturbation
along the lowest eigenvectors. The curvature of this parabola (determined by the
eigenvalue and a conversion factor which translates isogonal parameters into real-
space shear) is the tissue-scale shear modulus. We can then investigate how the
tissue-scale shear modulus depends on the cell-level shear modulus in the elastic
energy. As expected, we find that the two are proportional (Fig. S10B), showing
that the tissue as a whole is solid, in the sense of a non-vanishing shear modulus.

IV. MODEL DETAILS AND SIMULATION METHODS

In the following, we explain the simulations presented in the paper and provide the
modeling and implementation details. These comprise the mean-field calculation
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of the dynamics of the distribution of vertex angles, the symmetric lattice of a
single intercalating quartet (shown in the companion paper [17]), and the tissue-
scale simulation of a disordered epithelial tissue comprising both active and passive
regions. All code used to create and analyse the simulations is available on GitHub
https://github.com/nikolas-claussen/CE_simulation_public.

A. Positive feedback tension dynamics and single-vertex simulation

We begin by describing the intrinsic tension dynamics of a single tension triangle.
This is the basis for the singe-triangle simulation in Fig. 5, where we show the
dynamics of the distribution of vertex angles predicted by a positive tension feedback
model. Under this model, the edge tensions T̃α, α = 1−3, at a vertex evolve
according to:

τT
˙̃Tα = Tnα − 1

3

∑
β

T̃nβ

where n > 1 and τT is a time scale converting simulation time into minutes. Note
that we fix the overall tension scale by the constraint that the triangle perimeter
P =

∑
α T̃α is fixed (corresponding to a finite total myosin pool). This simplified

the analysis of saturating positive feedback below, and is consistent with the single-
quartet simulations in the companion paper. Fixing the triangle area A instead
does not significantly affect the results for the single triangle simulations. The
feedback exponent was taken as n = 4 as in Ref. [17]. Different values give very
similar results, so no systematic optimization was performed. We note that since
the tension constraint P = const. or A = const. only affects the overall triangle size,
and the trajectories in LTC space (but not their speed) are independent of it.
We integrated the tension dynamics using a 4th order Runge-Kutta method as

implemented in the SciPy software package [56], using as initial conditions the
vertex angles in the experimental data at time t = 5 min (the vertex angles from
the data were temporally smoothed with a window of 2min to reduce noise). From
our simulation, we computed the LTC parameter to compare the marginals with
the experimental data.
Dynamics in the LTC space. To find the trajectories in the LTC space, we

integrated Eq. (5). A change of variables from side length to the LTC space yields
the flow shown in Fig. 5A. To model the effect of intercalations, which remove
highly obtuse tension triangles from the distribution, we stopped integration once
the maximum relative tension increased over Trel = 1.56, the median of the relative
tension at the moment of a T1 pbserved the tissue-scale simulations with isogonal
stretching (as well as in the experimental data). These “collapse” triangles were
removed from the simulation ensemble.
Fit of the tension timescale to experimental data. To determine the tension

timescale τT , we compute the dynamics of the relative tension (the ratio of the
edge tension to that of the adjacent edges) for all edges that undergo a T1 transi-
tion and align them temporally based on the time the T1 process occurs. This leads
an average Trel(t) that can be compared to the time traces from the experimental
data reported in the companion paper[17] to fit τT . Because the tension dynamics
in the tissue-scale simulations is affected by tension balancing (see below), while the
single-triangle and single-quartet simulations are not, we fit τT separately for the

https://github.com/nikolas-claussen/CE_simulation_public
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two classes of simulations. Note that we fit the tension timescale to a microscopic
process, the T1 transition, and the resulting time course for macroscopic observ-
ables (tissue extension, LTC distribution) matches the experimental data without
additional adjustment.

B. Tension dynamics post intercalation: Myosin handover and passive
tension

In the single-triangle simulations, we only consider dynamics up to the moment
of intercalation. At this point, the tension triangulation is modified topologically:
the edge corresponding to the collapsed interfaces is replaced by one corresponding
to the new interface (triangulation “flip”). To complete our model, we must specify
the initial conditions of this new edge.
As explained in the companion paper, we propose a myosin handover mechanism

to explain the extension of the new interface post intercalation. A interface with
cortical tension T is comprised of the adherens-junctional actomyosin cortex of the
two adjacent cells, which are coupled mechanically via adherens junctions. Under
force balance, the total tension T has to be constant along the cortex, but the
individual tensions on either side can be non-uniform, as the resulting traction forces
are exchanged via adherens junctions. In the following, we assume as a first order
approximation that the level of active tension (i.e. myosin concentration) varies
linearly along an interface (similar calculations have been performed in Ref. [57] to
calculate interfacial shear stress). This allows us to geometrically obtain the myosin
concentration at the individual cortices that will form the two juxtaposed sides of
the new interface (see companion paper).
Consider a vertex, where interfaces i = 0, 1, 2 (with tensions T0, T1, T2) meet,

and let 0 be the interface about to collapse. For an illustration, see Ref. [17], Fig.
4). The three cells that meet at the vertex will be referred to by (01), (12), (21)
(where e.g. (01) is the cell abutting interfaces 0 and 1). Let m01,m12,m21 be the
motor molecule concentrations (in units of tension) at the vertex in the junctional
cortices of the three cells. Then, the tensions are related to the motor molecule
concentrations as:

T0 = m21 +m01, T1 = m01 +m12, T2 = m12 +m21.

This uses the assumption of myosin continuity at vertices, and the fact that the
tension on an interface is the sum of the tensions of the two cortices that make it
up. The motor molecule concentration on the cortex belonging to the new interfaces,
post collapse, will be equal to m12. Solving for this in terms of the tensions:

m12 =
T1 + T2 − T0

2

The new interface consists of two cortices, coming from the two vertices of the
collapsed interface. Let the tensions at the two triangles be T0, T1, T2 and T0, T

′
1, T

′
2.

Let Ta be the active tension on the new interface immediately after the T1. It is
the equal to

Ta =
(T1 + T2 − T0) + (T ′

1 + T ′
2 − T0)

2
(30)
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Note however that the total tension Tn on the new interface is not necessary equal to
Ta. The total tension is defined geometrically from the angles at the new interface
(or, equivalently, the tension triangulation vertices). Indeed, generally, Tn > Ta,
i.e. the active tension on the new interface is not enough to balance the tension
due to the adjacent edges. As explained in the companion paper, we introduce a
passive tension Tp on the new edge which balances this deficit

Tp = Tn − Ta = Tn − (m12 +m′
12)

For example, if a perfectly symmetric quartet collapses when the vertex angle facing
the collapsing edge is 90◦, T1 = T2 = T ′

1 = T ′
2 = 1 and T0 = Tn =

√
2. Therefore,

Ta,n = 2 −
√
2 ≈ 0.6 and Tp,n =

√
2 − (2 −

√
2) ≈ 0.8. Note that by the triangle

inequality, for any convex quadrilateral with perimeter P and diagonals D1, D2,
one has P/2 ≤ D1 + D2 ≤ P . Applying this to the quadrilateral formed by the
two tension triangles at the collapsing interface, we get Ta,n ≥ 0 and Tp,n ≥ 0: the
handover formula always results in positive active and passive tensions. Further,
the “handover” mechanism robustly generates irreversible T1s: if a interface were
to collapse back after a T1, the newly formed interface would inherit high myosin
levels and therefore be likely to collapse again.
The passive tension subsequently relaxes visco-elastically with rate τ−1

p : Ṫp =

−τ−1
p Tp. Combining this with the feedback equation, the evolution of the total

tension is

˙̃T = τ−1
T

Tn − 1

3

∑
β

T̃nβ

− τ−1
p Tp (31)

where we assumed that the positive feedback only operates on the active tension.
The relaxation time scale was chosen at τp = τT /4, which fits the observed decay of
tension post T1. If the tension relaxation rate τ−1

p is too low, then positive tension
feedback leads to a reversal of active T1s, and the T1 gets stuck at the 4-fold vertex
configuration.

C. Cell shape elasticity

As explained in the main text, in our model, tension dynamics translate into
tissue dynamics via force balance which we implement by minimizing the energy
function Eq. (1). Here, we explain our choice of the term representing cell-shape
elasticity, EC . We use an elastic energy based on the the cell shape tensor

SC =
∑
i

ei ⊗ ei
|ei|

where i runs over the edges of the cell C, and ei is the vector pointing from one vertex
of the interface to the other. Note that in this shape tensor, each edge contributes
linearly in length to the cell shape. This means that artificially subdividing an
edge has no effect on the cell shape tensor. This makes sense if we assume that
the elasticity we aim to model using S resides in the cell interior (incompressibility,
microtubules, intermediate filaments, nucleus). The shape tensor can also be defined
using vectors from the cell centroid to its vertices (in the lattice, the two definitions
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FIG. S11. Absence of energy barrier to intercalationsA Length of the central interface in a
quartet for a prescribed isosceles tension triangle parametrized by the angle β (the isosceles
property implies α = (π−β)/2). B The solid line shows the interface length in the Voronoi
tessellation ℓref (cf. Eq. (10)). The interface length obtained by minimizing elastic energy
Eq. (3) with isotropic target shape (dot-dashed line) closely follows the Voronoi length and
vanishes at the same critical angle. By contrast, minimizing the “area–perimeter” energy
of the vertex-model Ecell ∼ (A− A0)

2 + (P − P0)
2 gives a interface length (dashed black

line) that vanishes only for β → π and the energy diverges in this limit (dashed green
line).

are equivalent). An alternative definition of the elastic energy using S̃C =
∑
i ei ⊗

ei instead gives broadly similar results (although interface collapse happens more
abruptly, because of the higher order non-linearity).

We assign a reference shape S0 and define the cell elastic energy via

EC = λ[Tr(SC − S0)]
2 + µTr[(SC − S0)

2] (32)

with bulk modulus λ and shear modulus µ. The reference shape S0 controls the
isogonal mode. An isotropic S0 ∝ Id favours equilateral hexagons. We used a
shear/bulk ration of µ/λ = 1 for all “active” cells in the simulations. Because of
the separation of scales between cortical tensions and elastic energy baked into the
model, the absolute values of λ, µ are irrelevant.
Strikingly, when the cell array is a symmetric lattice (single-quartet simulations

shown in the companion paper), the “shape strain” SC − S0 can always be set to
0 by choice of the edge lengths, and the energy EC = 0 throughout. This can
already be seen from a degree-of-freedom count (three ℓi for the three independent
components of SC − S0). The elastic energy therefore acts only on the isogonal
modes (i.e. ∂ϕi

EC |ℓi=minimizers = 0) and there is no energy barrier for intercalations.
Consequently, there is no need for noise to drive intercalations in our model. By
contrast, for the widely-used area-perimeter elastic energy E = (A−A0)

2+(P−P0)
2

(where A,P are the cell area and perimeter, and A0, P0 their target values) [24],
there exists an energy barrier, and the inner interface ℓ0 only collapses when ϕ0 =
π. This is shown in Fig. S11B. Note that the area-perimeter energy is a special
case because of the geometric incompatibility of area and perimeter constraints.
Combining area elasticity with shear elasticity based on the shape tensor, E =
(A−A0)

2+µTr[(SC −S0)
2], (or perimeter elasticity with cell shape bulk elasticity)
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leads to similar results as Eq. (3). Note also that because of the degree-of-freedom
count, the system is under-specified if the shear modulus is 0, foreshadowing the
fact that without shear modulus, no convergence-extension takes place.

D. Tissue scale simulation

Using the components of the single-quartet simulation, we now describe a simula-
tion of an arbitrary, disordered tissue patch. The key assumption are again adiabatic
force balance and cortical tension dominance: the tissue geometry is found by solv-
ing for force balance, by first finding the angles from the cortical tensions and then
the isogonal mode by minimizing cell elastic energy. The key quantity is the tension
triangulation whose dynamics determines the tissue dynamics.
Conceptually, there is one main novel element: since the tension triangulation

is now disordered and comprises many heterogeneous tension triangles, an addi-
tional mechanism is required to ensure the tension triangles fit together to a global
triangulation. Further, the higher computational load requires different numerical
methods.
Data structure. We model a piece of epithelial tissue by a polygonal tiling of the

plane, polygons corresponding to cells. Two cells are neighbors if they are share an
edge (this implies that the cell adjacency graph is a triangulation).
Following the idea of the dual tension triangulation introduced in the main text, a

polygonal tiling is represented by a triangular mesh, in which cells are represented
by vertices, cell edges by triangulation edges, and cell vertices by triangulation
faces. Vertices, edges, and faces have the following attributes which are used for
time evolution:

• Vertices: dual coordinates, the x, y coordinates of the vertex in the tension
triangulation which will be denoted ti, and the reference shape g0 for the
shape-tensor elastic energy.

• Edges: the active and passive tensions on an edge.

• Faces: primal coordinates, the x, y coordinates of the vertex in the cell tessel-
lation corresponding to the face, denoted rijk.

Given the dual coordinates of two adjacent vertices ti, tj , the tension on the edge
connecting cells i, j is Tij = |ti − tj |. The dual coordinates encode a configuration
of balanced cortical tensions. Note that the primal (cell) and dual (tension) coor-
dinates live in different spaces, and the overall scale of the tension coordinates is
irrelevant.
The mesh is implemented in object oriented python, using a half-edge mesh data

structure [58]. A half-edge mesh consists of vertices, faces, and, for each edge,
two oriented half-edges. A half-edges stores a reference to the next half-edge on
the counter-clockwise oriented face it belongs to, and a reference to its twin, the
half-edge with opposite orientation on the adjacent face. This structure defines an
orientation for every triangular face and makes mesh traversal (e.g. get all vertices
of a cell) and mesh modification (e.g. intercalations) very convenient.
Overview. Due to the assumption of adiabatic force balance, the tissue geometry

is determined by the instantaneous tensions. The dynamics is therefore determined
by the change in the tension triangulation (due to positive feedback). In detail, the
time evolution in our simulation is done in three steps:
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1. Local Euler step: For each triangular face, update the active tensions accord-
ing to positive tension feedback, and the passive tensions and the rest shape
according to viscous relaxation.

2. Triangulation flattening: Optimize the dual vertex positions so that the
lengths of each half-edge is as close as possible to its internally stored tension.
This ensures global tension balance.

3. Cell shape optimization: Optimize the primal vertex positions to minimize
the shape-tensor based elastic energy, while constraining the angles by the
dual triangulation.

4. Topological modifications: Check if any primal edge has collapsed and carry
out intercalations if necessary, re-initializing the active and passive tensions
on the new edge.

The next sections describe them in detail. The most complicated and time-
consuming of them is the cell shape optimization. Overall, a simulation of con-
vergent extension of ∼ 1000 cells takes approx. 15 minutes on a current-generation
laptop.

Triangulation dynamics. For each mesh half-edge, we store the total intrinsic
and passive tensions T̃aij , Tp,ij . We collect the total and passive tensions from all
half-edges ij belonging to a triangular face Iijk = {(ij), (jk), (ki)} and carry out
an explicit Euler step with step size ∼ 10−3 according to the following dynamics:

τT∂tT̃ij = T̃nij − kcutoffT̃
n+1
ij − 1

3

∑
α∈Iijk

(T̃nα − kcutoffT̃
n+1
α )− τT

τp
Tp,ij (33)

τp∂tTp,ij = −Tp,ij (34)

The cutoff parameter kcutoff stops runaway positive feedback at values T > 1/kcutoff.
It is not strictly necessary since runaway feedback is cut short by intercalations, but
helpful for long-time simulations, were rarely, run-away tension cable configurations
can occur which can blow up numerically. We chose 1/kcutoff = 5T̄ where T̄ is the
overall tension scale, so that it has almost no effect in normal tension configurations.
We chose the feedback parameter n = 4 and the relaxation rate τp = τT /4, the same
used in the single-quartet and single-triangle simulations.
So far, the time evolution of tensions is purely autonomous (i.e. each tension

triangle is independent from all others) and completely analogous to the single-
quartet simulation. In the single-quartet simulation, all tension triangles are equal
by symmetry and periodicity, and thus tile the plane as a triangulation by con-
struction. In general, this is no longer guaranteed. Even if one starts with a flat
tension triangulation, the autonomous time evolution Eq. (34) will result in a set of
tension triangles that cannot fit together to a flat triangulation. The triangulation
will develop curvature [12], i.e. “crumple” out of plane. This means that we have
to add an additional ingredient to enforce triangulation planarity.
In principle, the constraints enforcing planarity (one constraint per triangulation

vertex) can be worked out explicitly [13]. In practice, we enforce this projection
as follows. The set of all balanced tension triangulations is parameterized by the
dual vertex positions ti. We therefore seek the balanced tension configuration that
approximates the intrinsic tensions as closely as possible by minimizing the following
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elastic energy:

Etri =
1

2Nedges

∑
ij

(||ti − tj || − T̃ij)
2 +

1

2Ntriangles

∑
ijk

Pen(Aijk, A0) (35)

Since the simulation is based on half-edges, the per-edge intrinsic tension T̃ij is the
average of the tensions of the two half-edges (which can be though of as the two
cellular cortices coupled in a cell-cell interface).
The second term, Pen(A,A0) is a penalty term on the triangle areas A (calculated

from the vertex positions ti). It fixes the overall tension scale (which is arbitrary
due to force balance) and ensures the triangulation is well behaved numerically. It
contains two terms:

Pen(A,A0) = γtri

(
100 · (max{0, A0

4
−A})2 + 1

2
(A−A0)

2

)
(36)

Here, A0 is an arbitrary reference area fixing the overall tension scale. Because the
triangular mesh is oriented, the area Aijk is signed, with negative signs correspond-
ing to un-physical “flipped” configurations. These, and degenerate triangles, are
penalized by the first term. The second term is a soft potential fixing the overall
tension scale and preventing isotropic growth. The penalty strength γ was chosen
at 10−3, so that the area penalty represents a small correction to the length-term.

In the simulation, we first carry out an explicit Euler step for the intrinsic tensions,
and then “flatten the triangulation”, i.e. find the dual vertex positions by minimizing
Eq. (35). This determines the extrinsic tensions Tij = ||ti − tj ||. Finally, we relax
the intrinsic tensions to force balance with rate τbalance,

dT̃ij
dt

= −τ−1
balance(T̃ij − Tij) (37)

In order to ensure numerical stability even for large τT , we use the exact solution
of Eq. (37) numerically, instead of carrying out an explicit Euler step.
The triangulation-flattening prescription can be thought of as modelling, indi-

rectly, known feedback loops which lead to a convergence to balanced tension, most
importantly, strain-rate feedback [13], which has been demonstrated experimentally
[14]. The rate τ−1

balance determines the speed of these feedback loops.
Directly modelling of this effect requires going beyond the separation between

tension- and real-space-dynamics that is the basis of our model here and is therefore
beyond the scope of this paper. Further, the triangulation-flattening prescription
is the most parsimonious generalization of the local tension feedback dynamics
employed in the single-quartet simulation to a disordered tissue patch.
The complete tension dynamics that is implemented in the simulation therefore

comprises three terms in addition to the dynamics shown in the main text Eq. (5):
(1) Numerical cutoff of positive feedback at very high tensions (2) Passive tension
dynamics post T1 (3) Relaxation of tensions to force equilibrium:

∂tT̃ij =τ
−1
T

T̃nij − kcutoffT̃
n+1
ij − 1

3

∑
α∈Iijk

(T̃nα − kcutoffT̃
n+1
α )

 (38)

− τ−1
p Tp,ij − τ−1

balance(T̃ij − Tij) (39)

We find that our simulations are robust to different choices of the tension dynamics
parameters τp, τbalance, kcutoff , as demonstrated in Fig. S7. We can, for instance,
decrease the balancing time by 40× without affecting the qualitative behavior.
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Cell shape dynamics. Above, we have described the dynamics of the tension tri-
angulation. After an Euler step to update the tensions has been taken, we calculate
the real space cell tessellation (i.e. the positions of the cell vertices) by minimizing
the cell-shape elastic energy while constraining the angles by the tension triangula-
tion. In the case of a single quartet of identical cells, we could explicitly parameterize
the cell shape by interface lengths and angles, and optimize only with respect to the
former. In the disordered case, it is more convenient to enforce the angle constraint
via a (strong) energy penalty. It would also possible to instead directly optimize
the per-cell isogonal potentials Θi with respect to the Voronoi reference, obviating
the need for a penalty.
The elastic energy to minimize therefore has two terms – the cell elastic energy

Eq. (3) calculated from cell shape tensor SC Eq. (32) and reference shape S0, and
the angle penalty, which corresponds to the cortical tension energy term:

E =
1

2Nedges

∑
ij

Tij(1− n̂ij · r̂ij) +
ϵ

Ncells

∑
i

EC,i (40)

Here, n̂ij is the the unit normal of the tension edge, and r̂ij the unit tangent vector
of the primal edge. The small parameter ϵ (we use ϵ ∼ 10−3λ−1) represents the fact
that the cell shape energy is assumed to be much weaker than the cortical tensions.
If desired, one can replace or modify the cell shape elastic energy EC in Eq. (40) by
another energy, e.g. the common area-perimeter elasticity.
In Eq. (40), we use a different term than the standard

∑
ij Tijℓij to represent the

cortical tensions. The reason for this is numerical: Eq. (40) is well-behaved for short
edges, does not require a pressure-term to prevent collapse of the cell array, and
ensures only “valid”, self-intersection-free mesh configurations are energy minima.
It is however equivalent to the standard form

∑
ij Tijℓij near force balance (i.e. the

energy minima): both terms enforce the angle constraints implied by the tensions
Tij in force balance. The angle penalty enforces that the angle between the dual
tension edge and the real-space edge is 90◦ by using the unit normal n̂ij of the
tension edge, and the unit tangent vector r̂ij of the primal edge. We can also
rewrite this as follows:

Tij(1− n̂ij · r̂ij) =
Tij
2

||r̂ij − n̂ij ||2 =
1

2
||Tij −R(π2 )tij ||

2 (41)

where Tij is the real-space tension vector, R(π2 ) a 90◦ rotation matrix, and tij =
ti − tj the dual tension vector, defined by the tension vertices.

To understand the particular form n̂ij · r̂ij , recall that every triangulation edge
ti, tj is represented twice, as two oriented half-edges belonging to the two faces
which meet at the edge. Using this orientation, for a half-edge edge i → j, we
can compute the dual outward facing unit normal n̂ij . We then compare n̂ij to
the primal edge unit vector r̂ij = r̂(ij)(ji) from the primal vertex of the triangle
(ij) belonging to i → j to that of the apposing triangle (ji). The angle penalty
ensures firstly, that the primal edges are orthogonal to the correspondingly dual
edge, implementing the tension constraint on angles. Secondly, it automatically
penalizes “invalid” vertex positions, e.g. “bowties” in which a primal vertex of
one cell lies within the neighboring cell. Such situations correspond to r̂(ij)(ji)
anti-parallel to n̂ij , which is why we chose a slightly elaborate form for the angle
penalty.
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After carrying out a local Euler step and updating the dual vertex positions by
“triangulation flattening”, we find the primal vertex positions by minimizing the
elastic energy Eq. (40).
Topological modifications. After each time-step we check whether any edge has

collapsed. We call an edge collapsed if its length is < 10% of the overall length scale
(mean edge length at simulation start). If this occurs, we carry out an intercalation
(flip the corresponding edge in the triangulation) and set the active and passive
tensions on the new edge as described above.
Edges that underwent a T1 transition in the last 20 simulation time steps (cor-

responding to 2.5 minutes) are excluded from edge collapse so as to prevent the
immediate re–collapse of newly formed junctions. Instead of this hard-coded crite-
rion, one could also calculate the strain rate of junctions of short length and exclude
extending junctions, as shown by the time traces of junction length in Fig. 8B.
Automatic differentiation and numerical optimization. The simulation requires

solving two optimization problems, one for the triangulation Eq. (35) and one for the
real-space shape Eq. (40). To solve an optimization problem efficiently, it is crucial
to know the gradient of the objective function. We use the python library JAX [59]
to automatically differentiate our energy functions, allowing easy, rapid and bug-
free calculation of the Jacobians. We further use JAX’s just-in-time functionality
to accelerate our python code. Gradient-based optimization requires the objective
function to be at least once differentiable. To ensure this, we mollify functions as

required; for example, the Euclidean norm
√
x2 + y2 →

√
x2 + y2 + ϵ2, ϵ ∼ 10−3

to ensure differentiability when computing the lengths of very short edges.
With these tools, the energies can be efficiently minimized using scipy’s

conjugate-gradient optimizer. With a relative tolerance of 10−5, a shape optimiza-
tion step for ∼ 1000 cells takes ∼ 10s on a laptop. Using the half-edge data structure
described above, and JAX-based automatic differentiation, we can also easily con-
struct the isogonal Hessian Hij analyzed in Fig. S10.
Creation of initial conditions. Finally, we need to specify the simulation the ini-

tial conditions. Note that because the cell vertex positions are computed from the
tension triangulation, in our initial condition we specify only the tension triangula-
tion.
We consider two types of initial conditions, using either a regular lattice or a

random point process to choose the tension vertices. In the former case, we chose
rectangular patches of a regular triangular lattice, with i.i.d. Gaussian noise added
to the vertex positions. The amplitude of the noise was chosen so that std(Tij) =
0.15mean(Tij). The influence of the Gaussian noise standard deviation is shown in
Fig. S7. A triangular lattice corresponds to a hexagonal lattice of cells. Indeed,
locally, the Drosophila embryo at the onset of GBE looks like it is composed out
of (noisy) hexagonal lattice patches, as shown in Fig. S1. This lattice is subjected
to a small initial strain to create an a initial tension anisotropy, as described in the
main text.
To investigate the effect of disorder, we also create initial conditions using a hard

disk process. This randomly samples 2d-points (the eventual vertices in tension
space) under the constraint that no two points are closer than 2r where r is the
“hard disk” radius. Instead of r, we use the normalized hard disk packing fraction
ρ ∈ [0, 1], which is maximal for a hexagonal lattice. At ρ ∼ 0.72, the hard disk
process undergoes a phase transition that destroys the lattice order. The limit
ρ = 0 corresponds to a Poisson point process. To sample from a hard disk point
process, we use the event-chain Monte Carlo algorithm of Ref. [25], with code based
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on that provided with Ref. [26]. Note that with other algorithms such as sequential
deposition or standard Monte Carlo it is either impossible or prohibitively slow to
sample at arbitrary values of ρ.
To create a tension triangulation, we then compute the Delaunay triangulation

of this point set (we further refine the initial condition by removing the edge of this
tension triangulation, where the Delaunay algorithm can create very long tension
edges). This triangulation is stretched uniformly to set up the initial anisotropy of
tension. Cell numbers and initial aspect ratios were also chosen identically in the
simulations that make up the phase diagram of Fig. 3.
Boundary conditions, tissue patterning, and isogonal stretching. For the first

half of the work, Figs. 2-5, we use a tissue made of identical cells with free boundary
conditions. We now specify the boundary conditions, and the division of the tissue
into active and passive patches of the simulations for Figs 7-8.
We use appropriate boundary conditions to mimic the geometry of the Drosophila

lateral ectoderm. We consider a initially rectangular tissue patch with height >
width. The top/bottom edges correspond to the dorsal pole, the middle to the
ventral region, and the left/right sides to the anterior/posterior edges of the lat-
eral ectoderm. To simulate the cylindrical geometry of the Drosophila trunk, the
top/bottom boundary are given slip-wall boundary conditions, i.e. the cells on the
boundary are pinned along the y-axis and free to move along the x-axis. The
left/right boundaries are free. Boundary conditions are numerically implemented
by a confining potential which penalizes deviation of the x or y coordinate of the
cell centroids designated to be boundary cells from the location of the slip wall.
This allows for flexible implementation of various boundaries and geometries. We
can also chose different boundary conditions. We can also add slip walls on the
left/right boundaries to model the experiments carried out in Ref. [8], where GBE
was blocked by cauterization of the ventral tissue close to the posterior pole.
Next, we designate active and passive regions in the tissue. In the active region,

tensions evolve in time according to excitable tension feedback Eq. (34). In the
passive regions, tensions are governed by homeostasis (see below), and cells are
softer. To simulate a wild type embryo, we chose the size of the passive patch to
be approximately 40% of the embryo circumference (the exact value does not have
an important influence). To mimic an embryo without modulation of activity along
the DV axis (e.g. a TollRM9 mutant), all cells along the embryo were taken to
be active. The cells at the very tissue boundary are always passive for reasons of
numerical stability. Otherwise edges on the boundary could undergo a T1, which
leads to an invalid state.
We can take model a situation where the cells in simulated tissue are initially

stretched isogonally. This can be encoded by stretching the tissue using the slip wall
boundary conditions; instead, we set the cell reference shape S0 to an anisotropic
matrix, as discussed above in the SI. For the simulations of the Fig. 7 and 7, we
set the initial stretching to 0.
Dynamics of tensions and cell shapes in passive cells. To model the cells in

passive tissue regions in our simulations, we must prescribe their tension dynamics
and their cell elasticity. Regarding the tension dynamics, we assume that it is
governed by tension homeostasis. This means that the intrinsic tensions T̃ij in the
passive region behave as:

dT̃ij
dt

= −τ−1
h (T̃ij − T̃ij,0) (42)



42

where τh is the homeostasis timescale, and T̃ij,0 is the tension on the edge at the
beginning of the simulation. For newly generated edges after a passive T1, we
generate a random reference value T̃ij,0 ≈ 1. One can also set T̃ij,0 ≡ 1 for all
passive cells, in which case the passive tissue relaxes to a hexagonal lattice. The
speed of homeostasis τh has no strong influence on the simulations, but must be
large enough so that tensions relax after a passive T1 process, before a second
passive T1 process takes place. In our simulations, we always set τh = τp, the speed
of passive tension relaxation in the active tissue.
Regarding cell shape dynamics, we model the passive tissue as very soft. In

particular, we assume that their shear modulus is very low: µp = 0.2µa, λp = 0.2λa
where the subscripts a and b refer to active and passive cells, respectively. Further,
we use a lower value of the angle-constraint penalty 1/ϵ than in the active region:
1/ϵp = 1/(200ϵa) = 5. This accounts for the fact that in the passive region, the
elastic moduli are much lower (so 1/ϵp must be decreased to keep the ratio constant),
as well as for the fact that in the passive region, we expect weaker tension. Tension
is still the dominant force and the cell array angles match the angles prescribed by
the triangulation to within ∼ 2◦. However, we find that small deviations from the
triangulation are important to facilitate passive T1s.

Simulation statistics and computing resources

For each measurement show in the figures of this paper, by default, we pooled or
averaged 3 simulation runs with identical parameters, but different random seeds
for the creation of the initial tension triangulation. The phase diagram Fig. 3A
shows the average of 6 simulation runs each. The trajectories in Fig. 7 as well as
the interface length and orientation statistics in Fig. 8 were computed from a single
simulation.
By default, simulated meshes had Ncells ≈ 103 cells (the exact number could

vary slightly due to randomness in the hard disk point process). Simulations of
saturating feedback in Fig. 5 had Ncells ≈ 350 cells, and simulations in Figs. 7-8
hadNcells ≈ 750 cells. Simulation edges were always excluded from analysis. For the
single–triangle simulation in Fig. 5, we simulated 4× 103 individual triangles from
the initial condition of the full numerical simulations. When showing time traces, we
smoothed the T1-rate and aspect ratio time series with a Gaussian kernel of width
10dt where dt = τT /200 is the simulation time step. Numerical parameters were
adjusted so that elastic energy minimization and triangulation flattening converged
for all simulations and all time points.
Simulations were carried out on a Supermicro workstation with 64 Intel Xeon

Gold 6326 cores and 256GB of RAM. However, individual simulations (rather than
parameter scans and phase diagrams) can be run without problem on a consumer
grade laptop.

Overview of model parameters and their effects.

As a summary, Table I gives a list of all the parameters of the tissue-scale model
displayed in this work, as well as their default values. Fig. S7 shows analyses of sim-
ulations where several of the parameters are varied, confirming that the qualitative
behavior of the model is largely independent of the exact parameter values.
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Model parameters symbol default value effect

Tension time scale τT 25 min Fitted to experimental T1 tension dynamics.

Feedback exponent n 4 Must be > 0 to produce flow. Weak effect on TCE.

Tension balancing τbalance τT /200
Must be ≪ τT . Higher values lead to a higher rate of

disoriented T1s.

Passive tension relaxation τp τT /6
No strong effect. Must be sufficiently small < τT /2 to

create irreversible T1s.

Elasticity coefficient ratio µ/λ 1 No strong effect. Must be > 0

Passive region shear moduli µp/µa, λp/λa 0.2, 0.2 µa/µp > 1 or passive tissue resistance lowers TCE.

Initial condition parameters

Initial anisotropy ||⟨
√
2Q̃⟩|| 0.2 Higher values increase TCE.

Tension vertex hard disk packing
fraction

ρ 0.45− 0.9 Higher values increase TCE.

Gaussian noise in initial tensions
(standard deviation)

0.1 T
Weak effect on TCE, as long as noise is sufficiently

weak to not affect triangulation topology.

Cell reference shape S0 3ℓ0 I Anisotropic S0 increases bridge bias by shifting T1
threshold.

Number of cells Ncells ≈ 103
Number can vary due to random sampling. “Germ

band” simulations had Ncells = 750.

Numerical parameters

Tension feedback cutoff kcutoff 0.3T

Triangulation area penalty γtri 0.01

Angle constraint penalty 1/ϵ 103 In the passive region, we use 1/ϵ = 5.

Boundary condition penalty 5× 103

Time step dt 0.5× 10−2 τT

Edge length to trigger collapse 0.1 ℓ0

TABLE I. Parameters of tissue scale simulation. A value in the second-to-last column
indicates a “default” value which was used in all simulations except otherwise indicated.
T is the overall tension scale (average edge tension at initial condition), and ℓ0 the overall
length scale (average edge length at initial condition). We use the abbreviation “TCE” for
total convergent extension, i.e. the amount of convergent extension as tissue flow saturates.
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V. MOVIE CAPTIONS

Movie 1: Simulation of convergent extension for ordered and disordered initial
cell arrays. Simulation of tissue scale model of convergent extension with ordered
(left) and disordered (right) initial conditions, corresponding to Fig. 2. The number
of cells and the initial tension anisotropy, as well as all other parameters, are the
same for both simulations. The simulations were carried out with free boundary
conditions. Top row shows the cell arrays, colored by cell coordination number
(hexagons=white), bottom row the underlying tension triangulation. If the initial
cell array is disordered, both the tissue and the tension triangulation extend only
very little.

Movie 2: Simulations comparing saturating and winner-takes-all tension feed-
back. Comparison of saturating (left) and winner-takes-all (right) tension feedback
Fig. 5. Both simulations were initialized identical initial conditions (an ordered cell
array with 20% tension anisotropy). All other parameters are the same for both
simulations. Top row shows the cell arrays, colored by cell coordination number
(hexagons=white), bottom row the underlying tension triangulation. Saturating
feedback leads to little large scale shape change and creates tension cables.
Movie 3: Simulation of convergent extension in embryo-like geometry. Simu-

lation of tissue scale model of convergent extension in an embryo-like geometry,
corresponding to Fig. 7. The embryo is modeled by a rectangular tissue patch with
slip walls on the top and bottom edge, mimicking the embryo’s cylindrical geometry.
The active and passive tissue regions, indicated by color and shading of the edges
(color/solid=active), correspond to the germ band and the amnioserosa, respec-
tively. Left: Cell tessellation with black dots indicating the cells along the slip wall
(restricted to move along horizontally along the “AP axis”). Right: underlying ten-
sion triangulation. The tension triangulation is initialized with the experimentally
observed initial tension anisotropy which breaks rotational symmetry and aligns the
tissue extension along the “AP axis”. Colored dots follow a selected subset cells to
highlight rearrangements.
Movie 4: Simulation of convergent extension without cell rigidity and without

DV modulation of activity. Simulation of tissue scale model of convergent exten-
sion in an embryo-like geometry for a control and two “mutant” configurations,
corresponding Fig. 8. Left: “Control”, as in Movie 3. Middle: Active tissue with
vanishing shear modulus µa = 0. Right: No DV modulation, i.e. no soft, passive
region. All other parameters are identical. Top shows cell array, bottom underlying
tension triangulation. Active and passive tissue regions are indicated by color and
shading of the edges (color/solid=active). In all three conditions, active T1s drive
elongation of the tension triangulation, while the convergent extension of the cell
array only occurs for the “control” condition.
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