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Abstract 

Background:  Biofilm formation has been suggested to play a role in the survival of Campylobacter jejuni in the envi-
ronment and contribute to the high incidence of human campylobacteriosis. Molecular studies of biofilm formation 
by Campylobacter are sparse.

Results:  We attempted to identify genes that may be involved in biofilm formation in seven C. jejuni strains through 
construction of mutants using the EZ-Tn5 Transposome system. Only 14 mutants with reduced biofilm formation 
were obtained, all from one strain of C. jejuni. Three different genes of interest, namely CmeB (synthesis of multid-
rug efflux system transporter proteins), NusG (transcription termination and anti-termination protein) and a puta-
tive transmembrane protein (involved in membrane protein function) were identified. The efficiency of the EZ::TN5 
transposon mutagenesis approach was strain dependent and was unable to generate any mutants from most of the 
strains used.

Conclusions:  A diverse range of genes may be involved in biofilm formation by C. jejuni. The application of the 
EZ::TN5 system for construction of mutants in different Campylobacter strains is limited.
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Background
Campylobacter jejuni is a Gram negative, microaerophilic 
bacterial species with fastidious temperature, atmos-
phere and nutrient growth requirements [1]. Despite 
these requirements, C. jejuni is one of the most frequent 
causes of human bacterial gastrointestinal food-borne 
infection worldwide [2]. Common symptoms associated 
with infection by this pathogen include diarrhea, fever 
and abdominal pain which may also lead to more serious 
neuropathies such as Guillain–Barre and Miller–Fisher 
syndromes [3, 4].

Campylobacter jejuni is widely spread in the environ-
ment and can be readily isolated from food, water and 
other sources [5, 6]. Biofilm formation has been sug-
gested to help C. jejuni overcome the disadvantages of 

survival in the environment by protecting the bacteria 
from various stressors [7, 8].

While biofilm formation by other bacterial species, 
such as Pseudomonas aeruginosa and Escherichia coli are 
well studied, molecular studies of biofilm formation by 
Campylobacter are sparse. A study carried out by Reeser 
et al. [9] showed that flagella plays a role in biofilm for-
mation by Campylobacter. These authors reported that 
flagellum-deficient mutant strains (flaAB mutant strains) 
showed lower levels of biofilm formation. In addition, 
biofilm formation by Campylobacter was impaired in 
strains defective in a putative flagellar protein (FliS) and 
in phosphate acetyltransferase (Cj0688) [10]. A study car-
ried out by Fields, Thompson [11] showed that biofilm 
formation was lowered in C. jejuni strains with a mutated 
CsrA (carbon starvation regulator) gene. The product of 
this gene in other bacterial species has been identified as 
a posttranscriptional regulator of translation responsible 
for repression or activation of many important processes, 
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including regulation of the stress response [11, 12]. A 
study by Oh and Jeon [13] showed that biofilm formation 
by C. jejuni was increased in strains with a mutated alkyl 
hydroperoxide reductase (AhpC) gene, which is involved 
in the oxidative stress response.

Although there is evidence for the role of flagella and 
gene regulation in biofilm formation, molecular under-
standing of biofilm formation by C. jejuni is still in its 
infancy. In this study, we attempted to identify novel 
genes that may be involved in biofilm formation by C. 
jejuni through random mutagenesis as this is established 
as a useful tool in deducing gene function [14]. Since 
transposons have been widely used in the construc-
tion of mutant libraries due to their ability to randomly 
insert into the genome, an in vivo transposition system, 
the EZ-Tn5 Transposome (Epicentre, USA), was used in 
this study. The EZ::TN5 transposome can be generated 
in vitro using purified EZ::TN5 transposase and a DNA 
fragment (usually antibiotic cassette) flanked by inverted 
repeats. This system has been shown to be an efficient 
and reliable method of random insertion of transposon 
DNA into the genome of many different microorganisms 
in numerous studies [14–16].

Methods
Bacterial strains and growth conditions
Seven C. jejuni strains (2862, 2863, 2865, 2866, 2868, 
2869 and 2871) isolated from poultry obtained from 
retail outlets in Malaysia as reported by Wieczorek et al. 
[17] were used in this study. Campylobacter jejuni ATCC 
33291 obtained from the American Type Culture Collec-
tion was also used in this study. Whole genomes of three 
of the strains, 2865, 2868 and 2871, were sequenced as 
described in Teh et  al. [18]. All the strains were main-
tained at −80  °C in Nutrient Broth No. 2 (NB2, Oxoid, 
UK) and 15% glycerol and were resuscitated on Campy-
lobacter blood-free selective agar base (Oxoid, UK) (as 
sessile cultures) with incubation at 37 °C for 48 h under 
microaerobic conditions generated using Campygen 
(Oxoid, UK).

Construction of transposon mutants of C. jejuni
EZ‑Tn5 transposome preparation
An attempt was made to construct a transposon library 
for each of eight C. jejuni strains using the EZ-Tn5 trans-
posase and the EZ-Tn5 pMOD-3<R6Kγori/MCS>  trans-
poson construction vector (Epicenter Biotechnologies, 
USA) in vivo according to the manufacturer’s instructions. 
A chloramphenicol (Cm) resistance cassette was ampli-
fied from pBACe3.6 (GenBank Accession No. U80929) 
[19] using primers CmF (5′-GAATTCGATCGGCACG-
TAAGAGGTTC-3′) and CmR (5′-AAGCTTGGGCAC-
CAATAA CTGCCTTA-3′) which resulted in a PCR 

product of 788 bp. The purified Cm resistance gene cassette 
was then ligated into pGEM-T vector (Promega, USA) and 
transformed into Top-10 E. coli competent cells and plated 
on Luria–Bertani (LB) plate supplemented with 30 µg/mL 
Cm. The pGEM-T::Cm was extracted from positive clones 
using the PureLink Quick Plasmid Miniprep Kit (Invit-
rogen, USA) and subjected to restriction digestion with 
EcoRI and HindIII before cloning into EcoRI and HindIII-
digested EZ-Tn5 pMOD-3<R6  Kγori/MCS>  to yield the 
EZ-Tn5-Cm transposon vector. The vector was then trans-
formed into E. coli Top-10 competent cells and plated on 
LB plate supplemented with 30 µg/mL Cm. Positive clones 
were selected and plasmids were extracted. The EZ-Tn5-
Cm transposon region was amplified by PCR using prim-
ers PCRFP (5′-ATTCAGGCTGCGCAACTGT-3′) and 
PCRRP (5′-GTCAGTGAGCGAGGAAGCGGAAG-3′) 
and purified. EZ-Tn5 Transposomes was prepared by 
adding 2 µL of EZ-Tn5 transposon DNA, 4 µL of EZ-Tn5 
transposase and 2 µL of glycerol. The reaction mixture was 
incubated for 30  min at room temperature. The resulting 
mixture was stored at −20 °C and used for mutagenesis of 
C. jejuni.

Preparation of electrocompetent cells
Electrocompetent C. jejuni strains were prepared as 
described previously [20]. Briefly, bacteria from a lawn 
grown overnight on Skirrow agar were harvested into 
2 mL Mueller–Hinton (MH) broth, pelleted at 3220×g for 
20 min at 4  °C, and resuspended in 2 mL ice-cold wash 
buffer (272 mM sucrose, 15% glycerol). The washing step 
was repeated for three times and the bacteria were then 
resuspended in 1 mL ice-cold wash buffer. Cells were ali-
quoted in 100 μL and stored at −80 °C until needed.

Electroporation conditions
Electroporation was performed as described previously 
[20]. One milliliter of the transposome was added into 
100 μL C. jejuni electrocompetent cells in a 0.2 cm elec-
troporation cuvette on ice and gently mixed. Electropora-
tion was performed with a Bio-Rad MicroPulser (2.5 kV, 
600 Ω, and 10 μF) (Bio-Rad, USA). Following electropo-
ration, 200 μL of SOC broth (2% Bacto Tryptone (Difco, 
US), 0.5% yeast extract (Difco, US), 10 mM NaCl, 2.5 mM 
KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) was 
added to the electroporated cells and the mixture spread 
onto Campylobacter blood-free selective agar plates. 
Plates were incubated for 24 h microaerobically, and bac-
teria were then harvested into 1  mL NB2 broth, centri-
fuged at 10,000×g for 2 min, resuspended in 100 μL NB2 
broth, and plated onto Campylobacter blood-free selec-
tive agar containing 30  µg/mL Cm to select for trans-
formants. Colonies were individually patched to fresh 
Campylobacter blood-free selective agar-Cm plates to 
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confirm resistance, followed by inoculation into NB2 
broth, growth for 2 days under microaerobic conditions, 
and storage at −80 °C in 15% glycerol.

Assessment of biofilm formation
The ability of the original C. jejuni strains and transpo-
son mutants to form biofilm was determined in 96-well 
polystyrene microtiter plates (TPP®, Switzerland) using 
Mueller–Hinton broth (MHB) and Brucella broth under 
microaerobic and aerobic conditions by the methods 
described by Skyberg et al. [21] with slight modifications. 
Briefly, the strains were grown as sessile cultures under 
microaerobic conditions for 48  h at 37  °C. After incu-
bation, the colonies on the agar plates were harvested 
by suspending in 5 mL of phosphate buffer saline (PBS; 
1st BASE, Singapore). The cells were then diluted 1:10 
in MHB or Brucella broth (~107 CFU/mL) and a 200 µL 
aliquot of each dilution was transferred to a microtiter 
plate well. Six wells per microtiter plate were used for 
each strain and a further six wells were filled with uni-
noculated medium which serve as negative control. The 
plates were then incubated at 37  °C for 6  days under 
microaerobic or aerobic conditions without shaking. The 
assays were performed in triplicate. The wells were then 
examined using the crystal violet and the absorbance was 
determined using a microplate reader (Tecan, Switzer-
land) at 550 nm.

Determination of EZ‑Tn5‑Cm insertion sites
Genomic DNA was extracted from the mutants impaired 
in biofilm formation using Wizard Genomic DNA Puri-
fication Kit (Promega, USA). This DNA was used as the 
template for a single-primer PCR amplification known 
as RATE (Random Amplification of Transposon Ends) as 
described previously [15]. PCR amplification was carried 
out using SqFP (5′-GCCAACGACTACGCACTAGCC 
AAC-3′), which binds within the transposon. The PCR 
conditions used were as follow: 30 cycles at 95 °C for 30 s, 
55 °C for 30 s, and 72 °C for 3 min; 30 cycles at 95 °C for 
30 s, 30 °C for 30 s, and 72 °C for 2 min; and 30 cycles at 
95  °C for 30  s, 55  °C for 30  s, and 72  °C for 2 min. The 
amplified PCR product was then sent for sequencing 
and the transposon insertion site was identified by Basic 
Local Alignment Search Tool (BLAST) analysis of the 
DNA sequence immediately flanking the mosaic end of 
the transposon [22].

Statistical analysis
Biofilm formation assays were performed in triplicate 
using independently grown cultures. All the statistical 
analysis was performed using SPSS 18 software. Data 
obtained was analyzed using one way analysis of variance 
(ANOVA) and pairwise comparisons of the means were 

conducted using Tukey’s post hoc test at a 95% confi-
dence level.

Results and discussion
Transposon mutagenesis of C. jejuni
In order to identify the genes that are involved in biofilm 
formation, an attempt was made to construct a transpo-
son library for each of eight C. jejuni strains by transpo-
son mutagenesis and the ability of individual mutants to 
form biofilm was then screened and compared to that of 
the original strain. A stable transposome complex con-
sisting of EZ-Tn5 transposons containing a chloram-
phenicol resistance cassette (EZ-Tn5 <Cm> transposon) 
was constructed in  vitro in the absence of Mg2+. The 
transposomes formed were then electroporated into C. 
jejuni competent cells where the transposase was acti-
vated by intracellular Mg2+ leading to random inser-
tion of the transposon into C. jejuni genomic DNA. This 
in  vivo protocol successfully generated CmR mutants in 
C. jejuni 2868. The number of mutants generated was, 
however, very low with only 37 mutants recovered. Out 
of these 37 mutants, only 22 remained viable when resus-
citated from frozen stock. No mutant was generated from 
the other seven strains used in this study. These results 
suggest that the efficiency of transposon mutagenesis is 
strain-dependent. A similar finding was reported in a 
previous study where the EZ-Tn5 transposon system suc-
cessfully generated a large number of mutants in C. jejuni 
81–176 but a low number or no mutants were obtained 
from other C. jejuni strains including the C. jejuni ATCC 
33291 strain used in our study [16]. This result may be 
due to the presence of specific restriction–modification 
systems in selected C. jejuni strains, especially the wild 
type strains used in this study. Previous studies have 
shown that the EZ-Tn5 transposon system successfully 
generated transposition mutants effectively in different 
bacterial species including Escherichia coli [23], Salmo-
nella enterica serovar Typhi [24], Neisseria gonorrhoeae 
[15] and Bacteroides fragilis [25]. The results obtained 
from this study, however, indicate that the potential for 
application of in vivo transposon mutagenesis in Campy-
lobacter strains might be limited due to this strain-
dependent transposition efficiency [16].

Screening of biofilm forming ability of the mutant strains
All the 22 mutant strains generated from strain 2868 were 
screened for biofilm formation and the results are shown 
in Fig. 1. In general, levels of biofilm formed in MH broth 
were significantly higher (p < 0.05) as compared to Bru-
cella broth as shown in the results of one way ANOVA 
with Tukey’s post hoc test presented in Additional file 1: 
Table S1. In addition, most of the mutant strains showed 
no significant difference (p  >  0.05) in biofilm formation 
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when incubated in MH under different oxygen condi-
tions. Nevertheless, 4 out of 22 strains showed a sig-
nificant decrease (p  <  0.05) while one strain showed a 
significant increase (p < 0.05) in biofilm formation under 
aerobic condition as compared to microaerobic condi-
tion. This suggested that the gene that was disrupted in 
these mutant strains may be involved in the oxidative 
stress response. On the other hand, all the strains showed 
no significant difference (p  >  0.05) in biofilm formation 
when incubated under aerobic or microaerobic condi-
tions in Brucella broth. This may be due to the pres-
ence of sodium bisulfite in Brucella broth which acts as 
a reducing agent and protects the bacteria from oxygen 
stress when incubated under aerobic condition. This is 
consistent with previous study which showed that the 
presence of supplement containing reducing agents, for 
example sodium metabisulphite and sodium pyruvate, 

minimized the conversion of rods to coccoid forms of C. 
jejuni, which occur when conditions are unfavourable for 
its growth [26].

Determination of genes disrupted in the mutants 
with decreased biofilm formation
Since most of the strains showed higher biofilm for-
mation in MH under microaerobic conditions, a one 
way ANOVA was carried out to establish if the bio-
film forming ability of the mutant strains was differ-
ent as compared to the wild type strain under these 
conditions. The results showed that 14 out of the 22 
mutant strains (strains 2.1, 2.4–2.7, 2.9, 2.11–2.13, 2.17, 
2.19–2.22) showed significantly lower (p  <  0.05) bio-
film formation as compared to the wild type strain. The 
reduction in biofilm formation was, however, low as 
compared to other studies that investigated the role of 
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Fig. 1  Comparison of biofilm formation by Campylobacter jejuni 2868 mutant strains, strains 2.1–2.22 obtained through transposon mutagenesis 
using the EZ-Tn5 Transposome mutagenesis system, grown in a Mueller–Hinton Broth; b Brucella Broth and incubated for 6 days at 37 °C. The nega-
tive is uninoculated medium. All results are presented in mean ± SD where n = 3; Symbol asterisk indicates significant difference on biofilm formed 
under microaerobic and aerobic conditions within the same bacterial strain where p < 0.05
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specific genes on biofilm formation by C. jejuni through 
construction of different mutant strains [10, 11]. This 
might be due to the originally low biofilm formation 
in the wild type strain (strain 2868) used in our study, 
which may be a common occurrence among C. jejuni in 
general [27].

The insertion site of EZ-Tn5  <Cm>  transposon in the 
14 mutants above were identified through RATE (Ran-
dom Amplification of Transposon Ends) PCR and the 
sequences obtained were subjected to BLAST and were 
compared to the available C. jejuni NCTC 11168 genomic 
sequence [28] to identify the mutated gene. The loca-
tion of transposons in 4 out of the 14 mutants occurred 
in coding regions and the genes disrupted are listed in 
Table 1. It is likely that the transposons inserted in non-
coding regions in the other mutants as no genes could be 
identified.

Genes disrupted in mutants displaying decreased 
biofilm formation were identified as CmeB (multid-
rug efflux system transporter protein synthesis), NusG 
(transcription termination and anti-termination) and 
a putative transmembrane protein (involved in mem-
brane protein function). Several studies have shown 
that defective in efflux pump activity impairs biofilm 
formation in different bacterial species (Escherichia coli, 
Klebsiella, Salmonella, Pseudomonas aeruginosa and 
Staphylococcus aureus) [29–32]. This may also contrib-
ute to lower biofilm formation in mutant strain 2.9 in 
this study. The presence of hydrophobic components on 
the surface of bacterial cells will contribute to cell sur-
face hydrophobicity and promote bacteria adhesion and 
contribute to biofilm formation [33, 34]. Similarly, cap-
sular polysaccharides (CPS) and lipooligosachharides 

(LOS) will affect cell surface hydrophobicity, auto-
aggregation and attachment of many Campylobacter 
strains to cell lines and abiotic surfaces [35–37]. This 
may indicate that the gene involved in membrane pro-
tein synthesis may affect the cell integrity of the outer 
membrane of mutant strain 2.19 which in turn may 
affect its biofilm formation.

Overall, our study indicated that the utilization of 
an in  vivo transposon mutagenesis approach using 
the EZ::TN5 system could, in principle, identify genes 
involved in biofilm formation by C. jejuni. The role of 
these genes in biofilm formation is, at this stage, only 
putative, and further studies, including gene comple-
mentation, need to be carried out to confirm their role. 
The strains and growth conditions used in this study for 
biofilm formation were established as suitable in previ-
ous studies [38, 39], however, a combination of different 
strains and growth conditions may result in higher bio-
film formation and potentially different outcomes.

Notably, our study also showed that the EZ::TN5 sys-
tem was unable to generate mutants from most of the 
strains used. Furthermore, the relative inefficiency in 
generating mutants in strains in which this can occur 
means that repeating the process until sufficient mutants 
are gathered may be required. This suggested that the 
efficiency of this transposon mutagenesis approach was 
strain dependent and its application is likely limited for 
use in C. jejuni.
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