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Abstract: We demonstrated spectral reflectometers for two types of reflectances, absolute and relative,
of diffusely reflecting surfaces in directional-hemispherical geometry. Both are built based on the
integrating sphere method with a Fourier-transform infrared spectrometer operating in a vacuum.
The third Taylor method is dedicated to the reflectometer for absolute reflectance, by which absolute
spectral diffuse reflectance scales of homemade reference plates are realized. With the reflectometer
for relative reflectance, we achieved spectral diffuse reflectance scales of various samples including
concrete, polystyrene, and salt plates by comparing against the reference standards. We conducted
ray-tracing simulations to quantify systematic uncertainties and evaluated the overall standard
uncertainty to be 2.18% (k = 1) and 2.99% (k = 1) for the absolute and relative reflectance measurements,
respectively.

Keywords: mid-infrared; total reflectance; metrology; primary standard; 3rd Taylor method

1. Introduction

Spectral diffuse reflectance in the mid-infrared (MIR) region is now of great interest
in many applications such as thermal imagers, solar panels, and some optical techniques
for military camouflage [1–4]. Thermal imagers measuring temperature require target
emissivity as a calibration parameter, where the emissivity can be simply converted from
the diffuse reflectance in the MIR region with the help of Kirchhoff’s law [5–7]. Passive
radiative cooling of solar panels is an easy way to achieve self-adaptive cooling, for which
a low reflectance of solar panel surfaces in the MIR region is preferred [8,9]. As for military
camouflage, one recent focus is on finding a way to decrease the emissivity (increase the
reflectance) of personnel and equipment surfaces in the MIR region for protection from
attack at night [10].

Widely used as a primary standard in the visible to near-infrared regions, an integrat-
ing sphere-based reflectometer is likewise the most feasible instrument to measure diffuse
reflectance in the MIR region [11–16]. The working principle of the instrument is either
the Sharp–Little method or the third Taylor method in many cases [17–21]. Regardless
of which method is taken, two assumptions always follow: that the reflectance of the
sample under test (SUT) is the same as that of the integrating sphere inner wall (ISW),
and that the exposed SUT area on the ISW is small enough to compare to the area of the
entire ISW [22]. However, due to the former assumption, a SUT with unknown reflectance
needs a reflectance comparator to measure its reflectance via comparison with a reference
standard [23].

In this work, we first built a primary reflectometer for absolute reflectance in the
MIR region (2–14 µm) in directional-hemispherical geometry. The primary standard is
an integrating sphere-based reflectometer using the third Taylor method. The integrating
sphere is made of aluminum (Al), and the ISW is covered by plasma-sprayed Al followed
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by gold plating to obtain a diffusely reflecting surface in the MIR region [24]. We then
made another reflectometer (comparator) for measuring relative reflectance following the
same fabrication process as that of the primary standard. Each reflectometer is placed in
a vacuum chamber with a Fourier-transform infrared spectrometer (FTIR). The spectral
diffuse reflectance scale in the MIR region is achieved using the primary reflectometer,
where a homemade diffuse reflector is a transfer artifact used as a reference to calibrate
the reflectance of various kinds of SUTs via the comparator. To validate our measurement
capability, our reference scale is compared to the one measured by the National Institute of
Standards and Technology (NIST), and we find the Korea Research Institute of Standards
and Science (KRISS) and NIST scales to agree well, within 1.2%. Lastly, we conducted ray-
tracing simulation to quantify systematic uncertainties. The overall standard uncertainty is
2.18% (k = 1) for absolute reflectance and 2.99% (k = 1) for relative reflectance.

2. Primary Reflectometer

The reflectometer for absolute reflectance includes an integrating sphere, as shown
in the schematic diagrams in Figure 1, with three openings (input, reflector, and detector
ports). Absolute reflectance measurement is carried out according to the third Taylor
method, as follows: First, light is launched through the input port to the ISW, marked as
A in Figure 1a, and the spectral radiance P1(λ) of the area (FOV: field of view) observed
by the detector is measured. Then, light is launched to a standard diffuse reflector (SDR)
mounted at the reflector port, and spectral radiance P2(λ) is measured.
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Figure 1. (a) Top view and (b) side view schematics of the absolute reflectometer integrating sphere. (FOV: field of view, A:
area where input beam first illuminates, SDR: standard diffuse reflector, COR: center of rotation).

At this stage, the light reflected from the SDR coming directly into the FOV is screened
by a baffle, as shown in Figure 1b. The absolute spectral reflectance RSDR(λ) can then be
calculated by simple math as follows [22],

RSDR(λ) =
P2(λ)

P1(λ)
× A0

A0 − A1 − A2
(1)

where A0, A1, and A2 are the areas of the entire ISW, the input port, and the detector port,
respectively. As mentioned before, Equation (1) is derived based on two assumptions:
that the reflectance of the SDR is the same as that of the ISW, and that the exposed area
of the SDR is small enough to compare to the entire ISW. We prepared a number of SDR
candidates made in the same way as the ISW. Reflection characteristics of their surfaces were
tested; see Section 5 for the results. With the integrating sphere, we built a reflectometer for
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absolute reflectance as shown in Figure 2. The input beam goes into the integrating sphere
after two mirrors, a plane mirror and a parabolic mirror with a focal length of 229 mm.
The input beam alternately illuminates the wall (A) and the SDR by rotating the integrating
sphere at the center of rotation (COR) (Figure 1a). The integrating sphere is installed on a
rotational stage with an angle of rotation of ± 8◦; thus, the absolute reflectance is measured
in 8◦/D geometry [23]. The inner diameters of the integrating sphere, the input port,
the reflector port, and the FOV are about 150, 43, 25, and 20 mm, respectively. The FOV is
defined by the periscope and the window of the MCT detector used. Signals measured by
the detector are transformed into spectrally resolved radiance by an FTIR.
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Figure 2. (a) Side view and (b) rear view schematic images of the absolute reflectometer.

3. Relative Reflectometer

Since absolute reflectance measurement can be carried out only for a reflector whose
reflectance is the same as the sphere wall, relative reflectance measurement is needed for
a reflector with presumably different reflectance from the sphere wall. Figure 3 shows
schematic diagrams of the integrating sphere for the measurement of relative reflectance.
Compared to the integrating sphere in the absolute reflectometer, the sphere in this case
has four openings (input, sample, reference, and detector ports), and the baffle is wider
to screen some of the light reflected from both the reference and the SDR directly coming
into the FOV, as shown in Figure 3. The procedure for relative reflectance measurement
is as follows. First, light is launched to the sample through the input port, as shown in
Figure 3a, and the spectral radiance PA(λ) of the area at the bottom of the sphere observed
by the detector is measured. Then, light is launched to the SDR mounted at the reference
port, and the spectral radiance PB(λ) is measured. The relative reflectance R(λ) is then
calculated as follows [23]:

R(λ) =
PA(λ)

PB(λ)
× RSDR(λ) (2)
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Figure 3. (a) Top view and (b) side view schematics of the relative reflectometer integrating sphere. (FOV: field of view,
SUT: sample under test, SDR: standard diffuse reflector, COR: center of rotation).

With this integrating sphere, we built a reflectometer for relative reflectance, as shown
in Figure 4. The input beam again enters the integrating sphere after two mirrors, which are
the same as in the absolute reflectometer (a plane mirror and a 229-nm-focal-length
parabolic mirror). The input beam alternately illuminates the SUT and the SDR by rotation
at the COR (Figure 3), and the relative reflectance is measured in 8◦/D geometry [15].
The inner diameters of the integrating sphere, the input port, the sample port, the reference
port, and the FOV are about 150, 43, 25, 25, and 20 mm, respectively.
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4. Overall Measurement System

Optical measurements in the MIR region must always take into account atmospheric
molecules in the measurement environment because of their strong spectral absorptions
that can distort the measurement results. Purging the measurement system with dry,
clean air has been done in reflectance measurements by many previous researchers [23,25,26].
Since even a small portion of molecules unremoved from the system could greatly affect
measurement uncertainty, the purging flow in the system has to be designed very carefully.
With integrating spheres as in the present work, though, purging is typically ineffective.
Therefore, we decided to place the entire measurement system into a vacuum chamber with
an FTIR capable of vacuum mode operation (model: Vertex 80v, Bruker). The entire system
is shown in Figure 5a. We built the vacuum chambers with stainless steel (SUS304) plates
of 20 mm thickness, where each reflectometer is installed inside. The SUT and SDR can
be taken in and out through the window, as shown in Figure 5b. Liquid nitrogen (LN2) is
supplied to the MCT detector through the chamber with a flexible bellows joint; we linked
another flexible bellows joint to the MCT detector to lead the evaporated LN2 out, as shown
in Figure 5c. The pressure was lowered to 10−3 bar by a rotary vacuum pump.
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5. Ray-Tracing Simulation about Systematic Uncertainty of Primary Reflectometer

The integrating sphere-based reflectometers here are accompanied by the assumption
that the ISW has perfect diffuse reflection (Lambertian reflection) [27]; this, however, is hard
to achieve in reality. In particular, realizing Lambertian reflection in the MIR region is
more technical than in the visible and near-IR regions where PTFE or BaSO4 are widely
used [24]. To introduce highly diffusive reflection in the MIR range to the ISW, we applied
plasma-sprayed Al to the ISW followed by gold plating. Still, the diffuse reflection from
the ISW is not as perfect as PTFE or BaSo4. With the fact that imperfect diffuse reflection
could be the main source of uncertainty, we conducted ray-tracing simulation using a
commercially available tool to quantify the systematic uncertainties arising from the use
of an integrating sphere with such low diffusivity. Diffusivity here is defined by the ratio
of the power of the diffusively reflected light to the total power of the reflected light [28].
For Lambertian reflection, diffusivity is one, and for perfect specular reflection, diffusivity
is zero. The control parameters in the simulations are the diffusivity and reflectance of the
ISW. Figure 6 shows a three-dimensional (3D) image of the integrating sphere for absolute
reflectance measurement.
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Figure 6. Absolute reflectometer virtually built in 3D space for ray-tracing simulation. The vertical
and lateral black arrows at the center of area A show the direction of misalignment in the simulation.

In the simulation, the ISW reflectance is set to 0.95, and the SDR reflectance is calcu-
lated from the ratio of the number of rays to the detector to the total number of input rays.
We set the number of input rays to 108. Simulations were run for different diffusivities
and reflectances of the ISW, while the SDR diffusivity was fixed at 1.0. The calculated SDR
reflectance is plotted as a function of diffusivity for different reflectances in Figure 7a. It can
be seen that when the ISW has Lambertian reflection (diffusivity is one), the SDR reflectance
is calculated to be approximately 0.95, as it was initially set. However, as ISW diffusivity
decreases, SDR reflectance becomes unreliable, varying with ISW reflectance [29]. We also
investigated the influence that angular tilts of the input beam had on SDR reflectance.
Figure 7b,c plots SDR reflectance as a function of vertical and horizontal shifts of the input
beam, respectively. It is obvious that a slight shift of the input beam has almost nothing to
do with SDR reflectance if the ISW has Lambertian reflection, which is also revealed by
the simulation. However, as the ISW diffusivity dips below one, SDR reflectance is under-
or over-estimated. This is because some portion of the reflected light off the ISW exits the
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sphere through the input port before it strikes the detector or strikes the detector before
sufficiently reflecting off the ISW. We therefore measured ISW diffusivity to quantify the
uncertainties stemming from low ISW diffusivity. The measurement was made for the ISW
sample by using 2D bidirectional reflectance distribution function (BRDF) measurement
instrument at 2 µm wavelength.
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The sample was illuminated at normal incidence, and the light reflected from the
sample was measured with an angle of 10◦ to 85◦ from the normal incidence. The distance
between the detector, and the sample was 150 mm. Figure 8 shows the BRDF measurement
results, from which we calculated ISW diffusivity assuming that the specularly reflected
light from the sample is within an angle of 20◦.
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Figure 8. Measured bidirectional reflectance distribution function (BRDF) of the standard diffuse
reflector (SDR) at 2 µm wavelength with the same reflection characteristics as the integrating sphere
inner wall (ISW).

Calculation was made in 3D reflection configuration, which assessed the ISW diffusiv-
ity to be 0.95. Accordingly, systematic uncertainties caused by the 0.95 ISW diffusivity and
presumably 4 mm lateral shift were estimated to be about 2% (k = 1).

6. Reflectance Measurements and Uncertainty Evaluation

The reflectometer for absolute reflectance in directional-hemispherical geometry op-
erates at vacuum with a pressure of 10−3 bar. According to the measurement procedure
mentioned in Section 2, the spectral radiance of the FOV was measured when the ISW was
illuminated, P1 (λ), and then when the SDR was illuminated, P2 (λ). The measurement
was repeated in the sequence P1 (λ), P2 (λ), P1 (λ), P2 (λ), and P1 (λ) to compensate for the
power drift of the light source and the sensitivity variation of the MCT detector during the
measurement. The first and last P1 (λ) were averaged from 1000 measurements, while the
middle three P2 (λ), P1 (λ), and P2 (λ) were averaged from 2000 measurements. We then
repeated the whole sequence once more. All P1 (λ) and P2 (λ) were averaged when put into
Equation (1). Figure 9 shows the SDR spectral reflectance measured in turn by NIST and by
KRISS, plotted in black and red lines, respectively. The reflectance value measured by NIST
is traceable to the NIST primary reflectometer based on the absolute method [30]. The two
results are consistent, within 1.2%. The NIST reported their standard uncertainty to be
1.6% (k = 1), and our standard uncertainty is about 2.18% (k = 1). The related uncertainty
components of our measurement are tabulated in Table 1. Drift of the light source power
and MCT sensitivity was monitored for 1 h, and their uncertainties were evaluated from the
standard deviation of the results. The overall standard uncertainty includes ISW reflectance
and diffusivity, vertical and horizontal shifts of the input beam, power drift of the light
source, linearity of the MCT, sensitivity drift of the MCT, and repeatability.
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Table 1. Uncertainty factors and evaluated overall uncertainty for absolute reflectance measurement (ISW diffusivity is
valid at 2 µm; PDF: probability distribution function; DOF: degree of freedom)

Description Uncertainty
Components

Standard
Uncertainty PDF Sensitivity

Coefficient Contribution DOF

ISW reflectance ur(RSDR)ISW 1.6% Standard Ray-tracing
simulation 0.2% ∞

Vertical shift ur (RSDR)vertical 1 mm Square Ray-tracing
simulation 0.1% ∞

Horizontal shift ur (RSDR)horizontal 1 mm Square Ray-tracing
simulation 0.5% ∞

ISW diffusivity ur (RSDR)diffusivity 0.1 Standard Ray-tracing
simulation 0.5% ∞

Light source power drift ur (P1)source 0.5% Standard 0.95
0.47% ∞

ur (P2)source 0.47%

MCT linearity ur (P1)linear 0.58% Square 0.95
0.55% ∞

ur (P2)linear 0.55%

MCT sensitivity drift ur (P1)sensitivity 0.87% Square 0.95
0.82% ∞

ur (P2)sensitivity 0.82%

Repeatability ur (P1)rep 1% t 0.95
0.95%

4ur (P2)rep 0.95%

Overall Uncertainty Standard 2.18% 55.5

We then measured the spectral diffuse reflectance of various samples using the reflec-
tometer for relative reflectance. The three samples were a concrete plate, a polystyrene
plate, and a salt plate. According to the measurement procedure mentioned in Section 3,
the spectral radiance of the FOV was measured when the sample was illuminated, PA(λ),
and then when the SDR was illuminated, PB(λ). The measurement was repeated in the
sequence PA(λ), PB(λ), PA(λ), PB(λ), and PA(λ) as in the absolute reflectance measurement.
Also like the absolute measurement procedure, in this case the first and last PA(λ) were
averaged from 1000 measurements, and the middle three PB(λ), PA(λ), PB(λ) were averaged
from 2000 measurements, with the whole sequence repeated once more. All PA(λ) and
PB(λ) were averaged when put into Equation (2). Figure 10 shows the spectral diffuse re-
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flectances of the samples from 2 µm to 14 µm. The measurement uncertainty was evaluated
as 2.99% (k = 1); the uncertainty components are tabulated in Table 2.
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Figure 10. Spectral diffuse reflectance of three samples measured by the reflectometer for
relative reflectance.

Table 2. Uncertainty factors and evaluated overall relative uncertainty for relative reflectance measurement (ISW diffusivity
is valid at 2 µm; PDF: probability distribution function; DOF: degree of freedom)

Description Uncertainty
Components

Standard
Uncertainty PDF Sensitivity

Coefficient
Contribution

(Relative) DOF

SDR reflectance uncertainty ur(RSDR) 2.07% Standard 1 2.07% ∞

Light source power drift ur(PA)source 0.5% Standard 1
0.5% ∞

ur(PB)source 0.5%

MCT linearity ur(PA)linear 0.58% Square 1
0.58% ∞

ur(PB)linear 0.58%

MCT sensitivity drift ur(PA)sensitivity 0.87% Square 1
0.87% ∞

ur(PB)sensitivity 0.87%

Repeatability ur (PA)rep 1% t 1
1%

4ur (PB)rep 1%

Overall Uncertainty Standard 2.99 159.9

7. Conclusions

In conclusion, we built two reflectometers for spectral diffuse reflectance in the MIR
range in directional-hemispherical geometry: one for absolute reflectance and one for rela-
tive reflectance. Each reflectometer was put in a vacuum chamber with an FTIR installed
to obtain spectral radiance information. We also ran simulations to quantify the system-
atic uncertainties of each reflectometer using a ray-tracing method. The spectral diffuse
reflectance scale of the SDR was realized by using the reflectometer for absolute reflectance,
and its relative standard uncertainty was estimated to be 2.18% (k = 1). The measurement
capability was validated by comparison with the NIST measurement result, which showed
a very strong agreement within less than 1.2%. The spectral diffuse reflectance of three dif-
ferent SUTs was calibrated against the SDR using the reflectometer for relative reflectance,
with a relative standard uncertainty of about 2.99% (k = 1).
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