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ABSTRACT

The benefit of integrating batches of genomic data
to increase statistical power is often hindered by
batch effects, or unwanted variation in data caused
by differences in technical factors across batches. It
is therefore critical to effectively address batch ef-
fects in genomic data to overcome these challenges.
Many existing methods for batch effects adjustment
assume the data follow a continuous, bell-shaped
Gaussian distribution. However in RNA-seq studies
the data are typically skewed, over-dispersed counts,
so this assumption is not appropriate and may lead
to erroneous results. Negative binomial regression
models have been used previously to better capture
the properties of counts. We developed a batch cor-
rection method, ComBat-seq, using a negative bino-
mial regression model that retains the integer na-
ture of count data in RNA-seq studies, making the
batch adjusted data compatible with common differ-
ential expression software packages that require in-
teger counts. We show in realistic simulations that
the ComBat-seq adjusted data results in better sta-
tistical power and control of false positives in differ-
ential expression compared to data adjusted by the
other available methods. We further demonstrated in
a real data example that ComBat-seq successfully
removes batch effects and recovers the biological
signal in the data.

INTRODUCTION

Genomic data are often produced in batches due to logis-
tical or practical restrictions, but technical variation and
differences across batches, often called batch effects, can

cause significant heterogeneity across batches of data (1).
Batch effects often result in discrepancies in the statistical
distributions across data from different technical processing
batches, and can have unfavorable impact on downstream
biological analysis. The presence of batch effects often re-
duces the benefits of integrating batches of data to increase
the inferential power to discover relevant biology from the
combined data.

Batch effects often cannot be fully addressed by nor-
malization methods and procedures. The differences in the
overall expression distribution of each sample across batch
may be corrected by normalization methods, such as trans-
forming the raw counts to (logarithms of) CPM, TPM or
RPKM/FPKM, the trimmed mean of M values (TMM)
(2), or relative log expression (RLE) (3). However, batch
effects in composition, i.e. the level of expression of genes
scaled by the total expression (coverage) in each sample,
cannot be fully corrected with normalization. An example
of composition batch effects was provided in microarray
data (1), showing that while the overall distribution of sam-
ples may be normalized to the same level across batches,
individual genes may still be affected by batch-level bias.

Many methods have been proposed to address batch ef-
fects in RNA-seq studies. For example, ComBat (4) remains
one of the most popular batch effect adjustment methods
when the effects come from known sources. For heterogene-
ity from unknown sources, SVASeq (5) and RUVSeq (3) are
commonly used. Methods designed for specific downstream
tasks have also been proposed, including our own work us-
ing reference batches for biomarker development and train-
ing (6). For differential expression, many common methods
or procedures (e.g. edgeR (7) and DESeq?2 (8)) suggest to
include batch variables as covariates in the linear models
behind these methods to account for the impact of batch.

Despite the established progress, there are still gaps in
batch adjustment methodology for RNA-seq data which
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need to be bridged. Often times, batch effect adjustment
methods do not adequately model the complexity of batch-
to-batch heterogeneity, do not directly provide adjusted
data with batch effects removed, or do not preserve the
integer nature of counts in the adjusted data, despite the
requirement of software such as edgeR and DESeq2 that
specifically require untransformed count matrices as inputs.
This results in an inconsistency in the analysis pipeline of
RNA-seq studies, as batch corrected data cannot be used as
inputs for these differential expression software. For these
practical issues, it is favorable to develop a method which
generates adjusted data and is able to preserve the count
nature of data.

More importantly, many popular adjustment methods,
including ComBat, assume Gaussian distributions for the
underlying distribution of the data, which is not an appro-
priate distributional assumption for counts. These meth-
ods typically estimate parameters representing differences
in the statistical moments across batches (usually the mean
and the variance). Then they adjust all batches to the same
overall level in these moments. Such adjustment does not
preserve integers, and may results in negative values in ad-
justed count matrix, which is difficult to interpret biologi-
cally. In addition, it has been well-established that there ex-
ists a mean-variance dependence in RNA-seq count data
(9). Distributions of counts are skewed and over-dispersed,
i.e. the variance is often larger than the mean of gene expres-
sion and genes with smaller counts tend to have larger vari-
ances. These properties cannot be reflected with Gaussian
distribution, which assumes independent mean and vari-
ance parameters. Negative binomial regression models have
been widely used to model count data in RNA-seq stud-
ies. The Negative binomial distribution has the potential to
describe the skewness and mean-variance relationship ob-
served in count matrices. We propose to extend the original
ComBat framework to RNA-seq studies using negative bi-
nomial regression.

Finally, existing methods may not be flexible enough to
address all types of batch effects. In particular, including
batch variables in software for differential expression may
be sufficient to account for batch effects in the mean expres-
sion. However, since both software assume a single disper-
sion parameter for all samples, variance batch effects is re-
stricted, and completely determined by mean batch effects,
due to the properties of negative binomial modeling. Such
assumption is strong and may not always hold for real data.
Therefore, we propose a more flexible approach to address
batch effects in the variance.

In this paper, we present a batch effect adjustment
method, ComBat-seq, that extends the original ComBat ad-
justment framework to address the challenges in batch cor-
rection in RNA-seq count data. It generates adjusted data
in the form of counts, thus preserving the integer nature of
data. We demonstrate that ComBat-seq adjustment has po-
tential benefits in differential expression compared to the
other adjustment methods, especially when there is a large
variance batch effect in the data.

MATERIALS AND METHODS

We propose ComBat-seq, which uses a negative binomial re-
gression model to estimate batch effects based on the count

matrix in RNA-seq studies. Parameters of the regression
model are estimated using established methods (7,10-11).
With the estimated batch effect parameters, we calculate
‘batch-free’ distributions, i.e. the expected distributions if
there were no batch effects in the data based on the model.
We then adjust the data by mapping the quantiles of the
empirical distributions of data to the batch-free distribu-
tions. Since we assume batch-free distributions to also be
negative binomial, the adjusted data remain integer-valued
and can be used as inputs for popular differential expres-
sion software. See sections below and Figure 1 for details
of ComBat-seq. Finally, one of the advantageous features
of ComBat is the hierarchical empirical Bayes modeling,
which pools information across genes for parameter esti-
mation, making the adjustment robust for data with small
sample sizes and/or outlying values (4). In the ComBat-
seq software, we provide a similar option to share informa-
tion across genes. We also evaluated the method, with de-
tails summarized in Supplementary Information and Sup-
plementary Figure S1.

ComBat-seq model

We define a regression model for each gene. Let the expres-
sion count value for gene g of sample j from batch i be de-
noted by yg;. We assume that y,; follows a negative bino-
mial distribution NB(jugjj, bgi), Where pg; and ¢g; are the
mean and the dispersion parameters. We propose the gene-
wise model:

log pugij = ag + XjBg + Vi + log N;
var(ygij) = Mgij + ¢gi/‘L§rij

where o, denotes the logarithm of expected counts for ‘neg-
ative’ samples. X3, reflects changes to the log of expected
counts due to biological conditions, which is preserved in
the data after adjustment. In this term, X; may be an indica-
tor of the biological condition for sample j, or a continuous
value for a clinical covariate. 8, denotes the corresponding
regression coefficient. N; represents the library size, i.e. total
counts across all genes in sample j. The mean and dispersion
batch effect parameters are denoted by v, and ¢g;, respec-
tively, modeling the effect of batch i on gene g. We estimate
the model parameters, especially batch effect parameters vy 4;
and ¢y, following the established methods in edgeR (7,10
11). Specifically, the mean batch effect parameters -y;s are
estimated with Fisher scoring iteration, implemented in an
optimized way to reduce the computational time. The dis-
persion parameters ¢,; are estimated gene-wise by maximiz-
ing the Cox—Reid adjusted profile likelihood (APL) (11),
and results in non-negative dispersion estimates. Note that
the estimates for mean of expression are not required to be
non-negative, since they are on the log scale. We estimated
the gene-wise dispersion within each batch in ComBat-seq.

ComBat-seq adjustment

After modeling, we obtain estimated batch effect param-
eters Py and qASg,-, as well as the fitted expectation of the
count fig;;. We then calculate parameters for ‘batch-free’
distributions as follows: we assume that the adjusted data
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Figure 1. A diagram for the ComBat-seq modeling and adjustment workflow.

y;; follows a ‘batch-free’ negative binomial distribution
NB(uy;. ¢), where parameters are calculated as

log /’L;j = IOg I:Lgij - );gi
1 R
¢; - Nbatch Z¢gi

Then, the adjusted data yy; is calculated by finding the
closest quantile on the batch-free distribution to the quan-
tile of the original data y,; on the empirical distribution, es-
timated as NB({,;, qﬁgi). Specifically, we find the adjusted
value y;; such that F*(y;;) = P(y* < y;) is closest in abso-
lute value to F(y,;) = P(y < y4ij). Zero counts are mapped to

Adjusted count matrix
S1[s2

g1 |9 (8)
G2 [0 o
G3 |60 [47

i}

Batch-free distribution
for adjusted counts:

Ygi ~ NB(ug;, 65)

zeros. We perform this mapping for every value in the count
matrix, which completes the adjustment.

Simulations

We evaluated the performance of ComBat-seq with simula-
tion experiments consisting of three steps: (i) we simulated
RNA-seq studies with biological conditions and batch ef-
fects, (ii) adjusted the batch differences with ComBat-seq
as well as other available methods and (iii) evaluated the
performance of batch effect adjustment by the impact on
differential expression using the adjusted data.

We used the polyester R package (12) to simulate real-
istic RNA-seq studies, which are in the form of gene-by-
sample count matrices. We designed two biological condi-
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tions and two batches of samples. The polyester package
human genome reference example provides information for
918 genes which we divided them into two groups: group 1
has higher expression in batch 2 and lower in batch 1, while
group 2 has the reversed pattern, higher in batch 1 and lower
in batch 2. This forms a batch effect in the ‘composition’ of
expression as described in the Introduction section, which
cannot be fully addressed by normalization. We assume a
biological variable with two levels, ‘negative (0)” and “posi-
tive (1)°, which can represent ‘control’ and ‘tumor’ samples
in a real dataset, for example. We simulated both upregu-
lated and down-regulated true differentially expressed (DE)
genes in both gene groups with increased expression in the
positive (upregulated) or the negative (downregulated) bio-
logical condition. The remaining genes are only affected by
batch, not by the condition. Differences in the average count
of genes are simulated by specifying fold changes across bi-
ological and batch sample groups using polyester. We also
made the dispersion of batch 2 a number of times larger
than that of batch 1, allowing for different true dispersion
parameters across batches. Supplementary Figure S2 shows
the design we used for simulated data.

We repeated the simulation while varying the level of
mean and dispersion batch differences. Specifically, we
changed the parameters for simulation such that mean of
batch 2 is 1.5, 2 or 3 times that of batch 1. The dispersion
of batch 2 was set to be 2-, 3- or 4-fold of that of batch 1.
Experiments with no mean batch effect or no dispersion dif-
ferences were also included. Results were averaged over 300
repeated simulations under each parameter setting.

Our selected parameters in simulations are consistent
with the degree of batch effect in real data, as summarized
in Supplementary Table S1. Our observed condition signal
(fold change in expression) from real studies range from
1.65 to 3.98, and we specified a biological signal of 2-fold
in simulations. With regard to batch differences in the mo-
ments, we observed mean batch effect to be in the range of
1.62- and 1.88-fold, and variance difference to be in 1.26- to
7.09-fold. Our selected parameters in the simulations align
with the realistic range, suggesting that the results are likely
representative for the expected effect on real data batch ad-
justment.

The batch effects in mean and dispersion (variance) were
adjusted with ComBat-seq, the ‘one-step’ approach, i.e. to
include the batch variable in differential expression linear
models, as well as with SVA-seq and RUV-seq. We also in-
cluded another commonly used method in practice, which
is to transform the count matrix to logCPM, then use the
batch correction methods designed for Gaussian distributed
data, such as the original ComBat method. For SVA-seq,
we computed a single surrogate variable, then included it
as a covariate in downstream differential expression. For
RUV-seq, we used the RUVg method, and randomly sam-
pled 10 genes that we simulated to not respond to the bio-
logical condition, and used them as negative control genes.
We selected only one surrogate/latent variable, to reflect the
design of the simulated study, where we simulated only bio-
logical and batch differences.

Aside from batch adjusted data, we included two addi-
tional experiments for comparison: differential expression
performed on (i) data without simulated batch effects, and

(i1) data with simulated batch differences, but no adjust-
ment. We compared both the statistical power (true positive
rate, TPR) and control of type-I errors (false positive rate,
FPR) in detection using data without batch effects, data
with batch effects before and after different adjustments.

Real data application

We applied the proposed ComBat-seq approach on an
RNA-seq data from a perturbation experiment using pri-
mary breast tissue attempting to profile the activity levels
of growth factor receptor network (GFRN) pathways in re-
lation to breast cancer progression (13,14). We took a sub-
set of experiments, which consists of three batches. In each
batch, the expression of a specific GFRN oncogene was in-
duced by transfection to activate the downstream pathway
signals (different oncogene/pathway in each batch). Con-
trols were transfected with a vector that expresses a green
fluorescent protein (GFP), and GFP controls were present
in all batches. More specifically, batch 1 contains five repli-
cates of cells overexpressing HER2, and 12 replicates for
GFP controls (GEO accession GSE83083); batch 2 con-
tains six replicates of each for EGFR and its correspond-
ing controls (GEO accession GSES59765); batch 3 consists
of nine replicates of each for wild-type KRAS and GFP
controls (GEO accession GSE83083).

Note that this is a challenging study design for batch ef-
fect adjustment: the control samples are balanced across
batches, while each of the 3 kinds of treated cells, with differ-
ent levels of biological signals, is completely nested within
a single batch. A favorable adjustment would pool control
samples from the three batches, while keeping all treated
cells separated from the controls and from each other.

We combined the three batches and performed batch cor-
rection. Among the batch correction methods considered,
only RUV-seq, the original ComBat used on logged and
normalized data and ComBat-seq output adjusted data. We
apply these methods to address the batch effects in the path-
way signature dataset. We compared ComBat-seq with the
other methods, both qualitatively through principal compo-
nent analysis (PCA) and quantitatively with explained vari-
ations by condition and batch.

The ‘one-step’ approach and SVA-seq are not consid-
ered in PCA because they do not generate adjusted data af-
ter batch correction. For RUV-seq, we do not know which
genes are appropriate for negative control genes, unlike
in the simulation studies. Therefore, we used the RUVs
method, which is more robust to the choices of negative
control genes than RUVg (3). We computed the least DE
genes within each batch for the 3 activated pathways (FDR
> (.95), and took the overlapping genes across pathways as
the negative controls.

RESULTS

In the sections below, we justify the necessity of using nega-
tive binomial distribution instead of Gaussian distribution
for count data. We develop and implement ComBat-seq,
and apply the method to the simulated and real data ex-
amples. We then summarize our observations, showing the
potential benefits of ComBat-seq adjustment.



Using appropriate model assumptions for count data

An example demonstrating the weakness of Gaussian-
based models is given in Figure 2. In this example, we simu-
lated a count matrix using polyester (12) with balanced case-
control design and two batches. Figure 2 shows the raw and
batch adjusted counts for a single gene. The control sam-
ples in both batches have low expression, while there is a
case sample in batch 2 with a relatively large count (over
30). When estimating the differences in mean across batch,
due to the sample with the large count in the second batch,
the mean of the second batch is estimated to be larger than
that of batch 1. If we apply Gaussian-based batch adjust-
ment which brings the mean to the same level, control sam-
ples in the second batch will be adjusted to negative val-
ues, while counts in the first batch will be increased. This
results in a significant artificial difference between control
samples from the two batch after correction (P = 0.0033).
These observations demonstrate the potential issue of ap-
plying batch correction method using Gaussian distribution
on count data. A more appropriate model for integer counts
would avoid such limitations.

We then applied the ComBat-seq method, which assumes
negative binomial distributions for the underlying data. As
shown in Figure 2, the adjusted data do not contain nega-
tive values or the false significant result between the con-
trol samples of the two batches. This suggests that the
negative binomial assumption is robust to outliers such
as these and indeed addresses the limitations mentioned
above.

Simulations

We evaluated ComBat-seq and compared its performance
with other available approaches in our simulation studies
as described in the Method section. Results comparing all
batch adjustment methods under different settings of degree
of batch effects are summarized in Figure 3.

Having batch effects in the data causes decrease in both
true and false positive rates, compared to data without
batch effects (FPR: 0.048, TPR: 0.96). For example, hav-
ing only batch effects in the mean of at 1.5-fold but no dis-
persion differences reduces FPR to 0.028, and TPR to 0.94.
Having a 2-fold dispersion batch effect but no mean batch
effect results in a 0.046 FPR and a 0.88 TPR.

ComBat-seq is able to control false positive rates under
0.05 when there are dispersion differences, but for the un-
realistic case where there is no dispersion difference across
batches both ComBat-seq and ComBat on logCPM have
FPRs in the 0.059-0.067 range. Other methods are able to
control the FPR under 0.05 on all cases. Therefore existing
methods, such as including batch as a covariate in the dif-
ferential expression methods, may be sufficient to address
batch effects in the mean. In this case, ComBat-seq which
assumes separate dispersion across batch may be redun-
dant and lead to higher false positives. In all other scenar-
i0s, which are more common in real data, ComBat-seq is
able to control false positive rates. When there are large dis-
persion differences across batch, which often occurs when
combining heterogeneous batches, e.g. from different stud-
ies or profiling platforms, ComBat-seq is more conservative
than the other methods, though almost all methods have
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an appropriate level of false positive control. For example,
when applied on data with no mean batch effect and a 3-fold
dispersion differences, ComBat-seq generates the the most
conservative FPR of 0.039, compared to the other meth-
ods (including batch as a covariate: 0.043, original ComBat
on logCPM: 0.046, RUV-seq: 0.044, SVA-seq: 0.049). The
false positive rates using data adjusted by ComBat-seq fur-
ther decrease as the level of dispersion difference increases
(0.031 at the 4-fold dispersion difference, compared to the
0.039 FPR at the 3-fold difference).

In a realistic range of a 1.5-fold mean batch effect, and
a 2-fold dispersion batch effect, we observed a 0.89 TPR
from ComBat-seq, which is higher than the other meth-
ods (including batch as a covariate: 0.87, original ComBat
on logCPM: 0.85, RUV-seq: 0.83, SVA-seq: 0.87). While
in a more extreme scenario, the benefit of ComBat-seq is
more visible. With a 3-fold mean change and a 4-fold dis-
persion effect, ComBat-seq achieves a 0.73 TPR, at least
6% higher than the other methods (including batch as a co-
variate: 0.67, original ComBat on logCPM: 0.66, RUV-seq:
0.61, SVA-seq: 0.66).

Proportions of simulations where each of the five batch
correction method achieves the highest power or lowest
false positive rates are summarized in Supplementary Fig-
ure S3. Supplementary Figure S3 confirms that as the level
of batch effect increases, ComBat-seq indeed has a much
better chance than the other methods to achieve high de-
tection power, while controlling false positive rates.

Application to the GFRN signature dataset

We applied our ComBat-seq approach to address batch ef-
fects in a real RNA-seq dataset designed to develop path-
way signatures for breast cancer progression and treatment
response (13) as described in the ‘Materials and Methods’
section. Figure 4 shows the scatter plot of samples projected
on the first two principle components in unadjusted data,
and in data adjusted by RUV-seq, ComBat-seq, and using
the original ComBat on logCPM. We observed a strong
batch effect in the unadjusted data, which was not fully ad-
dressed by RUV-seq. For the result in Figure 4, we speci-
fied a single latent factor in RUV-seq. We further note that
increasing the number of latent factors does lead to bet-
ter separation between GFP controls and activated samples
(K = 2, Supplementary Figure S4), but it does not clearly
separate GFP controls from all treated samples, as we see
for ComBat-seq. In the PCA of ComBat-seq adjusted data,
we observed the expected pattern of data if there were no
batch effects, in which the control samples are clustered to-
gether, while the treated samples from three conditions are
scattered at different locations. The effective adjustment of
ComBat-seq is further shown in the boxplot of proportion
of explained variation by condition and batch across genes.
In ComBat-seq adjusted data, variation explained by batch
is greatly reduced compared to that in the unadjusted data.
These results suggest a successful adjustment of batch effect
from ComBat-seq.

Though ComBat-seq does not show clearly improved re-
sults compared to using ComBat on logCPM in this appli-
cation example, we re-emphasize that as shown in the sim-
ulations, using ComBat-seq which preserves integer counts
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Figure 2. Problematic results caused by applying a Gaussian-based batch adjustment on count data. We simulated a count matrix with a balanced case-
control design and two batches. The first panel shows the counts for a simulated gene which is expressed at low levels in most cases and control samples.
However, one case sample in each batch, especially in the second batch, contains a large value. Adjustment based on a Gaussian distribution brings the
mean of the two batches to the same level, causing artificially induced differences across control samples from the two batches (P-value = 0.0033). When

applying ComBat-seq based on negative binomial distribution, the adjusted data
significant difference between control samples from the two batches.

instead of log-transforming the data results in better statis-
tical power in differential expression.

We further evaluated DE genes, comparing treated sam-
ples to pooled GFP controls from the three batches. The
top 100 DE genes for each condition, under each batch ad-
justment situation, are given in Supplementary Data S1-3.
The number of detected DE genes, as well as their compara-
tive statistics are summarized in Supplementary Data S4. In
summary, ComBat and ComBat-seq tend to have relatively
large overlap in DE genes, which is expected because they
use the same underlying linear model specification.

These data were derived using samples from quiescent
human mammary epithelial cells that were transfected
with adenoviruses expressing either one of HER2, EGFR,
KRAS or (in controls) GFP. This means that these spe-
cific genes should clearly be overexpressed in these sam-
ples. As expected, HER2 and KRAS are constantly ranked
at the top do the list in the DE genes for all methods, in-
cluding the unadjusted data. However, due to the batch ef-
fect between GFP controls, EGFR is not detected as DE
in the unadjusted data using an FDR < 0.05. In data ad-
justed by RUV-seq or SVA-seq, EGFR is not detected ei-
ther, regardless of the number of latent factors/surrogate
variables used. In data adjusted by the ‘one-step’ approach,
ComBat and ComBat-seq, EGFR is found to be DE using
an FDR < 0.05. We also looked at the relative percentile
ranking of EGFR in the DE gene list (FDR adjusted P-
values inclded as well): ‘one-step’: ranked 94.3% (FDR =
0.043); ComBat: ranked 26.6% (FDR = 0.0003); ComBat-
seq: ranked 42.3% (FDR = 0.0016). The expression values,
in logCPM, of EGFR is included in Supplementary Figure
S5. Note that SVA-seq and the ‘one-step approach’ do not
generate adjusted data, and therefore, expression of EGFR
is not shown for these two methods.

In addition to the genes mentioned above, we also expect
to see changes in their downstream targets. For example, for
KRAS, we took the genes in RAS signaling pathway (15),
and compared their rankings in the differential expression
analysis results across different batch adjustment methods.

no longer contain the negative values (shown in gray box) or the erroneous

In general, data adjusted for batch effects tend to rank genes
in the RAS signaling pathway higher than the unadjusted
data. In the top 1000 genes, the one-step approach found
25 genes (Fisher’s exact test for enrichment, P = 0.002) and
ComBat-seq found 24 (P = 0.004) of the 222 genes in RAS
signaling pathway. SVA-seq found 21 genes (P = 0.029), fol-
lowed by original ComBat with 20 genes (P = 0.043), and
RUVSeq with 19 genes (P =0.080). There were only 16 RAS
genes found in unadjusted data results (P = 0.306). These
results suggest that batch correction approaches, including
ComBat-seq are able to increase the amount of meaningful
biological knowledge than can be obtained from the data.

DISCUSSION

We developed ComBat-seq to adjust batch effects from
known sources in count data from RNA-seq studies.
ComBat-seq is able to preserve the integer nature of count
data, making the analysis pipeline more compatible for
RNA-seq studies. We showed in simulations that ComBat-
seq generally out-performs other methods in terms of the
impact on downstream differential expression. When vari-
ance batch effect is present in the data, ComBat-seq is able
to achieve better statistical power, while controlling false
positive rates, compared to the other available methods. We
further demonstrated the utility of ComBat-seq in address-
ing batch effect in the GFRN signature dataset, showing its
potential to recover biological signals from data affected by
batch.

ComBat-seq is an extension of the original ComBat ap-
proach. Both methods use similar linear models to describe
gene expression and parameterize the expression with back-
ground level, changes caused by biological condition and
mean and variance batch effect. These parameters are esti-
mated, and used for adjusting batch effect.

The differences in the underlying probabilistic assump-
tion leads to the discrepancies in estimation and adjustment
between ComBat-seq and original ComBat. The original
ComBat assumes Gaussian distribution, which is more sen-
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sitive to outlying data points. Therefore, ComBat uses em-
pirical Bayes shrinkage, pooling information across genes
to generate more robust estimates for gene-wise mean and
variance batch effect. In ComBat-seq, however, data are as-
sumed to follow a Negative Binomial distribution, which
is a more flexible family of models that can better handle
outliers and skewed data. Estimates are directly obtained
from the negative binomial regression model, using stan-
dard Fisher scoring approach. We have shown (in Supple-
mentary Material) that applying empirical Bayes shrinkage
is not necessary for ComBat-seq because the approach is al-
ready sufficiently robust due to the distributional assump-
tion.

An additional difference between ComBat and ComBat-
seq lies in the adjustment approach. ComBat removes batch
effect from the data via standardization, i.e. subtracting
the mean batch effect estimate, and scaling by variance
estimates. This is mathematically equivalent to quantile-
matching for Gaussian data. However, adjusting the quan-
tiles of Negative Bionomial data is not as straightforward
and cannot be accomplished by directly standardizing the
data. Thus, the adjustment method in ComBat-seq resem-
bles quantile normalization, i.e. mapping the empirical dis-
tribution of count data to a expected ‘batch-free’ distribu-
tion. This method ensures that the adjusted data remain in-
teger counts, and thus are compatible as input for down-
stream differential expression software like edgeR and DE-
Seq2.

In simulations, we observed that when there is no true dif-
ference in dispersion across batch, applying ComBat-seq,
which specifies different dispersion parameters for batches,
results in increased false positive rates compared to the
other methods without further increasing the detection
power. ComBat-seq controls false positives and shows ben-
efits in increased true positive rates only when a true dis-
persion batch effect is present in the data. This is consistent
with the intuition of batch effect adjustment, that modifying
the data in any way comes with a risk of jeopardizing bio-
logical signals in the data. Therefore, batch effects should
only be adjusted when they are present and result in unfa-
vorable impact on downstream analysis. Such observations
emphasize the importance for careful diagnosis of batch ef-
fect before applying any transformation to the data, which
our reiterates previous work in this area (16).

In the simulation studies, we also compared ComBat-
seq with the commonly applied approach to transform the
count matrix to logCPM, and then applied batch correction
methods based on Gaussian distributions. That method es-
sentially assumes a log-normal distribution for the data. In
simulations, we observed that ComBat-seq generally out-
performs log transforming the data in terms of power and
control of false positives. These results provide evidence that
using appropriate probabilistic models for count data may
be more beneficial than arbitrarily transforming the data.

Our study has several limitations. We used an idealistic
data model in simulations, and characterized biological sig-
nals and batch effects in the form of fold changes in the av-
erage value across batch. Though there may be other meth-
ods to model count data with both condition and batch ef-
fects, our model is a valid and convenient assumption for
the data, which is easy to implement with the polyster pack-
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age. We focused primarily on addressing the unwanted im-
pact of batch effect on downstream differential expression.
It is known that batch effects may also negatively impact
other biological tasks, such as developing predictive mod-
els for genomic data. Performance of batch correction in
these tasks requires further evaluation, but is beyond the
scope of this paper. Our ComBat-seq method is based on a
gene-wise negative binomial regression model, which, simi-
lar to other (generalized) linear models, may not work well
on data with severely or even completely confounded study
designs. However, batch correction in confounded designs
is challenging for most if not all the state-of-the-art batch
adjustment methods, and careful experimental design has
been widely advised to mitigate the unfavorable impact of
batch effects.

REPRODUCIBILITY

The ComBat-seq software is available in the sva package
in the Bioconductor project (17). Code to reproduce the
results in this paper are available at https:/github.com/
zhangyuqing/ComBat-seq.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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