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Abstract

Dopamine neurons are thought to signal reward prediction error, or the difference between actual 

and predicted reward. How dopamine neurons jointly encode this information, however, remains 

unclear. One possibility is that different neurons specialize in different aspects of prediction error; 

another is that each neuron calculates prediction error in the same way. We recorded from 

optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while 

mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction 

error functions of dopamine neurons and compare them to each other. We found striking 

homogeneity among individual dopamine neurons: their responses to both unexpected and 

expected rewards followed the same function, just scaled up or down. As a result, we could 

describe both individual and population responses using just two parameters. Such uniformity 

ensures robust information coding, allowing each dopamine neuron to contribute fully to the 

prediction error signal.

Dopamine is critical for motivated behavior, enabling animals to learn what is rewarding and 

to pursue those rewards
1–3

. Although confined to a small portion of the midbrain, dopamine-

producing neurons project diffusely throughout the brain. Dopamine neurons have large cell 

bodies, broad axonal arborization
4
, and the ability to release dopamine both at synapses and 

into the extracellular space
5
. At the same time, they show relatively stereotyped 

electrophysiological properties
6
, can electrically couple with each other

7
, and demonstrate 

high levels of correlation in their in vivo firing rates
8–11

. With these characteristics, 

dopamine neurons could be in a prime position to broadcast a common signal to the rest of 

the brain
12

.

The identity of this broadcast signal, however, remains controversial. Although recent 

evidence
3,13

 has suggested diversity in dopamine neuron genetic profiles
14

, physiology
15,16

, 
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connectivity
17–19

, and responses to aversive stimuli
20,21

, the majority of dopamine neurons 

seem to follow a very simple pattern
11

. When a reward is delivered unexpectedly, dopamine 

neurons fire a burst of action potentials. If the reward is fully expected, dopamine neurons 

no longer respond to it. And if expected reward is unexpectedly omitted, dopamine neurons 

dip from their baseline firing rate. Taken together, it appears that dopamine neurons signal 

reward prediction error, or the difference between the reward an animal expects to receive 

and the reward it actually receives. This signal has been demonstrated in monkeys
22

, 

rodents
23,24

, and humans
25

, and fits seamlessly into computational models of learning
26,27

. 

Specifically, dopamine prediction errors are thought to act as a teaching signal, 

strengthening actions and associations that lead to reward while weakening those that do not.

Although most dopamine neurons appear to encode prediction errors, their responses need 

not be identical. For example, different dopamine neurons may have different thresholds for 

responding to unexpected rewards
20

, or different extents of suppression by reward 

expectation. Such diversity, however, would undercut each neuron’s ability to convey the 

same signal. An ideal broadcast signal would be similar enough from neuron to neuron that 

downstream targets could decode the same information, regardless of the subset of dopamine 

neurons that they contact. The quantitative homogeneity of dopamine reward prediction 

errors has never been assessed.

In particular, we recently found that dopamine neurons use subtraction to calculate 

prediction error, and that the signal they subtract arises from neighboring VTA GABA 

neurons
28

. This analysis, however, was done at the level of the population. It remains unclear 

whether individual dopamine neurons perform the same calculation, or whether there is 

specialization that is overlooked when averaging across the population. Given the ability of 

individual dopamine neurons to influence diffuse downstream targets, as well as the debate 

over functional heterogeneity in the dopamine system, we performed a more fine-grained 

analysis of prediction error encoding at the single-neuron level.

We recorded from optogenetically-identified dopamine neurons in the lateral VTA as mice 

performed classical conditioning tasks that varied reward size, expectation level, or both. 

This allowed us to determine the full prediction error functions of individual dopamine 

neurons and assess how these functions related to each other. Rather than specialization, we 

found remarkable uniformity from neuron to neuron: when it comes to reward prediction 

errors, all dopamine neurons appeared to follow the same template, just scaled up or down. 

This scaled system greatly simplifies information coding, enabling prediction errors to be 

broadcasted robustly and consistently throughout the brain.

RESULTS

Dopamine neurons show unified reward response function

We recorded from the lateral VTA (Supplementary Fig. 1a) while mice performed a classical 

conditioning task with two interleaved trial types (Fig. 1a). On roughly half the trials, we 

delivered various sizes of reward in the absence of any cue. On these trials, both the timing 

and size of reward were unexpected. On the other half of trials, an odor cue informed the 

mouse when reward would come, but the size was still unexpected. The light-gated ion 
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channel, channelrhodopsin (ChR2), was expressed selectively in dopamine neurons, 

enabling us to identify neurons as dopaminergic based on their responses to light
23

. A subset 

of this data was analyzed for a separate paper
28

.

We recorded a total of 170 neurons, which clustered into three response types 

(Supplementary Fig. 2a–c). The largest cluster (84 neurons) showed phasic responses to 

reward; of these, 40 neurons were optogenetically identified as dopamine neurons 

(Supplementary Fig. 3a–g). We focus on these identified neurons, but our findings remain 

consistent if we include all 84 putative dopamine neurons (Supplementary Fig. 4).

We first examined how dopamine neurons responded to unexpected rewards of various sizes. 

Consistent with previous reports
23,29

, dopamine neurons monotonically increased their 

responses with increasing reward (Fig. 1b). After an initial peak unrelated to value, 

dopamine neurons showed a second peak that clearly distinguished reward size
12

. When 

averaged across the population, dopamine responses followed a simple saturating function 

(Fig. 1c; we used a Hill function for convenience, but see Methods for other potential fits). 

However, different neurons showed remarkable diversity in the size of their responses, 

ranging from 2 to almost 30 spikes s−1 above baseline for the largest reward. Are these 

neurons specialized for different reward sizes, or do they all follow the same curve?

We found that despite the diversity in firing rates, almost every individual neuron was well-

described by the same curve, multiplied by a parameter α (see four example neurons in Fig. 

1d). To analyze the similarity between neurons, we first fit a curve to the entire population 

data-set. Then we determined the value of α that, when multiplied by the average curve, best 

fit each neuron. This scaled function accounted for a large fraction of response variability 

across light-identified dopamine neurons (mean coefficient of determination, R2: 0.84; n = 

40 neurons; Fig. 1e). Furthermore, a scatter-plot comparing observed reward responses with 

those predicted by a scaled function showed a high degree of correlation (Fig. 1f). Indeed, 

adding a parameter for x-intercept (i.e., the reward size threshold for eliciting a response) 

failed to improve the fits (see Methods). Thus, although dopamine neurons displayed 

different response magnitudes, they shared the same shape. One neuron’s response function 

could be converted to another’s simply by multiplying the curve by a single value.

Expectation causes scaled subtraction of dopamine response

How does expectation shift this curve? We designed our task so that the timing of reward 

was either expected (i.e., after an odor cue) or unexpected (i.e., in the absence of any cue). In 

both cases, reward size was varied randomly. In this way, we could assess how a single level 

of expectation modulated dopamine responses across a range of reward sizes. As we 

describe in more detail elsewhere
28

, expectation caused a subtractive shift in dopamine 

reward responses (Fig. 2a). Regardless of reward size, the odor cue caused a reduction of 

3.21 ± 0.28 spikes s−1 (mean ± s.e.m. across neurons).

As with the reward response, however, there was considerable neuron-to-neuron variability 

in the amount of subtraction. Again, the question arises: are different dopamine neurons 

specialized for different levels of expectation, or is there underlying homogeneity in their 

responses? We found that the variability in subtraction correlated with variability in reward 
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response: those neurons that responded more to reward were also suppressed more by 

expectation (Fig. 2b). In other words, subtraction was scaled by a neuron’s responsiveness. 

This correlation held for all reward sizes that we tested (Supplementary Fig. 5).

Together with the common response function (Fig. 1c), the existence of scaled subtraction 

suggests a remarkable feature of dopamine prediction error responses: they are simply scaled 

versions of each other. By averaging across the population, we derived two “master” 

functions (Fig. 2a): one for unexpected reward (orange line) and one for expected reward 

(black line). The expected reward function is merely a subtractive transformation of the 

unexpected reward function. With these functions in hand, it is straightforward to recreate 

any individual neuron’s activity. First, we use a neuron’s responses to unexpected reward to 

determine α, the factor that scales the neuron’s responses to the average (Fig. 1d–f). Then 

we use the same α to predict that neuron’s response to expected reward. Specifically, we 

take the average expected reward function (black line in Fig. 2a) and multiply it by α. 

Dopamine responses to expected reward, predicted in this way, corresponded well with the 

actual data (Fig. 2c; see three example neurons in Fig. 2d–f). Thus, at least in a simple 

classical conditioning task, there is striking uniformity in the way in which different 

dopamine neurons calculate reward prediction error.

Linear suppression of responses across the population

One consequence of this scaled system is that for a given reward size, expectation should 

cause a linear suppression across neurons. Take, for example, the response to 2.5 μL reward. 

On average, expectation suppressed dopamine responses from 5 spikes s−1 to 1.8 spikes s−1, 

roughly a 64 percent reduction. In the first example neuron (Fig. 2d), this corresponded to a 

decrease from 3.3 to 1.5 spikes s−1; the second neuron (Fig. 2e) decreased from 5.5 to 2 

spikes s−1; and the third neuron (Fig. 2f) decreased from 7.5 to 3 spikes s−1. The absolute 

number of spikes varied from neuron to neuron, but the proportional suppression stayed 

approximately the same. Therefore, a scatter plot of unexpected reward versus expected 

reward shows a clear linear relationship (Fig. 3). We focus now on the slope of this 

relationship, which we believe has important implications for prediction error coding.

We define parameter β as the proportional reduction of dopamine response when reward is 

expected. Unlike α, which denotes an individual neuron’s responsiveness and varies from 

neuron to neuron, β is the same across neurons. The value of β, however, changes with task 

conditions. In Fig. 3h, for example, we see that the slope changes with different reward 

sizes. What if we change the task?

To accurately encode reward prediction error signals, dopamine neurons should have larger 

proportional reductions with higher levels of expectation. In other words, β should scale with 

expectation. To test this hypothesis, we ran a separate experiment where we held reward size 

constant but varied expectation level (Fig. 4a). Mice performed a classical conditioning task 

with three odors: one predicting reward with 10% probability; the second predicting reward 

with 50% probability; and the third predicting reward with 90% probability. Occasionally, 

we also delivered reward unexpectedly, in the absence of any odor. As before, we recorded 

in lateral VTA (Supplementary Fig. 1b) and used ChR2 to identify neurons as dopaminergic 

(Supplementary Fig. 3h–n).
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Mice learned the task well: after the odor was presented, but before the reward was 

delivered, the mice displayed graded anticipatory licking, responding most for the 90% odor, 

less for 50%, and less still for the 10% odor (Fig. 4b). Furthermore, higher reward 

probabilities caused reduced reward responses in dopamine neurons (Fig. 4c).

As predicted by our model of scaled subtraction, there was a systematic, linear effect of 

expectation across the population of dopamine neurons (Fig. 4d). Compared to completely 

unexpected reward, 10% expectation reduced firing by about 8% (Pearson’s R = 0.89, P = 

6.9 x 10−12), 50% expectation reduced firing by about 54% (R = 0.82, P = 1.8 x 10−8), and 

90% expectation reduced firing by about 80% (R = 0.51, P = 0.004). Thus, each level of 

expectation suppressed responses by a particular proportion (β), which stayed the same from 

neuron to neuron. This linear suppression is consistent with a common ‘template’, or 

response function, for prediction errors. The only difference between neurons is how much 

the template is scaled.

We have described two parameters, α and β, which are orthogonal to each other. Each 

neuron has a different value of α, depending on its overall level of responsiveness. In fact, at 

least in these simple tasks, the value of α is the only difference between neurons; otherwise 

their response functions are identical. Conversely, for a given task condition, all neurons 

share the same value of β. But as task conditions change (i.e., by varying reward amounts or 

levels of expectation), then β changes accordingly. In other words, α reflects the neuron, 

while β reflects the task. Taken together, these two parameters fully describe the responses 

of individual dopamine neurons to simple conditioning tasks (for a mathematical 

description, please see the Supplementary Note).

Cue responses also scale with responsiveness

To develop our model for prediction error coding, we have focused mostly on the reward 

response, comparing trials in which reward is expected to trials in which reward is 

unexpected. However, we also analyzed dopamine neuron responses to conditioned stimuli. 

In our variable-reward experiment, dopamine neurons responded more to an odor associated 

with reward than to an odor associated with nothing (2.31 ± 0.35 spikes s−1 vs. −0.38 ± 0.16 

spikes s−1, mean ± s.e.m.; P = 3.1x10−7, t-test). Similarly, in the variable-expectation 

experiment, dopamine neurons responded most to the cue associated with 90 percent reward 

(5.38 ± 0.61 spikes s−1), less to the 50 percent cue (2.18 ± 0.43 spikes s−1), and least to the 

10 percent cue (0.10 ± 0.25 spikes s−1; P = 6.5x10−5, 1.7x10−8, and 4.0x10−9, t-test for all 

pairs). These results are consistent with previous findings that dopamine neurons are finely 

tuned to stimuli associated with reward, in addition to reward itself
27,29

. Interestingly, 

dopamine cue responses appeared to follow the scaled system that we described above, 

although the correlations were not significant for cues predicting small reward. In general, 

those neurons with large cue responses also showed large reward responses (Fig. 5: for the 

variable-reward experiment, P = 0.096; for the variable-expectation experiment, P = 0.001, 

7.4x10−4, and 0.24 for the 90%, 50%, and 10% cues, respectively). Thus, prediction errors 

were scaled both for strong conditioned stimuli and for unconditioned stimuli, consistent 

with the notion that each neuron broadcasts the same signal.
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Dopamine neurons show high noise correlations

So far, we have averaged over trials to examine how dopamine neurons respond to different 

sizes of reward and levels of expectation. To understand how this information might be 

decoded by downstream structures in real time, it is also important to examine trial-by-trial 

correlations in activity. To do so, we took pairs of simultaneously-recorded dopamine 

neurons and examined how they responded to repeated presentations of the same stimulus 

(i.e., noise correlations). Low noise correlations imply that trial-by-trial changes in firing 

rate are independent between neurons; therefore, by pooling many dopamine neurons, a 

downstream neuron could cancel out the noise and decode the signal more effectively
30,31

. 

In contrast, high noise correlations imply that averaging over many neurons may not 

increase information content, since the noise cannot be canceled.

In the variable-reward experiment (Fig. 1), we collected 11 pairs of simultaneously-recorded 

light-identified dopamine neurons. In the variable-expectation experiment (Fig. 4), we 

collected 12 pairs of light-identified neurons. To increase these numbers, we used an 

unsupervised clustering approach to identify putative dopamine neurons (Supplementary 

Fig. 2), and also examined all pairs of simultaneously-recorded putative dopamine neurons 

(31 pairs in the variable-reward experiment and 60 pairs in the variable-expectation 

experiment).

Consistent with previous results in putative dopamine neurons in substantia nigra
8
 and a 

mixture of neuron types in VTA
10

, we found a high level of noise correlations in identified 

dopamine neurons (Fig. 6). These correlations were similar for both the variable-reward 

experiment (Fig. 6a) and the variable-expectation experiment (Fig. 6b), and for every 

experimental condition, including the conditioned stimulus, unexpected reward delivery, 

expected reward delivery, and reward omission. Note that noise correlations were high both 

for responses above baseline (e.g., the reward) and responses below baseline (e.g., reward 

omission). Indeed, there were also high noise correlations in spontaneous baseline activity. 

Such correlations are particularly impressive given low baseline firing rates, which can mask 

noise correlations
31

. Furthermore, the noise correlations essentially disappeared when we 

shifted the trials of one member of each pair, so that the pairs were offset by one trial (black 

bars in Fig. 6a,b). This implies that the correlations were indeed due to task events, rather 

than long-timescale changes such as firing rate drift over the course of a session. The results 

also hold when we include all putative dopamine neurons (Fig. 6c,d), and when we only 

include pairs of neurons on different tetrodes, to eliminate any bias from spike sorting (data 

not shown). In contrast, pairs of putative dopamine and GABA neurons did not show 

significant noise correlations (Supplementary Fig. 6). Our findings suggest that, in addition 

to homogeneity in mean firing rates, dopamine neurons are highly correlated even in their 

trial-by-trial fluctuations. This implies that downstream neurons would not benefit by 

averaging over many dopamine neurons to receive the prediction error signal; a single input 

may be enough.

Responses to aversive events

Some of the dopamine neurons we recorded showed weak responses to our stimuli — 

although they shared the same response function, their absolute firing rates were low. We 
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wondered if these neurons might be specialized for other stimuli, for example, aversive 

stimuli. Therefore, we examined the correlation between reward responses and responses to 

three presumably aversive events: omission of expected reward (Fig. 7a,b), prediction of an 

airpuff to the face (Fig. 7c,d), and airpuff itself (Fig. 7c,e). Note that for the airpuff cue and 

airpuff itself, there was a biphasic response consisting of an initial excitatory response 

followed by a dip. The excitation may be due to response generalization, since the sound of 

the airpuff valve resembled the sound of the reward valve
12

. Here we focus on the inhibitory 

phase, which encoded a more genuine value response. We found that neurons that were 

highly responsive to unexpected rewards tended to be highly responsive to aversive events as 

well: they showed greater levels of suppression below baseline. This tendency is consistent 

with a recent study of putative dopamine neurons in monkeys that also used reward omission 

and airpuff, as well as bitter liquid
20

. Thus, it is not the case that some neurons specialized 

for aversive events; rather, highly-responsive neurons in one setting appeared to be highly-

responsive in other settings as well. Conversely, weakly reward-responsive units were likely 

to have weak suppressions or even net-positive reactions to airpuff cues and airpuff itself. 

The latter neurons, which responded positively to both rewarding and punishing events, 

resemble the “salience-coding” neurons previously described
21

, although their lack of 

excitation to reward omission (Fig. 7b) may argue against this interpretation
20

.

DISCUSSION

In this paper, we aimed to define the computations that dopamine neurons make during a 

simple behavior. By recording from optogenetically-identified dopamine neurons in lateral 

VTA during two classical conditioning tasks, we discovered a common template for 

prediction errors. Almost every dopamine neuron that we recorded appeared to follow this 

template, responding in the same way to different sizes of reward and different levels of 

expectation. The only difference between neurons was in the scale of their responses. These 

results suggest that, at least in a classical conditioning task, most lateral VTA dopamine 

neurons encode the same information, giving them the remarkable capacity to broadcast a 

single important value: prediction error.

We previously showed that at the population level, VTA dopamine neurons calculate 

prediction error through subtraction
28

. Here we extend that analysis by examining individual 

dopamine neuron responses and assessing the extent of specialization versus homogeneity. 

We found a striking amount of the latter. Just two parameters could accurately describe 

prediction errors at both the individual and population levels (see mathematical formulation 

in the Supplementary Note). We use α to denote a neuron’s reward responsiveness: the 

higher a neuron’s α, the more it is excited by rewards and suppressed by reward expectation 

(see examples in Fig. 2). This parameter is likely intrinsic to the neuron, and is the only 

factor that distinguishes one neuron from another. In contrast, β (the slope in Fig. 2b, or one 

minus the slopes in Fig. 3) is an orthogonal variable that determines the proportion of a 

dopamine neuron’s response that will be suppressed by expectation. This parameter is the 

same for every neuron and depends on the behavioral context, including reward expectation 

(Fig. 4d) and reward size (Fig. 3). In other settings, it is likely that β would depend on other 

factors that affect expectation, such as delay time or learning. Knowing a neuron’s α, as well 
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as the β determined by task conditions, makes it possible to predict that neuron’s firing at 

most times in the task.

Population coding of prediction errors

Such a compact system—in which each neuron is a scaled version of each other—may 

increase the robustness of prediction error coding. For example, when we presented an odor 

that predicted reward with 90 percent probability, dopamine neuron reward responses were 

suppressed by about 80 percent (replotted in Fig. 8). Averaging across the population, this 

corresponded to a decrease of about 7 spikes s−1. Most neurons, however, did not subtract 

exactly 7 spikes s−1. If each neuron had subtracted that amount, the result would resemble 

the orange line in Fig. 8. In this case, many neurons could not contribute: since they fired 

less than 7 spikes s−1 for unexpected reward, subtracting that amount would make them hit a 

floor. By scaling the subtracted amount to a neuron’s responsiveness, this system allows 

even weakly responsive units to contribute to prediction errors. Indeed, note that each neuron 

in Fig. 8 falls below the identity line, implying that even neurons that responded minimally 

to unexpected reward were suppressed when reward was expected. In other words, each 

neuron calculated prediction error, even if its responses were weak.

The scaling that we discover here ensures that each neuron’s possible output is matched with 

the input it receives. This may be an efficient way to ensure consistent prediction errors. For 

example, matching inputs to outputs is probably less energy-intensive than enforcing 

identical firing rates in every neuron. Furthermore, the presence of weakly-responding 

neurons is important: when expectation is large, strongly-responding neurons can eventually 

hit a floor, whereas weakly-responding neurons have more space to be suppressed, because a 

given expectation level suppresses only a small fraction of their spontaneous firing rate.

The redundancy in this system may also be adaptive, given the proposed importance of 

dopamine prediction errors for both learning and response vigor
32

. No single dopamine 

neuron can innervate all distal targets; likewise, no target neuron can receive inputs from all 

dopamine neurons. Redundancy allows the downstream neuron to decode a signal 

approximating the ‘true’ dopamine signal, despite inputs from only one or a small number of 

dopamine neurons. This reduces the requirement for precise connectivity, at least for the 

interpretation of reward prediction error.

It is thought that noise correlations arise from common inputs and can have detrimental 

effects on the ability of an ensemble of neurons to jointly convey their signals (population 

coding)
33

. Here we found that dopamine neurons exhibit extremely high noise correlations. 

Our data is consistent with the idea that different dopamine neurons receive similar, common 

inputs. These results suggest that dopamine neurons need not jointly signal their outputs; 

rather, each neuron encodes a more or less complete prediction error signal. This mode of 

signaling may be particularly sensible if dopamine-recipient synapses rely on a small 

number of dopamine inputs, i.e. each synapse might receive only one dopamine input
34,35

, 

rather than relying on many dopamine inputs.
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Homeostatic balance of excitation and inhibition

It is interesting to speculate how a system of scaled inhibition might arise. Previous studies, 

focusing mostly on cortex and hippocampus, have demonstrated an exquisite balance 

between excitation and inhibition
36,37

. Over time, neurons that are more active begin to 

receive more inhibition, thus ensuring overall network stability. Such homeostasis is 

achieved through multiple mechanisms, including changes in synaptic strength, intrinsic 

excitability, and synapse stabilization. Our results complement this literature, as we show 

that those dopamine neurons with higher spontaneous and reward-evoked firing rates also 

exhibit more suppression by expectation. In other words, inhibition was matched to 

excitation. We believe this result could naturally emerge from homeostatic processes that 

vary inhibitory synapse number or GABA receptor expression on the dopamine neurons, 

among other circuit features. Importantly, despite these differences in excitatory or 

inhibitory strength (reflected by our parameter α), each neuron seemed to respond in the 

same way when task demands changed (reflected by our parameter β), implying 

commonality of inputs.

Although homeostatic processes likely play a role over a developmental time-scale, the 

balance between excitation and inhibition may also be vital over the course of a single 

trial
38,39

. For example, Fiorillo and colleagues recently found hints of such a balance in the 

multiphasic responses of putative dopamine neurons
38

. By analyzing rebound excitation and 

inhibition, they argued that dopamine neurons undergo tonic, homeostatic inhibition that 

varies with the magnitude of excitatory responses. Our results extend this argument to 

explain how such a balance might ensure fidelity of downstream signaling.

Our findings are also consistent with recent discoveries of one-dimensional dynamics in 

cortical circuits
40,41

. In the lateral intraparietal area, for example, neurons differed in their 

responses to three task epochs, but in a stereotyped way
40

. Knowing a neuron’s response to 

one epoch allowed the experimenters to predict the responses to the other two. In other 

words, just as in our data, different neurons were scaled versions of each other. Such a one-

dimensional system was proposed to facilitate downstream decoding, thereby enhancing 

behavioral reliability.

Diversity may come in other forms

Our finding of homogeneity among dopamine neurons is consistent with recent work 

showing a continuum of dopamine responses to both positive and negative stimuli, without 

any clear clusters
20

. But our results do not rule out diversity in the system
3,13

. First, we 

targeted a circumscribed region of the lateral VTA (Supplementary Fig. 1); it is possible that 

neurons in the substantia nigra or medial VTA would show different responses. Note, 

however, that within our recording region, we did not find any aspect of neural activity that 

varied with location. Second, our tasks focused primarily on responses to unexpected and 

expected water rewards. Dopamine neurons might show more diverse responses to different 

tasks, for example involving working memory
42

 or a broader array of aversive or salient 

stimuli
20,21,43

. The homogeneity may simply be explained by the computational simplicity 

of the classical conditioning task. Indeed, with increasing task complexity, more dopamine 

neurons might be released from tonic inhibition and come on-line, changing the overall 
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population response
44

. Third, our observation that responses of individual dopamine neurons 

follow a common template is consistent with recent anatomical observations that dopamine 

neurons projecting to different targets receive relatively similar sets of monosynaptic 

inputs
45–47

. However, a larger difference in responses might have arisen if we had targeted 

our analysis at dopamine neurons projecting to the tail of the striatum, which show greater 

differences in patterns of input
45

. Finally, even if the dopamine neuron firing rates are 

homogeneous, downstream neurons may read out this signal in diverging ways. For 

example, there may be different time courses of dopamine release
48

, different expression 

patterns of dopamine receptors and transporters
19

, or different co-released transmitters
49,50

, 

depending on the target region.

Dopamine neurons, in other words, may encode more than just reward prediction error. But 

when they do encode reward prediction error, they do so with remarkable consistency.

ONLINE METHODS

Animals

We used 10 adult male mice, backcrossed for >5 generations with C57/BL6J mice, that were 

heterozygous for Cre recombinase under the control of the DAT gene (B6.SJL-

Slc6a3tm1.1(cre)Bkmn/J, The Jackson Laboratory) 
51

. Five animals were used in the variable-

reward task (Fig. 1a) and five in the variable-expectation task (Fig. 4a). Animals were 

housed on a 12-h dark/12-h light cycle (dark from 07:00 to 19:00), one to a cage, and 

performed the task at the same time each day. All experiments were performed in 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals and approved by the Harvard Institutional Animal Care and Use Committee.

Surgery and viral injections

All surgeries were performed under aseptic conditions with animals under either ketamine/

medetomidine (60 and 0.5 mg kg−1, intraperitoneal, respectively) or isoflurane (1–2% at 

0.5–1.0 L min−1) anesthesia. Analgesia (ketoprofen, 5 mg kg−1 intraperitoneal; 

buprenorphine, 0.1 mg kg−1, intraperitoneal) was administered postoperatively. Mice 

underwent two surgeries, both stereotactically targeting left VTA (from bregma: 3.0 mm 

posterior, 0.8 mm lateral, 4–5 mm ventral). In the first surgery, we injected 200–500 nl 

adeno-associated virus (AAV, serotype 5) carrying an inverted ChR2 (H134R) fused to the 

fluorescent reporter eYFP and flanked by double loxP sites
52,53

. We previously showed that 

expression of this virus in dopamine neurons is highly selective and efficient
23

. After 2–4 

weeks, we performed a second surgery to implant a head plate and custom-built microdrive 

containing 6–8 tetrodes and an optical fiber, as described
23

. Recording sites are displayed in 

Supplementary Figure 1. There was no systematic difference in dopamine responses as a 

function of recording location.

Behavioral paradigm

After more than 1 week of recovery, mice were water-restricted in their cages. Weight was 

maintained above 90% of baseline body weight. Animals were head-restrained and 

habituated for 1–2 days before training. Odors were delivered with a custom-made 
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olfactometer
54

. Each odor was dissolved in mineral oil at 1:10 or 1:100 dilution. Thirty 

microliters of diluted odor was placed inside a filter-paper housing, and then further diluted 

with filtered air by 1:20 to produce a 1,000 ml min−1 total flow rate. Odors included isoamyl 

acetate, (+)-carvone, 1-hexanol, p-cymene, ethyl butyrate, and 1-butanol, and differed for 

different animals. Licks were detected by breaks of an infrared beam placed in front of the 

water tube.

Each trial began with 1 s odor delivery, followed by a short delay (1 s in the variable-

expectation task and 0.5 s in the variable-reward task) and an outcome (3.75 μl water for the 

variable-expectation task, or an amount ranging from 0.1 μL to 20 μL in the variable-reward 

task). Inter-trial intervals were drawn from an exponential distribution (mean: 7.6 s), 

resulting in a flat hazard function such that mice had constant expectation of when the next 

trial would begin. The tasks were purely classical conditioning: the licking behavior of the 

mice had no effect on whether water was delivered.

The variable-reward task (Fig. 1a) included three trial types, randomly intermixed. In trial 

type 1 (45% of all trials), an odor was delivered for 1 s, followed by a 0.5 s delay and a 

reward chosen pseudorandomly from the following set: 0.1, 0.3, 1.2, 2.5, 5, 10, or 20 μl. The 

frequency of each reward size was chosen to make the average reward approximately 5 μl. 

Reward sizes were determined by the length of time the water valve remained open: 4, 12, 

25, 45, 75, 140, or 250 ms, respectively. In trial type 2 (45% of all trials), rewards of various 

sizes were delivered without any preceding odor. The reward sizes were identical to trial 

type 1. In these trials, the reward itself was considered the start of the trial, to ensure a flat 

hazard function. Comparing trial types 1 and 2 allowed us to determine how a constant level 

of expectation modulated responses to different sizes of reward. In trial type 3 (10% of all 

trials), a different odor was delivered, which was followed by no outcome. This trial type 

was included to ensure that the animals learned the task: they began to lick after the odor in 

trial type 1 but not after the odor in trial type 3 (data not shown). Animals performed 

between 300 and 500 trials per session.

In the variable-expectation task (Fig. 4), each trial began with one of four odors, selected 

pseudorandomly. One odor predicted water reward with 10% probability, another predicted 

water reward with 50% probability, a third predicted water reward with 90% probability, and 

a fourth predicted an air puff to the animal’s face with 90% probability. In addition to the 

odor trials, fully unexpected rewards (in the absence of any odor) were also delivered on 

about 5% of trials in each session. Animals performed between 400 and 700 trials per day. 

The full data-set for this experiment was also analyzed for another manuscript
55

.

Electrophysiology

Recording techniques were based on a previous study
23

. Briefly, we recorded extracellularly 

from VTA using a custom-built, screw-driven microdrive containing six or eight tetrodes 

(Sandvik, Palm Coast, Florida) glued to a 200 μm optic fiber (ThorLabs). Tetrodes were 

affixed to the fiber so that their tips extended 350–600 μm from the end of the fiber. Neural 

and behavioral signals were recorded with a DigiLynx recording system (Neuralynx) or a 

custom-built system using a multi-channel amplifier chip (RHA2116, Intan Technologies 

LLC) and data acquisition device (PCIe-6351, National Instruments). Broadband signals 

Eshel et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from each wire were filtered between 0.1 and 9000 Hz and recorded continuously at 32 kHz. 

To extract spike timing, signals were band-pass-filtered between 300 and 6000 Hz and 

sorted offline using SpikeSort3D (Neuralynx) or MClust-3.5 (A. D. Redish). At the end of 

each session, the fiber and tetrodes were lowered by 40–80 μm to record new units the next 

day.

To be included in the dataset, a neuron had to be well-isolated (L-ratio
56

 < 0.05) and 

recorded within 0.5 mm of a light-identified dopamine neuron (see below), to ensure that it 

was recorded in VTA. Recording sites were also verified histologically with electrolytic 

lesions using 10–15 s of 30 μA direct current.

To identify neurons as dopaminergic, we used ChR2 to observe laser-triggered spikes
23,57,58

. 

The optical fiber was coupled with a diode-pumped solid-state laser with analog amplitude 

modulation (Laserglow Technologies). At the beginning and end of each recording session, 

we delivered trains of 10 blue (473 nm) light pulses, each 5 ms long, at 1, 10, 20 and 50 Hz, 

with an intensity of 5–20 mW mm−2 at the tip of the fiber. Spike shape was measured using 

a broadband signal (0.1 – 9,000 Hz) sampled at 32 kHz.

Data analysis

Peristimulus time histograms (PSTHs) were constructed using 1 ms bins and then convolved 

with a function resembling a postsynaptic potential: (1 − e−t) * e−t/20 for time t in ms. 

Average firing rates in response to reward were calculated using a 600 ms window after 

reward onset for the variable-reward experiment and a 400 ms window after reward onset for 

the variable-expectation experiment. These windows were chosen to reflect the full duration 

of the neural response to reward, as determined by inspection of the average PSTH. Window 

sizes ranging from 300 to 1000 ms were attempted and gave qualitatively similar results 

(data not shown). The reward response was longer for the variable-reward experiment likely 

because the reward itself took longer to deliver (i.e., the valve was open for longer). 

Similarly, responses to reward-predicting odors were calculated using a 500 ms window, 

which was the duration of the population response. When we wished to determine the 

correlation between excitatory and inhibitory responses (Fig. 7), we did not include the 

initial excitatory peak in response to aversive stimuli; rather, we chose windows that 

reflected the full duration of the inhibition: 200 to 800 ms after the onset of an airpuff-

predicting cue, and 100 to 400 ms after the onset of an airpuff itself. All responses were 

baseline-subtracted, with baseline defined as the 1 second before trial onset.

To identify neurons as dopaminergic, we used the Stimulus-Associated spike Latency Test 

(SALT 
58

) to determine whether light pulses significantly changed a neuron’s spike timing 

(Supplementary Fig. 3). We used a significance value of P < 0.001. To ensure that spike 

sorting was not contaminated by light artifacts, we also calculated waveform correlations 

between spontaneous and light-evoked spikes, as described
23

. All light-identified dopamine 

neurons had Pearson’s correlation coefficients > 0.9.

In the variable-reward experiment, we identified putative dopamine neurons based on their 

firing patterns through an unsupervised clustering approach (Supplementary Fig. 2), similar 

to a previous study
23

. Briefly, receiver-operating characteristic (ROC) curves for each 
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neuron were calculated by comparing the distribution of firing rates across trials in 100 ms 

bins (starting 1 s before expected reward and ending 1 s after expected reward) to the 

distribution of baseline firing rates (1 s before trial onset). PCA was calculated using the 

singular value decomposition of the area under the ROC. Hierarchical clustering was then 

done using the first three principal components of the auROC using a Euclidean distance 

metric and complete agglomeration method. As described
23

, this method produced three 

clusters: one with phasic excitation to reward (Type 1), one with sustained excitation to 

reward expectation (Type 2), and one with sustained suppression to reward expectation 

(Type 3). Type 1 neurons were classified as putatively dopaminergic and included in the 

paper. Forty out of 43 light-identified dopamine neurons fell into this cluster. The other three 

light-identified dopamine neurons showed phasic suppression to reward and were clustered 

as Type 3. These three dopamine neurons showed qualitatively different responses than the 

others, and were not included in the dataset. In previous histology experiments, we found 

very high specificity, i.e., all ChR2-expressing neurons also expressed the dopamine marker 

tyrosine hydroxylase
23

. Therefore, we expect that these three neurons were indeed 

dopaminergic, but might have a different function. However, we cannot completely rule out 

the possibility that these neurons were not dopaminergic.

As we describe in more detail elsewhere
23,28

, Type 2 neurons are GABA-ergic and appear to 

provide a reward expectation signal that dopamine neurons use to calculate prediction error. 

Type 3 neurons are rarer, and their cell type and function remain unclear. Their responses are 

essentially mirror images of Type 2 neurons, with greater suppressions for cues predicting 

larger rewards
23

, implying that they may also relay an expectation signal. Further work is 

needed to determine whether the relative dynamics of Type 2 and Type 3 neurons contribute 

to dopamine prediction error responses.

We focus our analysis on light-identified dopamine neurons (n = 40 for the variable-reward 

task; n = 31 for the variable-expectation task). However, we also examined responses of 

putative dopamine neurons (n = 44 for the variable-reward task; n = 28 for the variable-

expectation task). Results were qualitatively similar for both light-identified and putative 

dopamine neurons (e.g., see Supplementary Fig. 4).

To examine the dose-response of dopamine neurons (Fig. 1c), we based our analysis on a 

previous study
59

. We first fit a hyperbolic ratio function (Hill function) to the unexpected 

reward data, where r denotes reward size:

(1)

The function had two free parameters: fmax, the saturating firing rate; and σ, the reward size 

that elicits half-maximum firing rate. We chose an exponent of 0.5 after fitting the data with 

exponents ranging from 0.1 to 2.0 (in steps of 0.1), and finding the exponent with the lowest 

mean squared error. Note that the Hill function is not the only possible function that could fit 

our data. For example, the power function f(r) = ark, where a = 3.73 and k = 0.39, also did an 

excellent job, but this function does not saturate, and therefore we thought it was less likely 
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to represent neuronal responses. Two-parameter exponential and log functions did not fit the 

data well, and adding a third parameter for x-intercept did not noticeably improve the fit for 

any of the functions we attempted (mean-squared error of 10.31 for the 2-parameter Hill 

function vs. 10.20 for the 3-parameter Hill function; 10.24 for the 2-parameter power 

function vs. 10.21 for the 3-parameter power function; P = 0.09 and 0.38, respectively, using 

bootstrapping to compare the models). The conclusions of this manuscript do not depend on 

the exact function chosen to fit the data. In particular, for each function, subtraction was the 

best fit.

To explore how individual neurons differ from this average function (Fig. 1d), we kept the 

fmax and σ that we fit to the population and found the parameter αi that best scaled this 

function to each neuron’s reward responses (using the least squares method).

(2)

We used this scaled function to predict how each neuron would respond to each size of 

reward, and then compared the predictions to the actual data (Fig. 1e,f). The high degree of 

accuracy supports the idea that dopamine neurons were following a common template in 

their responses to unexpected reward, i.e., their response functions all took the same shape. 

In addition, this multiplicative scaling (equation 2) was better able to fit individual dopamine 

neurons than three other simple models (equations 3, 4, and 5 below). Multiplicative scaling 

had the lowest mean-squared error overall, and in any pairwise comparison, multiplicative 

scaling was a better fit in the majority of identified and putative dopamine neurons.

(3)

(4)

(5)

After fitting the unexpected reward data, we explored what transformation could best mimic 

the effect of expectation. As we describe in detail elsewhere
28

, we found that subtraction 

provided the best fit (Fig. 2a):
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(6)

In this equation, fmax and σ were determined by the unexpected reward data; the only new 

parameter was the expectation factor E.

We noticed that the value of E varied from neuron to neuron, and that it correlated strongly 

with a neuron’s responsiveness to unexpected reward (Fig. 2b). We wondered if this 

correlation would allow us to fit expected reward responses into the same common 

framework we applied to unexpected reward responses. In other words, could one type of 

response predict the other? To find out, we derived αi for each neuron using Equation 2. This 

parameter is based solely on the unexpected reward data; it is the parameter that best scaled 

a neuron’s responses to the average. Next, we multiplied this parameter by the population 

response to expected reward (i.e., the black line in Fig. 2a). This gave us the predicted 

response to expected reward for each neuron and each reward size (black lines in Fig. 2d–f). 

We compared these predicted values with the actual values, and found a high degree of 

similarity (Fig. 2c). This implies that dopamine neurons calculate prediction error in the 

same way, just scaled up or down.

To measure noise correlations (Fig. 6 and Supplementary Fig. 6), we first calculated the 

trial-by-trial firing rates of each neuron during each task condition (reward-predicting cue, 

expected reward delivery, unexpected reward delivery, reward omission, and baseline). We 

used 1 s windows because this ensured that we included the full duration of response for 

each trial, and because short windows have been shown to hide noise correlations
31

. 

However, 500 ms windows gave us similar results (data not shown). We then transformed 

these firing rates into Z scores by subtracting the mean response to a given stimulus and 

dividing by the standard deviation. This gave us a vector of Z scores for each neuron and 

each condition; the length of the vector was the number of trials. For each pair of 

simultaneously-recorded neurons, we then calculated the Pearson’s correlation between 

these vectors. To determine if the noise correlations were due to processes happening over 

long time scales (e.g., increased satiety causing all VTA neurons to slowly decrease their 

firing rate), we also calculated the correlation after shifting one neuron’s vector by one trial. 

Thus, the firing rate for trial 1 in neuron 1 was compared to the firing rate for trial 2 in 

neuron 2, and so on.

We first analyzed the two experiments separately (Fig. 6a,b), but to plot the histogram of 

noise correlations (Fig. 6c,d), we combined the two experiments. Specifically, to analyze the 

cue period, we combined the reward-predicting cue in the variable-reward task with the 90% 

reward cue in the variable-expectation class. To analyze the reward period, we combined the 

expected reward in the variable-reward task with the 90% expected reward in the variable-

expectation task. For the variable-reward task, we calculated noise correlations separately 

for each reward size, but since the values were consistent, we report the average over reward 

sizes.
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Comparisons were performed with paired t-tests or Wilcoxon rank-sum tests, with 

corrections for multiple comparisons (Bonferroni or Tukey). Correlations were done with 

Pearson’s rho. P values less than 0.05 were considered significant, unless otherwise noted. 

Bootstrapping model comparisons were done in the following fashion: we resampled the 

data 1000 times and determined for each resample the mean squared error for both two-

parameter and three-parameter functions. We calculated the P value by counting the number 

of resamples when the mean squared error was better for the two-parameter function (e.g., if 

1 resample out of 1,000 preferred the two-parameter function, P = 0.001). Analyses were 

done using custom scripts in Matlab (Mathworks). Code is available upon request. For an 

expected correlation coefficient greater than 0.6, the sample size needed for α of 0.05 and β 

of 0.2 is approximately 19 neurons, which we exceeded in each experiment. Randomization 

and blinding were not employed.

Immunohistochemistry

After recording for 4–8 weeks, mice were given an overdose of ketamine/medetomidine, 

exsanguinated with saline, and perfused with 4% paraformaldehyde. Brains were cut in 100 

μm coronal sections on a vibrotome and immunostained with antibodies to tyrosine 

hydroxylase (AB152, 1:1000, Millipore) to visualize dopamine neurons and 49,6-

diamidino-2-phenylindole (DAPI, Vectashield) to visualize nuclei. Virus expression was 

determined through eYFP fluorescence. Slides were examined to verify that the optic fiber 

track was among VTA dopamine neurons and in a region expressing the virus. A 

supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dopamine neurons share a common response function to unexpected rewards
(a) Schematic of variable-reward task. Thirsty mice received various sizes of water reward 

(χ), ranging from 0.1 to 20 μL. On no-odor trials, both the timing and size of reward were 

unpredictable. On odor trials, an odor cue predicted when reward would arrive, but the size 

remained unpredictable. Trials were randomly interleaved and inter-trial intervals (ITIs) 

were drawn from an exponential distribution, such that mice could not predict when the next 

trial would begin. (b) Firing rates of optogenetically-identified dopamine neurons in 

response to different sizes of unexpected reward. (c) Average dopamine neuron responses 

(mean ± s.e.m.) to different sizes of reward, using a 600 ms window after reward onset. 

Line, best-fit Hill function (see Methods). n = 40 neurons. (d) Average responses of four 

example dopamine neurons (mean ± s.e.m. across trials). Each neuron was fit by the same 

Hill function as in (c), scaled by a single factor (α). (e) Histogram of R2 values, denoting 

how much of each neuron’s variance in reward responses could be explained by a common 

response function, scaled by a single parameter. (f) Actual dopamine neuron responses to 

each reward size versus the responses predicted by a scaled common response function. 

Each dot reflects the response of one identified dopamine neuron to one reward size. Dotted 

line, identity (y = x). P = 4.6 x 10−127, Pearson’s correlation. R, correlation coefficient.
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Figure 2. Prediction errors are calculated through scaled subtraction
(a) Average dopamine neuron responses (mean ± s.e.m.) to different sizes of unexpected 

(orange circles) and expected (black circles) reward. Orange line, best-fit Hill function for 

unexpected reward (same as Fig. 1c). Black line, subtractive shift of the orange line. n = 40 

neurons. (b) Response to unexpected 2.5 μL reward versus effect of expectation for this 

reward size. Line, best-fit linear regression. P = 3.5 x 10−10, Pearson’s correlation. R, 

correlation coefficient. See Supplementary Fig. 5 for all other reward sizes. (c) Actual 

dopamine neuron responses to expected reward versus the responses predicted by a model of 

scaled subtraction. Dotted line, identity (y = x). P = 2.1 x 10−96, Pearson’s correlation. (d–f) 
Average responses of three example dopamine neurons with low (d), middle (e), and high (f) 
scaling factors (α). The same α was used to produce the fits for both unexpected and 

expected reward.
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Figure 3. Scaled subtraction produces linear suppression across the population
(a–g) Dopamine neuron responses to unexpected reward versus expected reward of various 

sizes (n = 40 neurons). Pearson’s correlation, P values: 0.83, 0.98, 0.01, 1.4 x 10−5, 2.6 x 

10−6, 7.8 x 10−9, and 2.7 x 10−5. R, correlation coefficients. (h) The regression slope (± 

standard error) for each of the reward sizes plotted in a–g.
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Figure 4. Expectation level determines proportional suppression of dopamine responses
(a) Schematic of variable-expectation task. Odors predicted reward at 10%, 50%, or 90% 

probability. The size and timing of reward never varied. (b) Average licking during the three 

trial types (n = 21 behavioral sessions). After odor onset, but before reward delivery, mice 

displayed anticipatory licking corresponding to the level of expectation. ***, t(20) = 9.89, P 
= 3.8 x 10−9; and t(20) = 13.0, P = 3.4 x 10−11, t-test. (c) Average firing rates of identified 

dopamine neurons to different levels of expectation. Inset, average dopamine neuron 

responses in a 400 ms window after reward delivery (mean ± s.e.m. across 31 neurons). *, 

t(30) = 2.4, P = 0.03; ***, t(30) = 4.1, P = 2.5 x 10−4; and t(30) = 6.4, P = 4.5 x 10−7, t-test. 

(d) Unexpected reward responses versus expected reward responses across the population of 

identified dopamine neurons (n = 31). Reward probability differed from trial to trial, but 

reward size remained the same. Dotted line, identity (y = x). Solid lines, best-fit regressions 

for each level of expectation. The slope of each line is 1-β (see text).
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Figure 5. Cue response scales with reward response
(a) Results from the variable-reward experiment (n = 40 dopamine neurons). Response to 

reward-predicting odor versus response to unexpected reward (averaged across all sizes). P = 

0.096, Pearson’s correlation. R, correlation coefficient. (b–d) Results from the variable-

expectation experiment. Response to odors predicting 10% reward (b), 50% reward (c), or 

90% reward (d) versus response to unexpected reward. P = 0.24, 7 x 10−4, and 0.001, 

respectively, Pearson’s correlation.
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Figure 6. Dopamine neurons show high noise correlations in every task epoch
(a, b) Noise correlations (mean ± s.e.m.) between pairs of simultaneously-recorded light-

identified dopamine neurons in the variable-reward experiment (a, n = 11 pairs) and the 

variable-expectation experiment (b, n = 12 pairs). Correlations were calculated by 

examining trial-by-trial variations in spiking during different task epochs (see Methods). 

Grey bars, correlations on simultaneous trials. Black bars, correlations in which one 

neuron’s data was shifted by one trial. (c, d) Histograms of noise correlations between pairs 

of simultaneously-recorded neurons that are either light-identified (cyan or dark blue) or 

putative (grey or white) dopamine neurons (n = 114 pairs in total). Data are combined from 

both the variable-reward and variable-expectation experiments, and reflect correlations 

during the reward-predicting cue (c) and during delivery of expected reward (d). Grey or 

dark blue, significant noise correlation (P < 0.05, Pearson’s correlation). White or cyan, n.s. 

Black dotted lines, mean noise correlation for putative dopamine neuron pairs. Cyan dotted 

lines, mean noise correlation for light-identified dopamine neuron pairs.
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Figure 7. Reward response correlates with response to aversive events
(a) Average firing of identified dopamine neurons (n = 31 neurons) in the variable-

expectation task during trials in which reward was omitted despite 90% expectation. (b) 

Response to unexpected reward versus response to reward omission. The omission response 

was averaged over a 1300 ms window from the time of expected reward, to include the 

entire duration of the effect. P = 0.04, Pearson’s correlation. R, correlation coefficient. (c) 

Average firing of identified dopamine neurons during airpuff trials. An odor cue predicted 

airpuff with 90% probability. (d) Response to unexpected rewards versus response to airpuff 

cues, averaged from 200 to 800 ms after cue onset to include the full duration of inhibition, 

without the initial excitatory response. P = 0.09, Pearson’s correlation. (e) Response to 

unexpected rewards versus response to cued airpuffs, averaged from 100 to 400 ms after 

airpuff onset to include the full duration of inhibition. P = 1.5 x 10−4, Pearson’s correlation.
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Figure 8. Common response function allows even weakly-responsive neurons to contribute
For identified dopamine neurons in the variable-expectation experiment, response to 

unexpected rewards versus 90% expected rewards (re-plotted from Fig. 4d). Black line, 

linear regression, which assumes that each neuron’s response is divided by the same value. 

The slope of this line corresponds to 1-β (see text). Orange line, hypothetical scenario in 

which each neuron’s response is subtracted by the same value, rather than divided. Dotted 

line, identity (y = x).
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