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A B S T R A C T   

Although several studies have aimed for accurate predictions of language recovery in post stroke aphasia, in-
dividual language outcomes remain hard to predict. Large-scale prediction models are built using data from 
patients mainly in the chronic phase after stroke, although it is clinically more relevant to consider data from the 
acute phase. Previous research has mainly focused on deficits, i.e., behavioral deficits or specific brain damage, 
rather than compensatory mechanisms, i.e., intact cognitive skills or undamaged brain regions. One such un-
explored brain region that might support language (re)learning in aphasia is the hippocampus, a region that has 
commonly been associated with an individual’s learning potential, including statistical learning. This refers to a 
set of mechanisms upon which we rely heavily in daily life to learn a range of regularities across cognitive 
domains. Against this background, thirty-three patients with aphasia (22 males and 11 females, M = 69.76 years, 
SD = 10.57 years) were followed for 1 year in the acute (1–2 weeks), subacute (3–6 months) and chronic phase 
(9–12 months) post stroke. We evaluated the unique predictive value of early structural hippocampal measures 
for short-term and long-term language outcomes (measured by the ANELT). In addition, we investigated whether 
statistical learning abilities were intact in patients with aphasia using three different tasks: an auditory-linguistic 
and visual task based on the computation of transitional probabilities and a visuomotor serial reaction time task. 
Finally, we examined the association of individuals’ statistical learning potential with acute measures of hip-
pocampal gray and white matter. Using Bayesian statistics, we found moderate evidence for the contribution of 
left hippocampal gray matter in the acute phase to the prediction of long-term language outcomes, over and 
above information on the lesion and the initial language deficit (measured by the ScreeLing). Non-linguistic 
statistical learning in patients with aphasia, measured in the subacute phase, was intact at the group level 
compared to 23 healthy older controls (8 males and 15 females, M = 74.09 years, SD = 6.76 years). Visuomotor 
statistical learning correlated with acute hippocampal gray and white matter. These findings reveal that 
particularly left hippocampal gray matter in the acute phase is a potential marker of language recovery after 
stroke, possibly through its statistical learning ability.   

Abbreviations: ANELT, Amsterdam-Nijmegen Everyday Language Test; BF, Bayes Factor; eTIV, estimated Total Intracranial Volume; FBC, Fibre Bundle Capacity; 
FLAIR, Fluid-Attenuated Inversion Recovery; NIHSS, National Institutes of Health Stroke Scale; RT, Reaction Time. 
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1. Introduction 

Approximately 15–45 percent of patients with acute stroke have a 
language impairment, or aphasia (Flowers et al., 2016; Inatomi et al., 
2008). In the first months post stroke, there is often some spontaneous 
and intervention-induced recovery, but for 26–43 percent of patients a 
chronic language deficit remains (Laska et al., 2001; Maas et al., 2012). 
Several predictors of language recovery after stroke have been identified 
(Plowman et al., 2012; for reviews see Watila & Balarabe, 2015), yet 
there remains a considerable amount of unpredicted variance in indi-
vidual language recovery patterns (Hope et al., 2013; Hope et al., 2018). 
Previous research has mainly focused on the influence of the brain 
damage and language deficits, but by focusing on what is damaged, one 
might forget an individual’s learning potential (Dignam et al., 2016; 
Hoen et al., 2003) and the intact brain structures that support such 
cognitive abilities, such as the hippocampus (Tuomiranta et al., 2014). A 
specific set of learning mechanisms which is repeatedly assumed to rely 
on computations in the hippocampus is referred to as statistical learning 
(Batterink et al., 2019; Frost et al., 2015), i.e., the brain’s ability to pick 
up and extract a wide variety of statistical properties inherent to the 
sensory input (Bogaerts et al., 2022; Conway, 2020). The present study 
aims to improve the prediction by assessing whether neuroanatomical 
measures of the hippocampus predict language recovery in patients with 
aphasia. In addition, we explore whether hippocampal measures are 
related to (intact) learning ability in patients with aphasia, measured via 
statistical learning tasks. 

Predictors of language recovery after stroke can be subdivided into 
patient-related predictors, language-related behavioral predictors and 
lesion-related neural predictors. The evidence for the independent 
contribution of patient-related predictors such as age, gender, handed-
ness and education is currently unclear (Hope et al., 2013; Plowman 
et al., 2012; Watila & Balarabe, 2015), but across all studied predictors, 
lesion size, lesion location and initial aphasia severity have most 
consistently been identified as best predictors of aphasia recovery 
(Hartwigsen & Saur, 2019; Plowman et al., 2012; Watila & Balarabe, 
2015). However, the most influential prediction studies (Hope et al., 
2013; Hope et al., 2018) have been conducted with patients (mainly) in 
the chronic phase post stroke, when the usefulness of the prognostica-
tion window has diminished, making it difficult to generalize to the 
clinically most relevant acute phase (Loughnan et al., 2019). In addition, 
a substantial proportion (20–70 %) of variance in language recovery 
remains unexplained (Benghanem et al., 2019; Blom-smink et al., 2017; 
Hope et al., 2013; Lazar et al., 2008; Osa García et al., 2020), implicating 
that we do not yet have a full picture of the factors driving recovery. 

There is growing appreciation that the processing of linguistic in-
formation is mediated by other kinds of (non-linguistic) information, 
which redefines recovery from aphasia as a dynamic interplay between 
linguistic and non-linguistic cognitive processes (Cahana-Amitay & Al-
bert, 2014). There is indeed evidence for the involvement of non- 
linguistic cognitive processes in aphasia treatment outcomes (Gilmore 
et al., 2019; Lambon Ralph et al., 2010; Seniów et al., 2009) as well as 
the compensatory value of learning potential in language recovery 
(Dignam et al., 2016; Hoen et al., 2003; Tuomiranta et al., 2014). At the 
neural level, studies have shown functional involvement as well as 
structural associations of the hippocampus with language learning tasks 
(Penaloza et al., 2022; Rodriguez-Fornells et al., 2009), and with suc-
cessful language treatment outcomes after stroke (Goldenberg & Spatt, 
1994; Meinzer et al., 2010; Menke et al., 2009). This evidence suggests 
that the hippocampus possibly constitutes a shared mechanism for both 
learning and language. Given that the hippocampus has the ability to 
rapidly encode relations (“binding”) between arbitrary elements that 
consistently appear together in space and/or time (Cohen & Eichen-
baum, 1993; Squire & Dede, 2015), the hippocampus is suggested to be 
specifically involved in statistical learning aspects (Shohamy & Turk- 
Browne, 2013). The link between hippocampus and language recovery 
in aphasia as well as whether this is mediated via statistical learning still 

awaits further investigation (Batterink et al., 2019; Covington et al., 
2018). 

In the domain of language, statistical learning is assumed to 
contribute to different aspects of language acquisition: Infants track the 
distribution of sounds in their language environment to discover 
phoneme categories, they identify transition probabilities of syllables to 
discover word boundaries, they use cross-situational statistics to learn 
word-object mappings, and they learn the order of word categories in 
sentences to acquire syntactic rules (for reviews see Arciuli et al., 2012; 
Kuhl, 2004; Romberg & Saffran, 2010; Saffran, 2003). Given the 
importance of statistical learning for the acquisition of the mother 
tongue and possibly also for second language learning (Frost et al., 2013; 
Hamrick, 2014; Kaufman et al., 2010; Onnis, 2012; Weiss et al., 2019), it 
could also constitute an important mechanism for language relearning in 
patients with aphasia after stroke. Previous studies have indeed shown 
substantial variation in statistical learning in patients with aphasia 
(Jarret et al., 2019; Peñaloza et al., 2017; Schuchard et al., 2017; Shaqiri 
et al., 2018; Vadinova et al., 2020; Vallila-Rohter & Kiran, 2015), hence 
individual differences in statistical learning might explain some vari-
ability in language recovery in aphasia. 

In summary, a promising and relatively unexplored approach to 
improve early predictions of language recovery is to go beyond the 
lesion and expand the focus to properties of intact gray and white matter 
supporting cognitive abilities that are involved in (re)learning language. 
In addition, there is limited information on acute prognostic markers of 
language recovery. The present study aims to fill these gaps by (1) 
incorporating brain regions that were intact in most patients and reflect 
learning abilities, including statistical learning, and by (2) including 
these predictors in the acute phase to predict short and long-term lan-
guage outcomes. More specifically, we aim to evaluate the unique pre-
dictive value of hippocampal gray and white matter in the acute phase 
(1–2 weeks post stroke) for short-term (3–6 months post stroke) and 
long-term (9–12 months post stroke) functional language outcomes 
closely representing daily life situations. The predictive value of the 
hippocampus is measured above and beyond known predictors which 
relate to the initial language impairment and lesion size. Next, we 
explore whether these structural hippocampal measures are related to 
statistical learning abilities. Given that it is debated (Bogaerts et al., 
2022; Frost et al., 2015) whether statistical learning is one unitary 
learning system or whether the computations differ across domains, we 
evaluate statistical learning in this study using three different widely- 
used (linguistic and non-linguistic) tasks, in the domains of speech 
segmentation, visual object perception and visuospatial processing. We 
first investigate whether statistical learning abilities in the three 
different tasks are intact in patients with aphasia in the subacute phase 
by comparing them to healthy older controls, as this could indicate a 
potential protective learning mechanism. We then assess whether sub-
acute statistical learning abilities correlate with structural properties of 
the hippocampus measured in the acute phase. 

2. Materials and methods 

2.1. Participants 

This project was approved by the Medical Ethical Committee of the 
University Hospitals and University of Leuven (registration number 
B322201731747). Details on patient recruitment are provided in Sup-
plementary Information and a flowchart of patient recruitment is shown 
in Supplementary Fig. 1. Informed consent was obtained from all pa-
tients and/or their relatives. Patients with a stroke lesion in the left 
hemisphere and a confirmed language deficit were followed from the 
acute phase (1–2 weeks post stroke, n = 65) to the chronic phase (9–12 
months post stroke, n = 43), with an extra measurement in the subacute 
phase (3–6 months, n = 42). In the present longitudinal study, we 
included a subset of 33 patients with acute MRI data and at least one 
behavioral follow-up moment. Table 1 shows the participant 
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characteristics for this group and the number of missing data points per 
variable. 

2.2. Procedure 

In the acute phase, we administered the ScreeLing (Visch-Brink et al., 
2010) and the Amsterdam-Nijmegen Everyday Language Test (ANELT, 
Blomert et al., 1995) to measure patients’ language impairment and we 
acquired MRI data. The ScreeLing has been validated in an acute stroke 
population (Doesborgh et al., 2003; El Hachioui et al., 2012; El Hachioui 
et al., 2017) and assesses the three main linguistic components, i.e., 
semantics, phonology and syntax, and is thus mainly focused on the 
impairment level. For the purpose of this study, only the total ScreeLing 
score was considered, from now on referred to as “language score”. In 
contrast, the ANELT (Blomert et al., 1995) assesses verbal communica-
tive ability based on the informational content of utterances pertaining 
to ten everyday language scenarios (e.g., calling the doctor or talking to 
a friend). All scenarios were presented auditorily and patients were 
asked to respond verbally. All utterances were then rated on a 5-point 
scale for understandability of the message, from now on referred to as 
“functional language outcome”. In the subacute phase, we 

readministered the ScreeLing (Visch-Brink et al., 2010) and the ANELT 
(Blomert et al., 1995). Patients were further assessed with statistical 
learning tasks in different modalities and completed a custom-made 
demographic questionnaire. Other measures were additionally 
collected but are outside the scope of this study and are not reported 
here. In the chronic phase, the ScreeLing (Visch-Brink et al., 2010) and 
the ANELT (Blomert et al., 1995) were repeated. Due to COVID-19, data 
collection in the acute phase was stopped prematurely, and follow-up 
moments were spread over a period of three months (subacute: 3–6 
months post stroke, chronic: 9–12 months post stroke) instead of the 
foreseen one month (subacute: 3–4 months post stroke, chronic: 9–10 
months post stroke). 

3. Neuroimaging 

3.1. Data acquisition 

We acquired 3D T1-weighted images, multi-shell diffusion-weighted 
images and T2-weighted fluid-attenuated inversion recovery (FLAIR) 
data. Details regarding data acquisition can be found in the Supple-
mentary Information. Other sequences were additionally acquired but 
are outside the scope of this study and are not reported here. 

3.2. Lesion segmentation 

Two different lesion masks were created per patient: an acute lesion 
map and a full lesion map. First, acute stroke lesions were manually 
delineated (by KS) on the FLAIR image (axial slices), with the diffusion- 
weighted image (b1000 and ADC [apparent diffusion coefficient]) as 
guidance for ischemic lesions. Manual delineations were drawn in 
MRIcron (v. 02092019, available via https://www.nitrc.org/project 
s/mricron) and visually checked twice by a resident in neurology. This 
lesion map was used to determine acute lesion volume (in cm3) and to 
exclude recent lesioned tissue from the whole brain tractogram. A lesion 
overlay image for the acute lesion maps is presented in Fig. 1. 

Second, a full lesion map covering all burden of cerebrovascular 
disease was created by segmenting all FLAIR hyperintense lesions (acute 
stroke lesions, old stroke lesions as well as leukoaraiosis) with the lesion 
prediction algorithm (Schmidt, 2017) as implemented in the Lesion 
Segmentation Toolbox (v. 3.0.0, available via https://www.statist 
ical-modelling.de/lst.html) for Statistical Parametric Mapping. This 
map was then merged with the (manually drawn) acute lesions, as well 
as manual delineations of old (FLAIR) hypointense stroke lesions where 
necessary. Old lesion load (in cm3) was calculated by subtracting the 
acute lesion map from the full lesion map. 

3.3. MRI processing for gray matter volume of the hippocampus 

Lesion free T1-weighted images were generated through Virtual 
Brain Grafting (available via https://github.com/KUL-Radneuron/KU 
L_VBG). These images were fed to FreeSurfer’s recon-all (v. 6.0.0, 
available via https://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012), 
including the hippocampal subfields module for automated segmenta-
tion of the hippocampus (Iglesias & Sabuncu, 2015). Virtual Brain 
Grafting is a fully automated, open-source workflow aimed to reliably 
parcellate anatomical datasets in the presence of (bilateral) brain lesions 
(Radwan et al., 2021). This method was used to prevent FreeSurfer 
failure (Reid et al., 2016; Zhang et al., 2017) and ensure accuracy of the 
hippocampal parcellations in the presence of lesions and leukoaraiosis 
(Dadar et al., 2021). The whole-volume segmentations (shown in Fig. 2) 
of all bilateral hippocampi were visually inspected and were successfull 
in all patients without hippocampal lesions. Quantitative values for 
hippocampal volume (in mm3) were extracted from FreeSurfer, as well 
as an individual’s estimated total intracranial volume (eTIV; used to 
control for head size in statistical analyses). 

Hippocampal blood supply is generally provided by collateral 

Table 1 
Characteristics of the group of patients with aphasia under study.  

Variable N = 33a Median (Range) NAb 

Age (years) 69.8 (10.6) 72.0 (41.0–86.0)  
Sex (female/male) 11/22   
Handedness (right-handed/other) 29/4   
Education (years) 13.7 (3.1) 14.0 (8.0–22.0) 1 
Stroke type (ischemia/hemorrhage) 30/3   
Stroke laterality (left/bilateral) 28/5   
History of stroke (no/yes) 30/3   
Affected circulation area    
ACM/ACP/Avert/Abas/AchorA/ 

multifocal 
22/5/1/1/ 
1/3   

Acute lesion volume (cm3) 43.16 
(41.43) 

27.72 
(0.67–149.51)  

Old lesion load (cm3) 20.33 
(16.57) 

15.27 
(1.46–55.67)  

Acute NIHSS total score 7 (6) 4 (0–30)  
Acute volume left hippocampus 

(mm3) 
3,100 (459) 3,075 

(2,368–4,185) 
4 

Acute volume right hippocampus 
(mm3) 

3,186 (376) 3,196 
(2,312–3,989) 

1 

Acute FBC left hippocampus (a.u.) 2.97 (1.17) 2.76 (0.92–5.80) 5 
Acute FBC right hippocampus (a.u.) 3.16 (1.06) 3.34 (0.65–5.87) 2 
Initial language score (/72)c 46.05 

(21.69) 
54.50 
(0.00–70.00) 

2 

Acute days post stroke 5 (6) 3 (0–29)  
Subacute functional language 

outcome (/50)d 
38.46 
(10.84) 

42.50 
(10.00–50.00) 

1 

Subacute days post stroke 117 (28) 108 (85–185) 1 
Subacute auditory SL score (/32) 17.25 (3.56) 16.50 

(12.00–25.00) 
5 

Subacute visual SL score (/32) 19.90 (4.72) 21.00 
(12.00–32.00) 

3 

Subacute visuomotor SL scoree 0.28 (0.32) 0.19 (-0.27–0.94) 1 
Chronic functional language outcome 

(/50)d 
39.77 
(10.39) 

44.50 
(10.00–50.00) 

3 

Chronic days post stroke 288 (10) 286 (272–315)  

Note. ACM = arteria cerebri media, ACP = arteria cerebri posterior, Avert =
arteria vertebralis, Abas = arteria basilaris, AchorA = anterior choroidal artery, 
NIHSS = National Institutes of Health Stroke Scale (a higher score corresponds 
to a more severe stroke), FBC = Fiber Bundle Capacity, SL = statistical learning. 

a N is reported for categorical variables; M (SD) is reported for continuous 
variables. 

b N indicates the number of participants for which the corresponding data are 
missing. 

c as measured by the ScreeLing (Visch-Brink et al., 2010). 
d as measured by the Amsterdam-Nijmegen Everyday Language Test, A-scale 

(Blomert et al., 1995). 
e z-score difference sequence-random. 
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branches of the posterior cerebral artery and the anterior choroidal ar-
tery (Marinković et al., 1992; Spallazzi et al., 2019). As a consequence, 
vascular pathology in these arteries might cause direct damage to the 
hippocampus. To study the potential compensatory value of hippo-
campal integrity during aphasia recovery, hippocampal measures for 
patients with substantial (old or current) cerebrovascular disease in this 
region, i.e., more than 3 % overlap between hippocampal segmentations 
and the full lesion map, were excluded from the dataset. This threshold 
was defined based on visual inspection of the data. In our patient group, 
five patients had substantial hippocampal damage (left hippocampus: 4/ 
33 patients; right hippocampus: 1/33 patient), including three patients 
with (previous) strokes in the posterior circulation and two patients with 
strokes in the vascular territory of the middle cerebral artery. Although 
the latter is more rare, proximal occlusion of the middle cerebral artery 

relative to the internal carotid artery can cause direct damage to the 
hippocampus in some patients due to individual variability in vascular 
anatomy (Meinzer et al., 2010). A few patients with damage in the 
vascular territory supplying the hippocampus did not show substantial 
hippocampal damage, possibly due to the high degree of anastomosing 
blood supply (Marinković et al., 1992). 

3.4. MRI processing for white matter connectivity of the hippocampus 

Diffusion images were denoised (Cordero-Grande et al., 2019; 
Veraart et al., 2016a; Veraart et al., 2016b) and unringed (Kellner et al., 
2016) in MRtrix3 (Tournier et al., 2019) and subsequently corrected for 
(b0-paired) EPI distortions, B0-field inhomogeneities, eddy currents and 
inter-volume motion using topup and eddy tools in FMRIB Software 

Fig. 1. Acute lesion overlay image (max overlap = 14) for the included participants (n = 33). Axial slices are shown in neurological orientation.  

Fig. 2. Example hippocampal parcellations overlayed on the native T1 image for three patients (rows). A Sagittal view of the lateral left hippocampus with detail. B 
Coronal view of the anterior bilateral hippocampi with detail of the left hippocampus. 
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Library (FSL, v. 6.0.1) (Jenkinson et al., 2012; Smith et al., 2004) called 
by MRtrix3′s preprocessing tool (Andersson et al., 2003; Andersson & 
Sotiropoulos, 2015; Bastiani et al., 2019; Holland et al., 2010; Smith 
et al., 2004). Finally, the images were corrected for bias fields (Tustison 
et al., 2010) and a brain mask was derived. The mean relative RMS value 
of the translational and rotational movement parameters (M = 0.26 mm, 
SD = 0.07 mm), as calculated by eddy (S)QUAD (Bastiani et al., 2019), 
did not exceed 0.55 mm for any patient, hence no diffusion data had to 
be excluded from the analysis (Satterthwaite et al., 2012). 

Individual response functions were estimated in an unsupervised 
way (Dhollander et al., 2016; Dhollander et al., 2019) and averaged into 
group response functions. Fiber orientation distributions were estimated 
using multi-shell multi-tissue constrained spherical deconvolution 
(Jeurissen et al., 2014; Tournier et al., 2004) with default parameters. 
Intensity normalization was performed to correct for global intensity 
differences (Dhollander et al., 2021; Raffelt et al., 2017). To generate the 
whole-brain tractogram, 10 million streamlines were generated using 
the probabilistic Second-order Integration over Fiber Orientation Dis-
tributions (iFOD2) algorithm (Tournier et al., 2010), incorporating the 
anatomically-constrained tractography framework (Smith et al., 2012) 
(details in Supplementary Information) to improve biological plausi-
bility of streamline generation with dynamic seeding and backtracking. 

To make sure that streamline counts reflected the underlying 
anatomical fiber density information, we performed Spherical decon-
volution Informed Filtering of Tracts, resulting in a weight for every 
streamline (Smith et al., 2015). To quantify connectivity from the hip-
pocampus, the whole-brain tractogram (and its associated weights) was 
filtered using the hippocampus segmentations from FreeSurfer (left and 
right) as inclusion regions and the acute lesion as an exclusion region 
(see Fig. 3, details in Supplementary Information). The latter was done 
because at the time of scanning, the patients varied in time post stroke 

from 1 to 31 days, implying that there was some variability in whether 
damaged fibers already had degenerated. Notably, the pattern of results 
remained similar using hippocampal connectivity measures obtained 
without excluding the acute stroke lesion. Finally, the summed 
streamline weights of the filtered tractograms were scaled by the 
(individually determined) proportionality coefficient μ, which enabled 
comparison across patients. We will refer to this derived measure of 
connectivity throughout the paper as Fiber Bundle Capacity (FBC) 
(Smith, 2022). In short, FBC is highly correlated with the number of 
streamlines (r  0.90), but addresses the limitations of raw streamline 
count as a metric of connectivity in the context of quantitative trac-
tography. Ideally, FBC provides an estimate of the total cross-sectional 
area of the white matter pathway of interest, which should represent 
its information transfer capacity (Smith, 2022). We included two FBC 
measures per patient, i.e., one for the left and one for the right 
hippocampus. 

3.5. Statistical learning 

Statistical learning was assessed in the auditory, visual and visuo-
motor modality in the subacute phase (except for one patient who 
refused subacute follow-up, for which the tests were administered in the 
chronic phase instead). These tasks were not administered in the acute 
phase because behavioral testing immediately after stroke is challenging 
(Wade et al., 1986). Existing tasks in the literature (Lum et al., 2012; 
Siegelman et al., 2017b; Siegelman & Frost, 2015) were adapted to in-
crease feasibility in difficult-to-test populations and implemented in a 
tablet-based version (Schevenels et al., 2021). We provide a short 
explanation of the three tasks here, however, full details can be found in 
Schevenels et al. (2021) (Experiment 2, shortened task versions). From 
the same study (Schevenels et al., 2021), data from a healthy older 

Fig. 3. Example tractograms showing whole-brain left hippocampal connectivity overlayed on the native FLAIR image for three patients (rows). First column: left 
sagittal view, second column: superior axial view, third column: anterior coronal view. Definition of the tracts is guided by the findings in the study by Maller et al. 
(2019), in which in-vivo ultra-high angular resolution (1150 directions) diffusion tractography was performed in humans to describe whole-brain macroscropic extra- 
hippocampal structural connectivity. In this study, in total, 96% of all the streamlines were part of one out of six pathways: the inferior longitudinal fasciculus, the 
spinal-limbic pathway, the anterior commissure, the cingulate bundle, the fornix, or the tapetum (Maller et al., 2019). 
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control group were available, which served as a comparison group for 
the patients with aphasia in the current study. The selected healthy older 
control group (N = 23) did not significantly differ in age (MedianHC =

75, MedianPWA = 72, W = 468.5, p = .140), or years of education 
(MedianHC = 14, MedianPWA = 14, W = 405.5, p = .522) from the group 
of patients with aphasia under study (N = 33). On the other hand, the 
gender distribution was significantly different between both groups 
(healthy control group: 8 males, 15 females, PWA: 22 males, 11 females, 
χ 2(1) = 4.33, p = .037). Information on handedness was not available 
for the healthy control group. 

In the auditory modality, statistical learning was measured by 
exposing patients to an “artificial language” consisting of a continuous 
syllable stream (Saffran et al., 1996). Unknown to the patients, four 
predefined disyllabic words (“timu”, “segi”, “bode” and “vofa”, transi-
tional probability = 1) were each repeated 96 times. Foils (“bomu”, 
“tide”, “vogi” and “sefa”, transitional probability = 0) were constructed 
by combining the first syllable of one of the words with the second 
syllable of a different word. In a two-alternative forced choice test 
following the passive listening phase, each of the words was combined 
with each of the foils twice, and patients were instructed to pick the 
word belonging to the language they had just heard. For each of the 32 
test trials, we recorded whether the answer was correct or not. Prior to 
the administration of this task, a short hearing screening (pure tone 
audiometry) was performed in order to determine the necessary stim-
ulus intensity (for details see Schevenels et al., 2021). 

In the visual modality, the task was very similar as in the auditory 
modality. Patients were exposed to a stream of sequentially presented 
abstract shapes (on average 1.75 s per stimulus). Unknown to the pa-
tients, four predefined shape pairs (transitional probability = 1) were 
each repeated 24 times. Foils were constructed by combining the first 
shape of one of the pairs with the second shape of a different pair. In a 
two-alternative forced choice test following the passive viewing phase, 
patients were instructed to choose the pair that appeared in that order in 
the post test. For each of the 32 test trials, we recorded whether the 
answer was correct or not. The total score was used in subsequent an-
alyses. Due to a technical mistake, one pair appeared only twice in the 
post test, while the other pairs were presented 10 times and all 4 foils 
appeared 8 times. 

In the visuomotor modality, statistical learning was measured using 
a variant of the classic Serial Reaction Time task (Nissen & Bullemer, 
1987). Patients were asked to press on a visual cue, the location of which 
followed a predefined (predictable) 6-item sequence (right-left-down- 
up-left-down), which was repeated 6 times across 4 blocks, for a total of 
24 presentations. Learning of the sequence was expected to result in a 
decrease in reaction time (RT). In the last block, pseudorandom trials 
were introduced, for which we expected an increased RT if learning had 
occurred. To correct for an individual’s baseline processing speed, pa-
tients’ raw RTs were transformed into z-scores referenced to the median 
and standard deviation (SD) across trials for that patient. Data points 
with RTs that were 3 SD or more above individual’s mean RTs were 
dismissed, in total 1.85 % of the data. Due to a logging problem in 11 
patients specific to the logging of accuracy, incorrect trials were not 
discarded from the dataset, however, analyses on the subset of patients 
whose incorrect trials could be dismissed lead to similar results as the 
ones reported here. 

3.6. Statistical analysis 

All statistical analyses were performed in R (v. 4.1.1) (R Core Team, 
2021), with both frequentist and Bayesian statistics. First, we evaluated 
Bayesian regression models to assess the predictive value (1–2 weeks) of 
acute hippocampal gray matter and white matter for short-term (3–6 
months) and long-term (9–12 months) functional language outcome 
(measured by the ANELT). Bayesian multiple linear regression models 
were built in several steps. In step 1, we defined a basic model predicting 
functional language outcomes using traditional predictors. Given the 

heterogeneity in our group of patients, we considered in step 2 eight 
other predictors that might potentially influence language outcomes. 
Specifically, we calculated inclusion Bayes factors (BF inclusion) for 
each of these other predictors separately on top of the original model 
defined in step 1. BF inclusion reflects the change from prior to posterior 
inclusion odds combined across models that include a particular effect. 
Other predictors with an associated BF inclusion larger than 3, reflecting 
substantial evidence for inclusion, were added to the original model 
defined in step 1, and this resulted in our updated model. In step 3, we 
assessed in the same way whether we could further improve this 
updated model with hippocampal volume and FBC. For the regression 
analysis, missing data were imputed for six variables: years of education 
(1 data point), initial ScreeLing score (2 data points), initial ANELT score 
(2 data points), subacute ScreeLing score (1 data point), subacute 
ANELT score (1 data point) and chronic ANELT score (3 data points). 
Data were considered to be Missing At Random and imputed using 
multivariate imputation by chained equations (MICE) (Azur et al., 2011; 
van Buuren and Groothuis-Oudshoorn, 2011). Further details on the 
missing data imputation and the Bayesian regression analyses are pro-
vided in Supplementary Information. 

In addition to the regression analyses, we explored the role of sta-
tistical learning. We started by investigating whether patients’ statistical 
learning ability was intact, by comparing them to healthy older controls 
from a previous study using a two-sample Wilcoxon or t-test (Schevenels 
et al., 2021). Then, to investigate a potential role of the hippocampus in 
statistical learning, we examined whether there was an association be-
tween the subacute statistical learning measures and the acute hippo-
campal measures using Holm’s corrected pairwise Pearson correlations. 

Data availability 
The pseudonymized study data and code to reproduce the figures and 

findings of this study are publicly available at https://github.com/ 
kschevenels/pwasl. Please note that the MRI data cannot be shared 
under any circumstance, as lesioned MRI data are person-specific and 
therefore cannot be considered anonymous. 

4. Results 

A matrix representing pairwise correlations between all (dependent 
and independent) variables under study is provided in Supplementary 
Fig. 3. 

4.1. Prediction of short-term functional language outcome 

Table 2 shows the process of model building for short-term (i.e., 
subacute: 3–6 months post stroke) prediction of language outcomes. In 
step 1, we established our original model that predicted short-term 
functional language outcome and included traditional measures, i.e., 
initial language score and acute lesion volume. Initial language score 
was the most critical predictor of later performance, as a model 
including this predictor is more than 100 times more likely than a model 
without. The average R2 (SD across imputed datasets) for the original 
short-term model was 0.69 (0.02). Given the heterogeneity in our group 
of patients, in step 2 we considered eight other predictors that poten-
tially influenced later language outcomes. Predictors on the received 
language treatment were not considered as this information is not 
available immediately post stroke, i.e., when we intend to use the model 
(Moons et al., 2009). As none of the other predictors had an associated 
BF inclusion larger than 3, the original model was not updated. In step 3, 
we assessed whether we could improve the traditional model with our 
hippocampal predictors. Note that, as explained in the methods, hip-
pocampal measures for patients with substantial (old or current) cere-
brovascular damage in this region were excluded from the dataset and 
consequently did not influence the BFs. For all hippocampal predictors, 
on average, models with the specific effect were less likely (BF inclusion 
< 1) to have produced the observed data than models without the effect. 
Therefore, none of the hippocampal predictors were added to the 
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original model. In summary, in our sample, short-term functional lan-
guage outcome could best be predicted by initial language score alone 
(model parameters of the final model are given in Supplementary 
Table 1). 

4.2. Prediction of long-term functional language outcome 

Table 3 shows the process of model building for long-term (i.e., 
chronic: 9–12 months post stroke) prediction of language outcomes. In 
step 1, similar to the short-term model, we found extreme evidence for 
the effect of initial language score on long-term language outcome: the 
observed data are more than 100 times more probable under models that 
include this predictor than under models that exclude it. In addition, 
there is anecdotal evidence for the role of acute lesion volume. The 
average R2 (SD across imputed datasets) for the original long-term 
model was 0.69 (0.10). In step 2, none of the other predictors had an 
associated BF inclusion larger than 3. Therefore, the original model was 
not updated. In step 3, we found substantial evidence for the inclusion of 

left hippocampal volume in the original model. Importantly, its associ-
ated model parameter was positive, which indicates that a larger volume 
of the left hippocampus was beneficial for later language outcome 
(visualisation in Supplementary Fig. 4). In addition, the BF inclusion of 
the hippocampal predictor remained stable (M (SD across imputed 
datasets) = 5.52 (9.13)) over and above the effect of eTIV (M (SD across 
imputed datasets) = 0.22 (0.04)). The average R2 (SD across imputed 
datasets) for the final long-term model was 0.75 (0.12) (model param-
eters of the final model are given in Supplementary Table 2). In sum-
mary, in our sample, long-term functional language outcome could best 
be predicted by a combination of initial language score, acute lesion 
volume and acute left hippocampal volume. 

4.3. Statistical learning results and comparison with healthy older 
controls 

To explore the potential role of statistical learning in the observed 
relation between hippocampal measures and long-term language out-
comes, we examined whether statistical learning was intact in patients 
with aphasia and related to hippocampal measures. We assessed three 
statistical learning tasks, covering the auditory, visual and visuomotor 
modality. To determine whether statistical learning was induced in the 
auditory and visual tasks, we performed one-sided one-sample t-tests or 
Wilcoxon tests (when the assumption of normality was violated) against 
the group chance level (50 % correct or a score of 16/32) and the in-
dividual chance level (66 % correct or a score of 21/32). The latter re-
flects the number of trials a certain individual needs to successfully 
answer, in order to have a probability of 0.95 to reject the null hy-
pothesis of random guessing (50 % correct), determined on the basis of a 
binomial distribution (Siegelman et al., 2016). 

For the auditory task (Fig. 4, panel A), we found that 14 out of 
28 patients scored above the group chance level (M = 17.25, W = 253, p 
= .062, Wilcoxon effect size r = 0.28) and 4 out of 28 patients scored 
above the individual chance level (W = 16.5, p >.999, Wilcoxon effect 
size r = 0.72). There was no significant difference in auditory statistical 
learning between the patient group and the group of healthy controls 
(MPWA = 17.25, Mcontrols = 17.00, W = 324, p = .977, Wilcoxon effect 
size r = 0.01). Due to the absence of statistical learning in both the older 
healthy control group (Schevenels et al., 2021) and the patient group, 
this task was not considered for the correlational analysis with hippo-
campal measures. 

For the visual task (Fig. 4, panel B), we found that 23 out of 30 pa-
tients scored above the group chance level (M = 19.90, t(29) = 4.52, p 
<.001, Cohen’s d = 0.83) and 11 out of 30 patients scored above the 
individual chance level (t(29) = -1.28, p = .894, Cohen’s d = 0.23). 
There was no significant difference in visual statistical learning between 
the patient group and the group of healthy controls (MPWA = 19.90, 
Mcontrols = 21.00, t(48.37) = -0.86, p = .395, Cohen’s d = 0.24). A 
Bayesian two-sample t-test indicated that the data were 2.66 times more 
likely under H0 (no difference between healthy older controls and pa-
tients with aphasia), providing anecdotal evidence that statistical 
learning was age-appropriate in our group of patients. 

For the visuomotor task (Fig. 4, panel C), we found that 27 out of 
32 patients showed slower z-standardized RTs in the pseudorandom 
block compared to the last sequence block. The mean difference be-
tween both blocks across patients was significantly above 0, indicating 
statistical learning on the group level (M = 0.28, t(31) = 4.91, p <.001, 
Cohen’s d = 0.87). There was no significant difference in statistical 
learning between the patient group and the group of healthy controls 
(MPWA = 0.28, Mcontrols = 0.30, t(39.68) = -0.22, p = .828, Cohen’s d =
0.06). A Bayesian two-sample t-test indicated that the data were 
3.56 times more likely under H0 (no difference between healthy older 
controls and patients with aphasia), providing substantial evidence that 
statistical learning was age-appropriate in our group of patients. 

Table 2 
Building a model to predict short-term functional language outcome (subacute: 
3–6 months post stroke).  

Step 1: Traditional predictors BF inclusion: mean (SD) 

Initial language score 202,254.94 (68,632.76) 
Acute lesion volume 0.26 (0.04)  

Step 2: Adding other predictors BF inclusion: mean (SD) 
Subacute days post stroke 0.48 (0.02) 
Old lesion load 0.21 (0.02) 
Age 0.20 (0.03) 
Sex 0.53 (0.06) 
Education 0.57 (0.55) 
Acute NIHSS total score 0.19 (0.01) 
Acute NIHSS language score 0.19 (0.04) 
Estimated total intracranial volume 0.16 (0.00)  

Step 3: Adding hippocampal predictors BF inclusion: mean (SD) 
Volume left hippocampus 0.19 (0.01) 
Volume right hippocampus 0.18 (0.02) 
FBC left hippocampus 0.24 (0.01) 
FBC right hippocampus 0.18 (0.01) 

Note. BF inclusion indicates, given the data, how many times more likely a 
model is including a specific predictor than a model without that specific 
predictor. 

Table 3 
Building a model to predict long-term functional language outcome (chronic: 
9–12 months post stroke).  

Step 1: Traditional predictors BF inclusion: mean (SD) 

Initial language score 251,585.29 (447,453.33) 
Acute lesion volume 2.16 (1.23)  

Step 2: Adding other predictors BF inclusion: mean (SD) 
Chronic days post stroke 0.25 (0.06) 
Old lesion load 1.94 (1.48) 
Age 1.33 (1.24) 
Sex 0.52 (0.07) 
Education 0.48 (0.22) 
Acute NIHSS total score 1.40 (0.69) 
Acute NIHSS language score 0.23 (0.03) 
Estimated total intracranial volume 0.35 (0.35)  

Step 3: Adding hippocampal predictors BF inclusion: mean (SD) 
Volume left hippocampus* 8.45 (17.89) 
Volume right hippocampus 0.60 (0.24) 
FBC left hippocampus 1.27 (0.50) 
FBC right hippocampus 0.29 (0.11)  

* BF inclusion >3, providing moderate evidence for the predictor of interest. 
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4.4. Association between statistical learning results and hippocampal 
measures 

To determine whether patients’ statistical learning ability, measured 
in the subacute phase, was correlated with structural properties of the 
hippocampus, measured in the acute phase, we calculated Holm’s cor-
rected pairwise Pearson correlations (Fig. 5). For the visual task, none of 
the correlations between derived hippocampal measures and statistical 
learning results were significant. In contrast, visuomotor statistical 
learning results were significantly positively related to almost all 
derived hippocampal measures. The latter correlations remained similar 
when controlling for eTIV and age (left volume: rp = .55, t(24) = 3.20, 
pcor = 0.015, 95 % CI = [0.09, 0.81]; right volume: rp = .37, t(27) =
2.06, pcor = 0.053, 95 % CI = [0.00, 0.65]; left FBC: rp = .51, t(23) =
2.85, pcor = 0.027, 95 % CI = [0.05, 0.79]; right FBC: rp = .42, t(26) =
2.35, pcor = 0.053, 95 % CI = [-0.002, 0.71]). 

5. Discussion 

The present study examined acute (1–2 weeks) predictors of short- 
term (3–6 months) and long-term (9–12 months) functional language 
outcome after stroke. We were interested in the early prognostic value 
(over and above traditional predictors) of the intact hippocampus – 
because of its potential role in learning, including statistical learning – 
and its structural connectivity to the rest of the brain. To this end, stroke 
patients with aphasia were recruited from a large-scale screening in the 
stroke unit, and followed up longitudinally from this acute stage to the 
subacute (i.e., short-term) and chronic (i.e., long-term) phase post 
stroke. In our group of patients, analyses revealed that, while short-term 
functional language outcome was best predicted by initial language 
score alone, long-term prognostication of functional language outcome 
could be improved by considering left hippocampal volume. In addition, 
we did not find impairments in non-linguistic statistical learning in our 
group of patients, and, we found evidence for associations between 

Fig. 4. Comparison of the statistical learning results with the performance of the healthy older control group. A and B show the individual results in the auditory and 
visual SL task. The group and individual chance levels are indicated with a solid and dashed line, respectively. Data points from patients with hippocampal damage 
are shown in pink. C shows the mean z-transformed RTs in each block of the visuomotor task. In this panel, the results of older healthy controls are represented with 
solid lines, and the results of patients with aphasia are represented with dashed lines (in pink in case of hippocampal damage). Overall (thick lines), we see the 
expected decrease in RTs across the sequence blocks indicating learning, followed by a RT increase when the pseudorandom block is introduced. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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visuomotor statistical learning and hippocampal volume and connec-
tivity. Together, these findings suggest that hippocampal measures 
could reflect a potential protective mechanism in patients with aphasia. 
These findings also indirectly support our hypothesis that statistical 
learning abilities could have the potential to support functional lan-
guage (re)learning in aphasia, with the hippocampus as an important 
measurable proxy early post stroke. 

5.1. The role of the hippocampus 

We specifically focused on the hippocampus in predicting language 
recovery because a growing body of literature suggests that the hippo-
campus constitutes a shared neural mechanism for non-linguistic 
cognition, such as memory but potentially also statistical learning, and 
language (Covington & Duff, 2016). In terms of the predicted language 
outcomes, we chose an outcome measure of communication effective-
ness (i.e., the ANELT), which assesses the informational content of 

utterances in relation to ten everyday language scenarios (e.g., calling 
the doctor). This measures increases the ecological validity of our study 
(Blom-smink et al., 2017), but also allows to test flexible use of language 
at the sentence or discourse level, which is expected to reply more on the 
hippocampus than constrained test settings (e.g., such as the ScreeLing) 
(Duff & Brown-Schmidt, 2012). 

Our regression results demonstrated the potential value of left hip-
pocampal volume as an acute predictor of long-term everyday oral 
communication after stroke, above and beyond initial aphasia severity 
and lesion size. For the prediction of short-term outcomes, initial 
aphasia severity was identified as a strong predictor, which is in 
accordance with previous literature (Blom-smink et al., 2017; Osa Gar-
cía et al., 2020), but a predictive role of acute hippocampal measures or 
lesion size was not found. This suggests that the best predictor combi-
nation for language outcomes seems to be dependent on the time post 
stroke. As suggested by Osa García and colleagues and corresponding 
with our results, lesion-related variables might have a more prominent 

Fig. 5. Scatterplots of the statistical learning results in both tasks versus both hippocampal measurements. Results for the visual statistical learning task are shown on 
the left side (accuracy), results for the visuomotor statistical learning task are shown on the right side (z(RT) difference between the last sequence block and the 
pseudorandom block). Vertical lines indicate the cut-off for statistical learning on the group level. Hippocampal FBC (in arbitrary units) is shown on top, hippocampal 
volume (in mm3) is shown on the bottom with gray representing values for the left hemisphere and black representing values for the right hemisphere. Corresponding 
regression lines with 95% confidence intervals are shown on the plot. The plots are annotated with pairwise Pearson correlations and corresponding significance test 
results (p-values are corrected for multiple comparisons using Holm’s method). 
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role in the prediction of long-term than for short-term language outcome 
(Osa García et al., 2020). Our results suggest that the same might hold 
for predictors related to intact structures, such as the hippocampus. 

In contrast to hippocampal volume which was predictive for long- 
term language recovery, structural connections linked to hippocam-
pus, measured via FBC, were not retained neither in the short-term nor 
in the long-term model. Our FBC measure is a quantitative measure of 
streamline count and we might find different results with measures more 
attuned to the quality of the underlying connections. Another possibility 
is that a measure specific to connections between the hippocampus and 
certain language areas is more informative than the broad connections 
considered in this study (see Fig. 3). Alternatively, the FBC measure 
might provide less unique information on top of lesion-related pre-
dictors relative to the volume predictor, given that hippocampal mea-
sures of patients with hippocampal damage were excluded from the 
dataset, while the surrounding white matter connections might still be 
damaged. 

The interpretation of the role of the left hippocampus in the pre-
diction of long-term language outcomes is not straightforward. One 
interpretation could be that the mediating factor for the association 
between hippocampal measures and language recovery is a person’s 
general cognitive health. Previous studies have indeed consistently 
linked decreases in hippocampal volume and connectivity strength to 
(subtle) cognitive decline (e.g., memory decline) in aging individuals 
(Bettio et al., 2017; Lazarczyk et al., 2012; Stark et al., 2021; Zanchi 
et al., 2017), even over and above the presence of brain infarcts (Blum 
et al., 2012; Kliper et al., 2016). In a similar vein, genetic studies on the 
apolipoprotein E ε4 allele, which is quite widely present (15 % in the 
general population and 65 % in Alzheimer dementia), have found as-
sociations between memory decline, smaller hippocampi and worse 
recovery after stroke (Mattsson et al., 2018; Rajan et al., 2016; Tang 
et al., 2015). However, the laterality of our finding (i.e., the left and not 
the right hippocampus was related to language outcomes) and its unique 
contribution over and above information on the initial language 
impairment (see Supplementary Fig. 3), suggests a role for the left 
hippocampus in language relearning. This neatly complements previous 
research on hippocampal involvement in language (learning) in healthy 
adults (Bonhage et al., 2015; Breitenstein et al., 2005; Hocking et al., 
2009; Kepinska et al., 2018; Maguire & Frith, 2004; Mårtensson et al., 
2012; Opitz & Friederici, 2003; Piai et al., 2016; Whitney et al., 2009) 
and suggests that language recovery post stroke might rely upon similar 
neural mechanisms as language learning in healthy adults (Menke et al., 
2009). A central component of language learning is statistical learning 
(for reviews see Arciuli et al., 2012; Kuhl, 2004; Romberg & Saffran, 
2010; Saffran, 2003), which has also been linked to the hippocampus 
(Shohamy & Turk-Browne, 2013), hence statistical learning could 
mediate the association between the left hippocampus and language 
recovery. 

5.2. The role of statistical learning 

In our study, we examined whether statistical learning is intact in 
patients with aphasia, allowing it to serve as a protective mechanism in 
relearning language, and whether statistical learning ability was related 
to hippocampal measures. 

Group comparisons on the statistical learning tasks showed that 
performance in patients with aphasia across modalities was not different 
from a healthy older control group, which suggests that the cognitive 
processes upon which these statistical learning tasks rely are intact in 
our group of patients. Although our auditory-linguistic task was not able 
to evoke statistical learning in the healthy older control group (for in 
depth discussion see Schevenels et al. (2021)) and in patients with 
aphasia, we did observe significant statistical learning on the group level 
in the non-linguistic visual and visuomotor conditions. Previous 
research has demonstrated that also non-linguistic statistical learning 
can be associated with language behavior in healthy adults and patients 

with aphasia (Conway & Pisoni, 2010; Daltrozzo et al., 2017; Misyak & 
Christiansen, 2012; Vadinova et al., 2020). Our findings of intact sta-
tistical learning abilities are consistent with previous evidence reporting 
intact statistical learning in chronic aphasia (Goschke et al., 2001; Jarret 
et al., 2019; Penaloza et al., 2015; Schuchard et al., 2017; Schuchard & 
Thompson, 2014; Schuchard & Thompson, 2017), and therefore extend 
existing evidence for the first time to subacute aphasia. On the other 
hand, other studies have demonstrated statistical learning impairments 
in patients with aphasia compared to a healthy control group (Basirat 
et al., 2019; Christiansen et al., 2010; Goschke et al., 2001; Peñaloza 
et al., 2017; Schuchard & Thompson, 2014; Vadinova et al., 2020; 
Vallila-Rohter and Kiran, 2013b; Vallila-Rohter and Kiran, 2013a; 
Vallila-Rohter and Kiran, 2015; Zimmerer et al., 2014), although this 
does not necessarily imply absence of statistical learning (Peñaloza 
et al., 2017; Vadinova et al., 2020). This variability in statistical learning 
performance across studies is likely due to differences in the assessed 
modality, the testing paradigm with corresponding evoked learning 
processes, the difficulty of the embedded regularities, individual dif-
ferences and heterogeneity in patients with aphasia and the extent to 
which the used stimuli require linguistic processing. Nevertheless, our 
study provides unique (group and individual level) data on the statistical 
learning capacity of patients with post stroke subacute aphasia in the 
visual and visuomotor modality. However, in the context of prognostic 
modelling, the use of neuroanatomical markers of statistical learning is 
more interesting, as behavioral testing immediately post stroke is not 
feasible in one third of patients (Wade et al., 1986) and structural im-
aging is unequivocally part of the standard clinical stroke protocol (Boyd 
et al., 2017; Vilela & Rowley, 2017; Warren et al., 2010). 

To examine whether the hippocampus could be a neuroanatomical 
correlate for statistical learning ability, we related performance on sta-
tistical learning tasks to hippocampal volume and connectivity in pa-
tients with aphasia. Note that due to limitations in the feasibility to test 
statistical learning in the acute phase, hippocampal measures (acute) 
and statistical learning measures (subacute) were not collected at the 
same time point and therefore we can only make statements about 
lagged associations. Our results indicated that statistical learning was 
associated with hippocampal metrics in patients with aphasia. This 
positive correlation was observed for statistical learning with local 
hippocampal structure as well as with hippocampal connectivity (Maller 
et al., 2019). An assocation between the hippocampus and statistical 
learning was expected based on functional studies in healthy adults and 
hippocampal lesion studies (Covington et al., 2018; Gheysen et al., 
2011; Jablonowski et al., 2018; Schapiro et al., 2014, 2016; Schendan 
et al., 2003; Turk-Browne et al., 2009), but we extended it to structural 
measures and to patients with aphasia. There is one other structural MRI 
study in infants showing that earlier in life the association between 
hippocampal volume and statistical learning is negative (Schlichting 
et al., 2016), suggesting that this association might change in elderly. 
The found correlations in our study did not represent a general brain size 
or age effect as they remained relatively stable when controlling for eTIV 
and age, respectively. The association we observed between the hippo-
campus and statistical learning was only significant for the visuomotor 
statistical learning task. This task is assumed to tap on implicit statistical 
learning mechanisms because learning is tested while performing the 
task (“online”). In contrast, in the visual task, patients had to make 
explicit judgments about the test items after the exposure (“offline”) 
(Schevenels et al., 2021). Although hippocampal involvement in sta-
tistical learning has been shown under both implicit and explicit 
learning conditions and across modalities (Jablonowski et al., 2018; 
Karuza et al., 2017; Rose et al., 2011; Schendan et al., 2003), several 
other cognitive processes (e.g., decision making) (Siegelman et al., 
2017a) in the posttest of the visual task might have blurred associations 
with the hippocampal measures. Alternatively, the integration of 
temporally ordered (i.e., sequential) and spatially structured informa-
tion with motor output in the visuomotor task might have required a 
higher level of hippocampal recruitment for the development of 
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representations necessary for statistical learning compared to the tem-
poral information in the visual task. The latter argument converges with 
the general idea that the hippocampus is specialized for the rapid, 
incidental binding of multimodal information (O’Reilly & Rudy, 2001). 

To conclude, given that the correlational results demonstrate a link 
between statistical learning and the hippocampus, this could mean that 
a person’s statistical learning ability shapes long-term changes in lan-
guage performance observed in patients with aphasia. However, it is 
important to note that our research design does not allow us to deter-
mine whether the predictive contribution of the hippocampal volume to 
aphasia recovery is mediated by and/or specific to statistical learning. 
Other cognitive mechanisms (e.g., memory decline, explicit associative 
learning, imagination and prediction of future events) similarly rely on 
the hippocampus and might be relevant for language recovery (Buckner, 
2010; Dignam et al., 2016; Tuomiranta et al., 2014). Thus, the speci-
ficity of the role of the hippocampus in aphasia recovery to statistical 
learning remains to be tested in future research. Nevertheless, our re-
sults suggest an interconnectedness of language functions with non- 
linguistic domains of cognition supported by the hippocampus during 
aphasia recovery (Cahana-Amitay & Albert, 2015). 

6. Limitations and future directions 

Although an intensive collaboration with the university hospital was 
set up through a large-scale screening of every incoming patient (n =
787 screened patients), the number of included patients with aphasia 
with early MRI and behavioral follow-up over a 1 year period was 
relatively small. Consequently, some of the null effects in the correla-
tional and regression analyses might be the result of a lack of statistical 
power (Brysbaert, 2019) and mediation analyses to directly test whether 
the relation between hippocampus and language recovery was mediated 
by statistical learning could not be performed. In addition, due to the 
onset of the COVID-19 pandemic during testing, the subacute and 
chronic follow up moments took place spread over a period of 3 months 
(i.e., respectively 3–6 months and 9–12 months post stroke) instead of 1 
month as initially planned. Moreover, compared to other studies, we did 
not exclude patients with a history of stroke or other conditions, or left 
handers, patients with bilateral stroke, brain hemorrhage, or severe 
stroke/aphasia. We contend that this variability is important as studies 
with highly specific inclusion criteria have limited generalizability, and 
hence they might have little clinical relevance. Crucially, external 
validation of our findings in independent datasets is needed before our 
results can be generalized to other patients with aphasia (Poldrack et al., 
2020). Nonetheless, our findings encourage future research to consider 
an individual’s potential for compensation in the prediction of a per-
son’s later communicative ability. 

Importantly, since the start of this longitudinal study, several 
improved measures of statistical learning have been proposed in the 
literature. Although widely used, the current statistical learning tasks 
have been criticized for their relatively low reliability as measures of 
individual differences in statistical learning (compared to group level 
estimates) (Siegelman & Frost, 2015; West et al., 2018). In the study by 
Siegelman & Frost (2015), test-retest reliability of the auditory statisti-
cal learning task was highest, with r = 0.63, followed by the visual 
statistical learning task, with r = 0.58, and the (probabilistic) SRT task, 
with r = 0.47 (Siegelman & Frost, 2015). Future (patient) studies might 
benefit from more recent measures of statistical learning, including 
psychometrically optimized tasks (Siegelman et al., 2016; Siegelman 
et al., 2018), tasks with more implicit offline tests (Isbilen et al., 2020; 
Turk-Browne et al., 2005), tasks with online measures that track 
learning during familiarization (Siegelman et al., 2017b) and/or neural 
measures of statistical learning that do not require overt responses 
(Batterink & Paller, 2017; Bogaerts et al., 2020). Especially the latter are 
promising for acute patient populations (Xu et al., 2022). 

7. Conclusion 

Our longitudinal acute-to-chronic investigation of aphasia recovery 
provides support for a role of left hippocampal volume as an acute 
predictor of long-term everyday oral communication after stroke and 
thus confirms a link between hippocampal integrity and successful 
language outcomes. Furthermore, given that we find that statistical 
learning ability is intact in our group of patients and that statistical 
learning is related to hippocampal measures, the hippocampus has the 
potential to serve as a neural correlate of a protective learning mecha-
nism in patients with aphasia. Future large-scale studies should examine 
whether the predictive role of acute hippocampal measures for language 
recovery can be confirmed and should directly test the mediating role of 
statistical learning in this association. Early and more accurate pre-
dictions of aphasia recovery would bring us one step closer to a reliable 
individual prognosis in the clinic, with a positive impact on quality of 
life of patients and their relatives, and with the potential to lead to 
individualized treatment plans that maximize the available recovery 
potential of the patient. 
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