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Abstract.	 [Purpose] This study determined the effects of passive static stretching on blood glucose levels in pa-
tients with type 2 diabetes. [Subjects] Fifteen patients (8 males and 7 females) with type 2 diabetes were recruited 
and randomly assigned to the control group or passive static stretching group. [Methods] Glycated hemoglobin was 
measured before and after the 8-week training period. [Results] Glycated hemoglobin levels decreased significantly 
in the passive static stretching group, and there were significant differences in blood glucose levels between the 2 
groups. [Conclusion] Passive static stretching of the skeletal muscles may be an alternative to exercise to help regu-
late blood glucose levels in diabetes patients.
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INTRODUCTION

The incidence of diabetes mellitus is increasing world-
wide; this trend is particularly strong for type 2 diabetes 
mellitus (T2DM)1). T2DM is a chronic disease characterized 
by decreased insulin sensitivity and overall poor glucose 
control. Exercise is a generally accepted component of the 
nonpharmacologic treatment for T2DM2). The systematic 
review by Boule et al. indicates structured exercise programs 
have a statistically and clinically significant beneficial effect 
on glycemic control in patients with T2DM3). In addition, 
patients with T2DM who use insulin, low-intensity exercise 
significantly reduces the prevalence of hyperglycemia4).

Despite the benefits of physical activity, many people 
with T2DM do not exercise regularly. For some individuals, 
secondary diabetes-related complications such as lower-limb 
amputations, neuropathies, hypertension, nephropathies, and 
retinopathies can either contraindicate exercise or make it 
more difficult. In addition, many elderly people with T2DM 
do not have sufficient physical ability to perform aerobic 
exercise and thus have problems maintaining euglycemia5).

Passive static stretching occurs when sustained tension 
develops within a person’s muscles through external forces. 
Several studies suggest passive stretching can increase 
cellular glucose uptake. Accordingly, blood glucose levels 
could decrease following a program of successive sustained 
muscle stretching. In addition, because passive stretching re-

quires minimum effort by the person performing the stretch, 
people with T2DM who are reluctant or unable to exercise 
may be willing to follow a stretching protocol6). Therefore, 
this study determined the effect of passive static stretching 
on blood glucose levels in people with T2DM.

SUBJECTS AND METHODS

Fifteen in-patients with T2DM at a hospital in Busan, 
Korea participated in this study. Patients were eligible if 
they were sedentary (i.e., not participating in regular aerobic 
or strengthening exercises 6 months before the study) and 
willing to commit to an 8-week supervised exercise pro-
gram7). All patients were diagnosed with T2DM confirmed 
by a glycated hemoglobin (HbA1c) level 6.5% or higher as a 
criterion for the diagnosis of diabetes8). All patients meeting 
the inclusion criteria were given verbal and written informa-
tion about this study. The patients provided informed con-
sent prior to participating. The study protocol was approved 
by the Ethics Committee of Daegu University.

Patients were randomized to the control group (n = 7) 
or passive static stretching group (PSS, n = 8). The control 
group was instructed to maintain their diet and medications 
for diabetes and not to perform any exercise during the 
experiment. Meanwhile, patients in the PSS group followed 
the same instructions as the control group but received a 
40-minute intervention consisting of 6 lower-body and 4 
upper-body static passive stretches. For each stretch, the 
muscle was held in the stretched position for 30 seconds 
and was repeated 4 times. Each repetition was separated 
by a 15-second relaxation period, and different stretches 
were separated by a minimum of 1 minute. A description of 
stretch is provided in Table 16). The PSS group performed 
the stretches 3 times per week for 8 weeks.

For outcome measurements, a 10-mL blood sample was 
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collected from each patient to determine blood glucose 
levels using an HbA1c analyzer (VARIANT™ α TURBO, 
Bio-Rad Laboratories, Inc., CA, USA). HbA1c values were 
obtained at baseline and after the 8-week intervention. Sta-
tistical analyses were performed using SPSS version 12.0. 
A paired t-test was used to determine whether there were 
significant changes in blood glucose levels before and after 
the intervention. Meanwhile, an independent t-test was used 
to analyze differences between the 2 groups. The level of 
significance was set at p < 0.05. The results are expressed as 
mean ± standard deviation (SD).

RESULTS

The baseline characteristics of the patients are shown in 
Table 2. There were no significant differences in the baseline 
characteristics between groups (p > 0.05). The results of 

outcome measures are summarized in Table 3. There was no 
significant difference in HbA1c level after the intervention 
in the control group (p > 0.05). However, HbA1c levels de-
creased significantly in the PSS group after the intervention 

Table 1.  Descriptions of the stretches used in the intervention

Stretch Description
Seated knee flexor (bilateral) The patient sat on the floor with their legs extended and arms above their head. From this 

position, they lowered their head toward their knees while the experimenter pushed down on 
their back.

Seated knee flexor– 
hip adductor (bilateral)

The patient sat on the floor in the cross-legged position. From this position, the patient low-
ered their head toward the floor while the experimenter pushed down on their back.

Seated shoulder lateral flexor 
(bilateral)

The patient sat in a chair with fingers interlaced behind their head. Keeping their arms in this 
position, the experimenter stood behind the patient and pulled the elbows back toward the 
body’s midline.

Supine hip flexor– 
knee extensor (unilateral)

The patient lay on their back with their leg hanging over the edge of the table with the knee 
flexed at approximately 90°. The hip was then hyperextended by the experimenter while 
pushing down on the thigh.

Seated hip external rotators, 
extensors (unilateral)

The patient sat on the floor with one leg extended. The opposite leg was flexed at the knee, 
and the foot was placed flat against the extended leg’s inner thigh. The patient then lowered 
their head toward the extended knee while the experimenter pushed down on their back.

Seated shoulder extensors, 
adductors, retractors 
(unilateral)

While seated in a chair, the patient extended one arm and placed it horizontally across the 
front of the chest. The experimenter stood behind the patient, grabbed their wrist, and pulled 
their arm against the chest as much as possible while keeping the arm parallel to the floor.

Supine knee flexor– 
plantar flexor (unilateral)

The patient lay on their back with the legs extended. The experimenter then raised one leg 
and simultaneously flexed the hip and dorsiflexed the ankle.

Prone hip flexor (unilateral) The patient lay on their stomach and flexed one knee at approximately 60°. Keeping the knee 
in the flexed position, the experimenter lifted the thigh to hyperextend the hip.

Seated shoulder flexors, 
depressors (bilateral)

The patient sat on the floor with the legs extended. The experimenter then grabbed their 
wrists and hyperextended the shoulder by raising the arms behind the back and up toward the 
head while keeping the back and elbows straight.

Seated shoulder and elbow 
flexors (unilateral)

The patient sat on the floor with the legs extended, with one elbow flexed and brought up near 
the ear. From this position, the shoulder was hyperflexed by the experimenter by pushing the 
upper arm down toward the floor.

Table 2.  Baseline characteristics of the patients

CON (n = 7) PSS (n = 8) p
Age (years) 58.4 ± 1.8 49.6 ± 5.2 0.2
Duration of diabetes (years)  5.2 ± 2.9  5.4 ± 1.5 0.5
BMI (kg/m²) 24.9 ± 3.0 26.9 ± 4.1 0.7
Values are means ± SD.
CON: control group; PSS: passive static stretching group; BMI: body mass index

Table 3.  Outcome measures

Control group  
(n = 7)

Passive static stretching 
group (n = 8)

Pre- 
intervention

 Post- 
intervention

Pre- 
intervention

Post- 
intervention

HbA1c (%) 7.4 ± 1.3 7.4 ± 1.4 7.4 ± 1.5 6.8 ± 1.5*†

Values are means ± SD.
*p < 0.05 vs. post-intervention. †p < 0.05 vs. control group post-
intervention.
HbA1c: glycated hemoglobin A1c.
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(p < 0.05) and were significantly different between groups 
(p < 0.05).

DISCUSSION

As mentioned above, this study determined the effect of 
passive static stretching on blood glucose levels in patients 
with T2DM. The results showed HbA1c levels decreased 
significantly after an 8-week passive static stretching inter-
vention. There are several possible mechanisms that could 
explain how passive stretching of skeletal muscles decreased 
blood glucose levels. According to a review by Dohm9), 
glucose transport into the skeletal muscles is primarily medi-
ated by a glucose transport protein, GLUT-4; accordingly, 
exercise can increase GLUT-4 levels in the skeletal muscles. 
Furthermore, increased metabolic activity accompanying 
passive muscle stretching is related to the GLUT-4 activa-
tion pathway9, 10). Therefore, passive muscle stretching 
could induce the incorporation of GLUT-4 into the stretched 
skeletal muscles.

Other studies also support the possibility of stretching-
induced incorporation of GLUT-4 into the skeletal muscles. 
First, the activity of protein kinase B controls GLUT-4 
incorporation; accordingly, protein kinase B is activated by 
passive stretching of isolated muscles11). Second, Sun et al. 
report that ischemia induces the translocation of GLUT-4 
to the plasma membrane of cardiac myocytes12); accord-
ingly, passive stretching of the skeletal muscles can cause 
ischemia13). Third, in an experimental study by Roberts 
et al., exercise-induced increases in nitric oxide levels re-
sulted in increased glucose transport14); accordingly, passive 
stretching can increase nitric oxide release from excised 
soleus muscles by 20%15). Finally, mitogen-activated protein 
kinase activity stimulates glucose uptake in muscle cells16); 
Martineau et al. report that the activity of mitogen-activated 
protein kinase directly reflects the magnitude of mechanical 
stress (e.g., actively or passively generated tension) applied 
to the muscle17).

The results of this study are subject to several limitations. 
The sample size is insufficient to generalize the results to all 
patients with T2DM. In addition, as HbA1c reflects the aver-
age plasma glucose level over the preceding 2–3 months, the 
8-week study period might have been too short to determine 
changes in blood glucose levels as a result of stretching18). 
Therefore, further studies are required to ascertain the long-
term (i.e., more than 3 months) effects of passive static 
stretching on blood glucose levels in a larger population of 
patients with T2DM.
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