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ABSTRACT: This paper presents the numerical approximation of a nonlinear equilibrium-
dispersive (ED) model of multicomponent mixtures for simulating single-column
chromatographic processes. Using Danckwerts boundary conditions (DBCs), the ED is
studied for both generalized and standard bi-Langmuir adsorption isotherms. Advection−
diffusion partial differential equations are used to represent fixed-bed chromatographic
processes. As the diffusion term is significantly weaker than the advection term, sophisticated
numerical techniques must be applied for solving such model equations. In this study, the
model equations are numerically solved by using the Runge−Kutta discontinuous Galerkin
(RKDG) finite element method. The technique is designed to handle sudden changes (sharp
discontinuities) in solutions and to produce highly accurate results. The method is tested
with several case studies considering different parameters, and its results are compared with
the high-resolution finite volume scheme. One-, two-, and three-component liquid
chromatography elutions on fixed beds are among the case studies being considered. The
dynamic model and its accompanying numerical case studies provide the initial step toward continuous monitoring, troubleshooting,
and effectively controlling the chromatographic processes.

■ INTRODUCTION
Chromatography is a commonly used technique for identify-
ing, separating, and purifying the components of a mixture for
a qualitative and quantitative examination. It is used to perform
many complicated separations in laboratories and industries. In
the pharmaceutical industry, chromatography is utilized to
identify unknown substances and to ensure the purity of
mixtures; in the food industry, it is used to measure the
nutrient content of products, and in the chemical sector, it is
used to examine samples of water and to monitor the quality of
air. It is also employed in other industries, including the
petroleum industry, biotechnology, and biochemical processes,
as well as fingerprinting, forensic science, protein separation
like plasma fractionation, and insulin and enzyme purifica-
tion.1−4

In chromatography, a part of the molecules of a compound
is adsorbed on the stationary phase, while the other fraction is
in the mobile phase. A constant and relatively fast exchange of
the molecules between the two phases results in an effective
velocity of the molecule distribution lower than the velocity of
the mobile phase. The interactions of the molecules of
different compounds with the stationary phase are different,
resulting in different effective velocities and separation. The
rate at which the components elute from the stationary phase
depends on their physical and chemical properties, such as
their size, shape, and affinities for the stationary phase. The
mixture components that interact strongly with the stationary
phase travel slowly as compared to those which have weak

interaction with the stationary phase. This allows the
components to be separated and identified based on their
unique properties. Chromatography includes a variety of
techniques, such as gas chromatography, liquid chromatog-
raphy, and thin-layer chromatography, each with its own
advantages and disadvantages and suited for different types of
mixtures and applications.

The literature has discussed the process of mass transfer and
separation in chromatographic columns through the use of
various mathematical models with differing levels of complex-
ity. Several models have been developed to describe the
transport of solutes in porous media. These include the
equilibrium-dispersive (ED) model, the lumped kinetic model,
and the general rate model.2−4 Each of these models is built as
a set of partial differential equations (PDEs) of the
convection−diffusion type along with additional differential
or algebraic equations to supplement the model. The
adsorption isotherm associated with these models determines
their linearity and nonlinearity. Convection-related practical
problems appear in a variety of applications, including weather
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forecasting, gas dynamics, oceanography, meteorology, oil
recovery simulation, granular flows, turbulent flows, modeling
of shallow waters, contaminant transport in porous media,
viscoelastic flows, magnetohydrodynamics, semiconductor
device simulation, electromagnetism, and many more. In this
paper, the nonlinear ED model considering the bi-Langmuir
adsorption isotherm is utilized. The analytical solution is not
feasible. Consequently, the only method for finding a solution
is to use a precise, reliable, and effective numerical technique.
In general, the finite difference (FD), finite element method
(FEM), and finite volume method (FVM) are three well-
known numerical techniques that can simulate chromato-
graphic processes.3,5,8,9,12−16,44 These techniques are widely
recognized and well-established methods for numerical
simulations. The FD is based on the discretization of the
spatial domain into a grid of discrete points and the
approximation of the partial derivatives in the governing
equations. The FEM involves the discretization of the spatial
domain into a set of interconnected elements and the
approximation of the partial derivatives by using shape
functions. The FVM is based on the discretization of the
spatial domain into a set of control volumes, each of which
represents a portion of the fluid in the chromatography
column. Each of these numerical techniques has its own
strengths and limitations. In this article, we used discontinuous
Galerkin (DG) FEM as a numerical technique because of its
diversity, flexibility, and stability, which is well suited for
convection-dominated problems.
DG Method. The DG method is a numerical technique for

approximating PDE solutions. Unlike traditional FEMs, the
DG method allows for the use of piecewise polynomial basis
functions that are discontinuous at element interfaces. This
provides more flexibility in terms of mesh geometry and the
choice of basis functions, making the DG well-suited for
solving complex and heterogeneous problems. The DG
method has a wide range of applications, including the
simulation of fluid flows, electromagnetic fields, acoustics, and
structural mechanics. It has also been used in astrophysics,
climate science, materials science, and among other fields. The
neutron transport equation, a linear hyperbolic equation for a
scalar-valued variable, was first tackled numerically by Reed
and Hill who devised the first DG method in 1973.6 The
importance of the method was recognized by Lesaint and
Raviart who performed its initial theoretical analysis in 1974.7

Over the time, the DG method has undergone gradual
development as it was applied to a variety of problems,
ultimately leading to its successful extension to nonlinear
unsteady hyperbolic systems by Cockburn and Shu in the
1990s.36,37 Since then, the method has seen an incredibly rapid
development. In this paper, we employ a high-order Runge−
Kutta DG (RKDG) method. In arbitrary order, DG schemes
usually offer higher accuracy for general chromatography
settings as demonstrated in previous studies. However, it has
been shown recently that there are chromatography settings
where unstabilized arbitrary order methods may struggle in
chromatography settings with strong gradients.43 Nonoscilla-
tory schemes can be more efficient and prevent negative values,
which can have considerable amplitude for the standard DG
methods.35 Hence, we choose a stabilized/TVD DG scheme
that is limited to second-order but retains stability for such
settings. The method combines the features of the Runge−
Kutta method and the DG method to produce an accurate and
efficient solution for the given model equations.

Paper Organization. The content of the paper is as follows.
The one-dimensional nonlinear ED is first discussed, and then
the proposed numerical method (RKDG) is deduced for a
single-component ED model. After that, there is a discussion
on the considered numerical test problems, and in the end,
conclusions are provided.
Nonlinear ED Model. This paper centers on the ED

model, which enables the anticipation of solute particle
distribution along the column, encompassing the retention
time and peak shape of each solute. The ED model rests on
five primary assumptions, which are outlined below.11

1 The chromatographic process is isothermal which means
temperature remains constant.

2 The column is homogeneous both along its radii and in
the angular direction.

3 The solid phase of the column is occupied by a porous
material composed of spherical particles with a uniform
size. This material acts as a filter for the substances that
are being separated in the column and plays an essential
role in the separation process.

4 The liquid phase is incompressible.
5 The process has axial dispersion, which generates band

broadening of the concentration profiles.

Additionally, an apparent dispersion coefficient Dapp,k is
introduced by adding together all mass transfer limitations
imposed on axial dispersion and nonequilibrium isotherms.
The one-dimensional mass balance equation for the ED model
is expressed as
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The variable NC symbolizes the sample’s number of
components. The solute concentration of the kth component
in the mobile and stationary phases is represented by Ck(t, z)
and qk*(t, z), respectively. The linear mobile phase velocity is
represented by u, while the axial coordinate is denoted by z
and the time coordinate is represented by t. The phase ratio is
given by F = (1 − ϵ)/ϵ, where ϵ is the total porosity of the
column packing.

Adsorption Isotherm. The equilibrium adsorption iso-
therms explain the solute distribution in a chromatography
column between the liquid and solid phases. Since the nature
of interactions differs from system to system, various
adsorption isotherm models have been constructed and are
presented in the literature. They are classified as linear,
Langmuir, BET, Freundlich isotherm, and many others.3,4,23

Here, the nonlinear bi-Langmuir isotherm is taken into
account. This isotherm is used to describe the adsorption of
molecules onto a surface. It is a combination of the Langmuir
and BET isotherms and assumes that adsorption occurs in two
separate layers, with a monolayer forming first, followed by a
multilayer. The bi-Langmuir model can provide more accurate
predictions of adsorption behavior than either the Langmuir or
BET models alone, especially when there is a high degree of
surface heterogeneity. The parameters in the bi-Langmuir
equation can be determined experimentally and used to
compare the adsorption properties of the different materials.
The model has a wide range of applications, including in
environmental remediation, food science, and pharmaceuticals.
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For the N-component mixture, the competitive bi-Langmuir
isotherm is expressed as
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where the coefficients ak represent Henry’s constant for the k-
th component in the mixture, while bk quantifies the
nonlinearity of the isotherm. The terms pj in the denominator
can have either positive or negative signs, enabling the mixture
to exhibit either Langmuir or anti-Langmuir behavior, as
described in24,25 The subscripts I and II refer to two distinct
adsorption sites.

The model eq 1 is subjected to the appropriate initial and
boundary conditions (BCs).

Initial Conditions. The expressions for the initial conditions
(ICs) are as follows
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Boundary Conditions. We consider the standard Danck-
werts BCs at the column inlet and evaluate a rectangular
injection profile.26 For k-th component Ck,inj is injected
concentration, and BC at the inflow end of the column is
defined as
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Finally, the outflow conditions at the column outlet z = L are
given below

= =C t z L
z

t
( , )

0, 0k
(5)

The injected concentration of the k-th component is
denoted by Ck,inj, and the injection time is symbolized as tinj.

■ NUMERICAL SCHEME
The proposed model, as represented by eq 1, is solved
numerically by using the total variation-bounded Runge−Kutta
DG (TVB-RKDG).33,34 To derive the numerical scheme, we
first convert the second-order system to a first-order system
and obtain the weak formulation. Then the DG scheme will be
used in a spatial coordinate that transformed the provided
PDEs into a system of an ODE in time, and then an explicit
and nonlinearly stable high-order Runge−Kutta method, i.e.,
TVB-RK, is applied to solve the resulting ODE system. Here, a
single-component ED model with NC = 1 and Ck = C is used
for the derivation of the numerical scheme. Thus, we get
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where =g C D( ) C
zapp as invented by Bassi and Rebay.10

After substituting eq 8 in eq 7 we get a system of PDEs as
given below
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Space Discretization. The spatial variable z is discretized
for l = 1, 2, ..., Nz, each mesh interval has a constant width Δz,
the cell partitions and domain of the cell l are zl+1/2 and Ωl =
(zl−1/2, zl+1/2), respectively. The width of the cell l is Δzl =
zl+1/2 − zl−1/2 and Ω = UΩl is the portion of the whole domain.
Let wa(t, z) be the approximate solution to w(t, z) for each
time t ∈ [0, T] in finite dimensional space
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The collection of polynomials having degrees p that are
defined over the cell Ωl is Pp(Ωl). To obtain an approximation
of solution wa(t, z), we need to derive a weak formulation. This
can be achieved by multiplying eqs 9 and 10 with a smooth
function v(z) ∈ L2(Ωl) and integrating by parts over the
interval Ωl, leading to the following expression
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Here, Pm(z), the Legendre polynomials of order m, are used as
local basis functions to apply eq 11. The property of L2-
orthogonality of Legendre polynomials can be utilized, that is
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For each z ∈ Ωl, the approximate solutions wa and ga belongs
to the finite dimensional space Va and can be written as
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Here, linear basis functions are used; therefore, m = 0, 1. By
using eqs 14−16, we get

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04641
ACS Omega 2023, 8, 38301−38312

38303

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04641?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= +

= +

w t m
z

w t z z z

g t m
z

g C z z

( )
2 1

( , ) ( )d ,

( )
2 1

( ) ( )d

l
m

l
m

l
m

l
m

( )
a

( )
a a

l

l (17)

The test function ϕm ∈ Pp(Ωl) will be used in place of the
smooth function v(z) and w and g the exact solutions are
replaced by the approximate solution wa and ga. Also, the
function f(Cl+1/2, gl+1/2) is not defined at cell interfaces so it
must be measured using an accurate numerical flux function Hl
that considers the two values of Ca(t, z) at the discontinuity,
that is
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Using the above definitions, the eqs 12 and 13 simplify to
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Equation 20 gives the modified values of wl= + *C t F t( ) ( )l ql

in each mesh interval Ωl. In eq 20, the chain rule is used, and
the system of ordinary differential equations in terms of Cl is
obtained. Then, eqs 20 and 21 take the following form
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The initial data for the above system of differential equations
are
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Boundary Conditions. The boundary was set at z−1/2 = 0.
The left BC presented in eqs 4 and 5 can be applied as
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CN+1
(m) = CN

(m) is the outflow BC applied at the right end of the
column.

Numerical Fluxes. Numerical fluxes are used to approx-
imate the flow of information across discrete interfaces in a
computational grid, which is then used to update the solution
of the PDEs at each time step.17−20,22,27−32 The choice of
numerical fluxes is crucial and depends on the type of PDE
being solved, the properties of the solution, and the desired
accuracy of the solution. In order for the current numerical
scheme to function effectively, it is required to select an
accurate numerical flux function Hl to measure the cell
interface flux values.12 By defining a suitable numerical flux
function that is consistent [i.e., Hl(Cl, Cl) = Fl(Cl)], monotone
[i.e., Hl(·, ·) should be nondecreasing in its first argument and
nonincreasing in its second argument], and Lipschitz
continuous (i.e., there exists a Lipschitz constant L > 0 such
that the absolute difference between the numerical flux
function’s values for different pairs of inputs should not be
greater than L times the sum of the absolute differences in each
input variable) accurate numerical results can be obtained.34 A
number of numerical flux functions have been documented in
the literature.38,39 Numerical fluxes play a key role in ensuring
the stability and accuracy of numerical solutions, and their
choice and implementation can greatly impact the performance
and reliability of numerical simulations. Here, the local Lax−
Friedrich flux function is utilized for this purpose42
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The scheme’s total variation stability can be attained
through modification of Cl±1/2

± by utilizing a local projection
limiter.12,34 Thus

= = ++C C C C C C,l l l l l l1
2

(0) 1
2

(0)
(28)

where

=

=

=
+

=

( )

( )

C C x

C C x

,l
m

M

l
m

m l

l k
m

M

l
m

m l

1

( ) 1
2

,
1

( ) 1
2 (29)

Our work focuses on variation-bound approximations and
the avoidance of negative values, particularly in chromato-
graphic environments with strong gradients. We utilize linear
basis functions (M = 1), as linear basis functions are

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04641
ACS Omega 2023, 8, 38301−38312

38304

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04641?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


comparatively straightforward and simple to use in both their
conceptual and computational aspects. Compared with higher-
order basis functions, they use lower-order polynomials, which
produce simpler expressions. By using linear basis functions
with limiters, we are able to attain second-order accuracy,
ensuring that the results of our calculations and simulations are
highly precise and reliable.

To guarantee local positivity, the equations presented in eq
29 are updated through the implementation of van Leer slope
limiters, as outlined in the studies of Jiang and Johnson.40,41

When dealing with issues involving steep gradients, shocks, or
discontinuities, we can improve the accuracy, stability, and
physical relevance of numerical solutions by utilizing the
limiters. As we are interested in variation-bounded approx-
imations, these limiters are employed to maintain the non-
negative nature of the expressions, ensuring that the results of
our calculations remain physically meaningful as expressed
below
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Equation 28 can be written as

= = ++C C C C C C,
l l l l l l1

2

(mod ) (0) 1
2

(mod )
(0)

(32)

and eq 18 is modified as
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The local projection limiter established in eqs 30−32
ensures the scheme’s stability while preserving its accuracy
order. Controlling the magnitude of the solution in each
computational cell helps prevent numerical errors and
instability.34 Additionally, the limiter is designed to preserve
the order of accuracy, ensuring that the accuracy of the
solution is not compromised. The local Lax−Friedrich
numerical flux is utilized for the proposed model due to its
simplicity, stability, and relatively high accuracy. The integral
terms in eqs 20 and 23 are approximated by using the Gauss−
Lobatto quadrature rule of order 10 which uses polynomial
approximations to estimate the integrals. The implementation
of the DG method yields a system of ODEs, as stated in eqs 22
and 23, as given below

=
t

L t
w

w
d

d
( , )H

H H (34)

where = [ ]C C q qw , , , T
H 1 2 1 2 . The system of ODEs mentioned

above is solved using the rth-order TVB-RK method, as follows
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where the initial data are expressed as

= = +w w w w,n r n
H
(0)

H H
( )

H
1 (36)

where αkm and γkm are the parameters of the TVB-RK method,
n represents the time step monitor, and wH

n+1 represents the
solution at the next time step. The TVB-RK method
parameters for a second-order scheme are written as12

= = = = =

= = =d d

1,
1
2

,

0, 1

10 10 20 21 21

20 0 1 (37)

Also, for the third-order scheme, the coefficients are defined
as follows

Figure 1. Effects of injected concentration in (a,b).
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■ RESULTS AND DISCUSSION
The suggested method is used to generate different chromato-
graphic elutions. Numerical case studies for (i) a single-

component one-dimensional ED model, (ii) a two-component
one-dimensional ED model, and (iii) a three-component one-
dimensional ED model are discussed.
Elution Profile of One Component. In this subsection,

we considered the nonlinear single-component ED model
given by eq 6 along with the standard bi-Langmuir isotherm
* = ++ +q C( ) a C

b C
a C

b C1 1
1I

1I

1II

1II
(c.f. eq 2 with pj = 1). Continuous

injections in Figure 1a and rectangular injections in Figure 1b
are both considered. The Danckwerts BCs given in eqs 3 and 4
are used. The required parameters used in this case study are
given in Table 1.

Effects of Injected Concentration. Graphical results in
Figure 1 show the impacts of the finite injected concentration
on the profiles. Different injected concentrations, such as Cinj =
1 g/L, Cinj = 4 g/L, Cinj = 7 g/L, and Cinj = 10 g/L, are
considered. The mixture pulse is injected into the column for
tinj = 12 min. In the figures, the peak height increased by
increasing the injecting concentration. This demonstrates a
direct correlation between the injection concentration and the
height of the peaks.

Table 1. Basic Simulation Parameters of Single-Component
Elution

parameters symbols values

column length L 1 cm
dispersion coefficient Dapp 0.0001 cm2/min
porosity ϵ 0.4
interstitial velocity u 0.1 cm/min
injection time tinj 2 min
maximum simulation time tmax 60 min
initial concentration Cinit 0 g/L
feed concentration Cinj 10 g/L
Henry constant for site I a1I 0.5
Henry constant for site II a1II 1.0
adsorption energy for site I b1I 0.05
adsorption energy for site II b1II 0.1

Figure 2. Effects of different velocities in (a,b).

Figure 3. Effects of injection time tinj on nonlinear single-component
elution profile.
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Effects of Velocity. To investigate the effect of flow rate on
retention time, concentration profiles were compared for both
continuous and rectangular injections as in Figure 2a,b. Figure
2 shows the comparison for four different flow rates: u = 0.1,
0.15, 0.2, and 0.25 cm/min, while keeping the injection time
constant at tinj = 2 min. It was observed that the interstitial
velocity had a significant impact on the retention time, with
higher velocities leading to a decrease in the retention time.
This effect is due to the dominant influence of adsorption at

higher velocities. Consequently, the substance profiles in the
system become more defined and pronounced.

Effects of Injected Time. The effects of the injection time
on the concentration profile are shown in Figure 3. Four
different values of injection time such as tinj = 2 min, tinj = 4
min, tinj = 6 min, and tinj = 12 min, respectively are considered
for the injected concentration volume Cinj = 10 g/L. The plots
depict that the increase in injection time increases the sample
volume i.e., the width of rectangular profiles becomes wider.
Furthermore, the effects of injected time are also visible from
the right tail of the concentration profiles; therefore, its plot is

Figure 4. Effects of the adsorption isotherms.

Figure 5. Effects of the adsorption energy.

Figure 6. Effects of the Henry constant.

Figure 7. Comparison of the DG and FVM schemes.
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only possible for pulse injection because there is no tail in
continuous injection.

Effects of Linear and Nonlinear Adsorption Isotherms.
The impact of linear and nonlinear isotherms on the elution
profile is given in Figure 4. The black solid line shows the
linear isotherm, and the red dotted line shows the nonlinear
isotherm. Normally, distributed peaks and symmetrical
behavior are prominent in linear isotherm, whereas sharpening
peaks, asymmetrical, and right tail behavior show the nonlinear
isotherm effects. Decrease in the height and less retention time
of the profiles are prominent in the case of nonlinear isotherm.

Effects of Adsorption Energy. In Figure 5 impact of the
adsorption parameter is considered. For larger values of
coefficients, decreases in the height and less retention time are
prominent, which is due to the overloaded stationary phase as
compared to smaller values of adsorption energies. Also, the
right-tailed pattern of the bi-Langmuir isotherm is shown for a
greater value of these coefficients.

Effects of Henry Constant. Figure 6 shows the effects of the
Henry constant on the elution profile. It is used to predict the

distribution of a substance between two phases. A higher value
of the constant increases the retention time and decreases the
height of the peak. This effect shows that the solubility rises for
the smaller value of Henry’s constant. Understanding the
Henry constant is essential for optimizing the conditions in a
system and achieving high-quality separations. In Figure 7, the
already available high-resolution FVM of Koren21,44 of second-
to third-order accuracy is used to compare the results of the
suggested method. The findings show an amazing level of
accuracy and consistency.

Solution at Different Grid Points. In Figure 8, the
effectiveness of the proposed scheme is examined over a grid
of 200 and 450 mesh cells with a reference solution, whereas
the reference solution is obtained by using RKDG over a grid
of 1000 mesh cells. Comparing the results of the RKDG
scheme on these different grid mesh cells with the reference
solution aims to demonstrate how well the RKDG scheme
converges to the reference solution as the grid is refined. In
Figure 8, a clear comparison is evident as the grid is refined
and the plot is close to the reference solution. This comparison
provides valuable insights into the accuracy and reliability of
the RKDG scheme in capturing the behavior of the reference
solution, and validating its convergence properties.
Elution Profile of Two Components. We have stretched

out our investigation to a nonlinear elution profile of two
components. The numerical outcomes in these test problems
are obtained by solving a two-component ED model by using
the RKDG scheme with the Danckwerts BCs for unbounded
and limited injected volumes.

Case 1: Generalized Bi-Langmuir Isotherm. To simulate
how a two-component mixture will spread through a
chromatographic column, we used the ED model eq 1 in
conjunction with the standard bi-Langmuir isotherm eq 2,
where we set p1 = −1 and p2 = 1.24,25 All of the required
parameters are given for the considered simulations in Table 2.

In accordance with a specific initial composition, the column
is placed in a constant initial state. At time τ = 0 a particular
feed composition is continuously pumped into the column to
produce an inlet state. This configuration corresponds to a
particular Riemann problem for a small axial dispersion
coefficient. The Riemann problem solutions are divided into
three distinct elution fronts in the nonlinear chromatographic
theory. Semishock waves, shock waves, and simple rarefaction
waves are the characteristics of these elution fronts. In the
equilibrium theory of nonlinear chromatography, shock is
referred to as a mathematical discontinuity. Shock waves form
when composition fronts in the upstream state move more
quickly than those in the downstream state. This compression
causes the shock waves to have a sharp front and improves the
component concentration throughout the shock. Rarefaction
waves are expansion waves by which the concentration
decreases. As the mobile phase moves through the column,
it can cause strong retention of a component, leading to the
emergence of composition fronts. As the mobile phase moves
through the column, it can cause strong retention of a
component, leading to the emergence of composition fronts.

Simulation 1 of Case 1. The following data are utilized to
run simulation 1 for case 1 as per our suggested numerical
scheme. The constant initial concentrations and the feed
concentrations are listed as C1,init = 0.0338 g/L, C2,init = 0.262
g/L, C1,inj = 0.4211 g/L, and C2,inj = 0.0058 g/L, for 1 and 2
component, respectively. The numerical results are shown in
Figure 9 (left). Furthermore, in Figure 9 (right), comparisons

Figure 8. Solution at different grid points.

Table 2. Basic Simulation Parameters of Two-Component
Elution

parameters symbols values

column Length L 1.0 cm
dispersion coefficient Dapp 10−6 cm2/min
porosity ϵ 0.4
interstitial velocity u 0.1 cm/min
injection time tinj 2.0 min
maximum simulation time tmax 70 min
Henry constant for site I of comp. 1 a1I 0.5
Henry constant for site II of comp. 1 a1II 0.75
Henry constant for site I of comp. 2 a2I 0.7
Henry constant for site II of comp. 2 a2II 1.0
adsorption energy of comp. 1 for site I b1I 0.01
adsorption energy of comp. 1 for site II b1II 0.5
adsorption energy of comp. 2 for site I b2I 0.02
adsorption energy of comp. 2 for site II b2II 0.6
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of the RKDG and FVM methods are shown; both schemes
produced similar results but the RKDG plots are slightly
sharper than FVM.

Simulations 2 and 3 of Case 1. The following data are
utilized to run simulations 2 and 3 for case 1 as per our
suggested numerical scheme. The constant initial concen-
trations and the feed concentrations for simulation 2 are listed
as C1,init = 0.0338 g/L, C2,init = 0.262 g/L, C1,inj = 0.1778 g/L,
and C2,inj = 0.0667 g/L, for 1 and 2 component respectively,
and the numerical results are presented in Figure 10 (left).
Similarly, the constant initial concentrations and the feed
concentrations for simulation 3 are listed as C1,init = 0.2051 g/
L, C2,init = 0.0598 g/L, C1,inj = 0.0317 g/L, and C2,inj = 0.3016
g/L, for 1 and 2 component respectively, and the numerical
results are shown in Figure 10 (right).

Case 2: Standard Bi-Langmuir Isotherm. For finite injected
volumes, two-component ED [c.f. eq 1 with standard bi-
Langmuir isotherm given in eq 2 with (p1 = 1 & p2 = 1)] is
considered. All of the required parameters needed for this test
problem are given in Table 2. At the column inlet, a liquid
mixture is injected for tinj = 12 min to produce the numerical
result presented in Figure 11.

Effects of High Values of Adsorption Energy. In Figure 12,
the effects of high values of adsorption energy are considered.
The overlapping in the concentration profiles shows poor
separation, and accurately identifying and quantifying individ-
ual components might be difficult when there are overlapping
peaks. It also increases the retention time as analytes interact
with the stationary phase for a longer period of time before
eluting from the column.

Figure 9. Simulation and comparison of schemes for case 1.

Figure 10. Simulations 2 and 3 for case 1.
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Elution Profile of Three Components. Figure 13
displays the three-component elution profiles of the mixture.
The following data values are used in the simulation process ϵ
= 0.4, L = 1 cm, u = 0.1 cm/min, a1I = 1.0, a1II = 0.75, a2I = 0.5,
a2II = 2.0, a3I = 0.25, a3II = 3.5, b1I = 0.05, b1II = 0.015, b2I =
0.0001, b2II = 0.1, b3I = 0.02, b3II = 1.0, Dz = 0.0001 cm2/min,
Ck,inj = 1 g/L, and tmax = 100 min. The standard bi-Langmuir
isotherm is used in eq 2. At first, an empty column is taken i.e.,
ck,init = 0 g/L. The typical behavior of the bi-Langmuir
adsorption isotherm is visible from the results shown in Figure
13. Adsorption equilibrium constants components with higher

values eluted from the column later than those with smaller
values.

■ CONCLUSIONS
In this paper, a multicomponent nonlinear ED model was
formulated and solved numerically. The ED model was then
solved by using the TVB-RKDG method. First, the system of
ODEs was created from the given PDE by using the DG
method in the axial coordinate, and then an explicit and
nonlinearly stable high-order Runge−Kutta method, i.e., TVB-
RK, was used to solve the resulting ODE system. The TVB
property ensures the scheme’s positivity, such as in this work
the non-negativity of the mixture concentrations. Numerous
case studies involving one, two, and three components were
used to examine the model. The effects of different kinetic
parameters such as the effects of injected concentration,
velocity, linear and nonlinear isotherm, adsorption energies,
Henry constant, and injected time are considered for the
efficiency of the process. It helps us to examine the
consequences of uncertainties in the inlet concentrations. All
of the findings in this article were attained in a minute. The
graphical comparison was shown for two numerical methods:
the FVM and FEM. The proposed RKDG method ensures
convergence to physically relevant solutions by achieving stable
and nonoscillatory solutions and the TVB property ensures the
scheme’s positivity as it is the most prevalent and fundamental
mathematical requirement in physical models. The utilization
of these simulations has numerous benefits when it comes to
improving the experimental setup and transport mechanisms.
These simulations allow for the optimization of the
experimental conditions by providing a virtual environment
to test and fine-tune various parameters. The proposed scheme
can also be applied to more complex geometries. Additionally,
they are also useful in scaling up the physiochemical variables,
which can be crucial in obtaining accurate results when
transitioning from laboratory to industrial-scale processes. By
incorporating these simulations into the experimental design
process, we can achieve more efficient and effective results,
leading to a greater understanding of the system being studied.

Figure 11. Elution profile for two components.

Figure 12. Effects of high adsorption energy.

Figure 13. Elution profile for three components.
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(14) Püttmann, A.; Schnittert, S.; Leweke, S.; von Lieres, E. Utilizing

algorithmic differentiation to efficiently compute chromatograms and
parameter sensitivities. Chem. Eng. Sci. 2016, 139, 152−162.
(15) Qamar, S.; Sattar, F. A.; Abbasi, J. N.; Seidel-Morgenstern, A.

Numerical simulation of nonlinear chromatography with core-shell
particles applying the general rate model. Chem. Eng. Sci. 2016, 147,
54−64.

(16) Rouchon, P.; Schonauer, M.; Valentin, P.; Guiochon, G.
Numerical Simulation of Band Propagation in Nonlinear Chromatog-
raphy. Sep. Sci. Technol. 1987, 22, 1793−1833.
(17) Cruz, P.; Santos, J. C.; Magalhaẽs, F.; Mendes, A. Simulation of
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