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Abstract: In the field of robot path planning, aiming at the problems of the standard genetic algorithm,
such as premature maturity, low convergence path quality, poor population diversity, and difficulty
in breaking the local optimal solution, this paper proposes a multi-population migration genetic
algorithm. The multi-population migration genetic algorithm randomly divides a large population
into several small with an identical population number. The migration mechanism among the
populations is used to replace the screening mechanism of the selection operator. Operations such as
the crossover operator and the mutation operator also are improved. Simulation results show that
the multi-population migration genetic algorithm (MPMGA) is not only suitable for simulation maps
of various scales and various obstacle distributions, but also has superior performance and effectively
solves the problems of the standard genetic algorithm.
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1. Introduction

With the development of society, mobile robots are playing an increasingly important role in
modern life. Mobile robots can autonomously move and operate according to different assigned tasks
and have been widely used in the military, medical, manufacturing, entertainment, logistics and other
fields [1–3]. The path planning problem is a hot topic in the field of robotics research. It requires robots
to find an optimal or suboptimal path from the starting position to the target position according to some
specific performance index (such as distance, time, etc) in a working environment with obstacles [4,5].

Path planning problems are generally divided into global path planning and local path planning.
In global path planning, a path search is carried out in a known environment. On the contrary, local path
planning is relatively complex because the environment may be partially or completely unknown.
According to the information of obstacles, the working environment of the robot can be divided into
the fully known environment, partly known environment, completely unknown environment and
dynamic environment [6]. The quality of robot path planning can be evaluated according to path
length, path smoothness, energy consumption or risk degree [7].

According to the different stages of the path planning algorithm development, the algorithms
can be divided into two categories: fast-exploring random tree method [8], artificial potential field
method [9], the visible method [10], A* algorithm [11] as representative traditional algorithms.
Intelligent algorithms represented by genetic algorithm [12], ant colony algorithm [13], particle swarm
algorithm [14], immune cloning algorithm [15]. In [8], Janson theoretically proved that the use
of deterministic low-dispersion sampling plan usually makes the RRT algorithm display superior
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performance. In [9], Yu proposed an improved artificial potential field method. This method uses
the strength of the potential field instead of the force vector to plan the path of the mobile robot.
This method can better realize the path planning of the mobile robot in a dynamic environment.
In [10], Blasi first proposed a real-time collision avoidance algorithm based on visibility graph method.
The algorithm solves the optimization problem through a piecewise linear path with the smallest
cost. In [11], Le proposed an improved A* algorithm. The algorithm can automatically generate
path points to improve the path coverage of the robot. These traditional path planning algorithms
are light and small, with less calculation and easy to understand. Such algorithms are often used
for small-scale maps with fewer obstacles. However, these traditional path planning algorithms are
not suitable for large-scale maps or maps with many obstacles, and it is easy to fall into a locally
optimal solution. In [12], Park proposed a new multi-population genetic algorithm. The algorithm
can solve complex communication problems and multi-label feature selection problems. In [13],
Beschi used an ant colony algorithm to solve complex motion planning problems after discretizing
the task space. In [14], Strąk proposed a discrete particle swarm optimization algorithm to solve the
dynamic traveling salesman problem. The algorithm can automatically set the parameter values of the
discrete particle swarm optimization algorithm. Simulation results show that the algorithm is suitable
for large-scale dynamic traveling salesman problems. Aiming at the multi-objective optimization
problem, reference [15] proposed an immune cloning algorithm based on the reference direction
method. The algorithm uses the reference direction method to guide the selection and cloning of
active populations. The simulation results show that the algorithm still has strong competitiveness in
complex environments. Compared with traditional algorithms, these intelligent algorithms are suitable
for both small-scale maps and large-scale maps. They can be used for both global path planning and
local path planning, and can effectively avoid local optimal solution problems.

This article uses the genetic algorithm to study path planning. The genetic algorithm is designed
according to the evolutionary laws of organisms in Nature. This algorithm is a randomized search
method that simulates natural selection theory and biological genetic mechanisms. Because the genetic
algorithm has the advantages of strong robustness and parallelism, it is widely used in path planning.
Forrest [16] summarized the standard genetic algorithm (SGA) proposed by Holland and pointed
out that SGA has the advantages of flexible search and strong scalability. However, SGA also has
disadvantages such as low quality of convergent individuals, many iterations required for convergence,
easy to fall into local optimal solutions, and poor population diversity. Hu Jun et al. [17] initialized
the population by introducing chaotic sequences and a heuristic method based on environmental
knowledge to improve the quality of the initial population. However, this method is very slow
at generating individuals in a multi-obstacle environment and may even fail to produce effective
individuals. Shi et al. [18] proposed a new coding method based on projecting two-dimensional data to
one-dimensional data. This coding method can reduce the computational complexity of the algorithm
model. However, this coding method can only generate fixed-length codes. This will affect the quality
of the generated path. This encoding method is also not suitable for large-scale maps. Guo et al. [19]
proposed an improved genetic algorithm (IGA) by improving the crossover mutation operator of SGA.
Compared with SGA, IGA can converge faster. However, the quality of convergent individuals is not
good, and the shortcomings of poor population diversity are still not significantly improved. Based on
the apoptosis theory proposed by Yigong, Zhang et al. [20] improved the selection operator of SGA.
Then they proposed the programmed cell death evolutionary algorithm (PCDA). Compared with
SGA, PCDA has improved performance indexes such as program running time, iterations required for
convergence, individual quality of convergence, and population diversity. However, there is also the
problem that population diversity drops sharply in the middle and late iteration.

Through the above analysis, this paper proposes a path planning method based on the
multi-population migration genetic algorithm (MPMGA). This paper makes the following innovations
and contributions: (1) A new algorithm framework is proposed to enhance the parallelism of
the algorithm. (2) Compared with other algorithms, MPMGA can be used for both global static
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path planning and local dynamic path planning and MPMGA shows good performance in both.
(3) Compared with other algorithms, MPMGA has better feasibility and effectiveness in actual maps
and good applicability in simulation maps. (4) No matter what the scale of the map and no matter how
the obstacles are distributed, MPMGA can always generate high-quality and effective planning paths.
(5) MPMGA proposes migration operators and optimization operators. The migration operator can
speed up the algorithm convergence speed and enhance the diversity of the population. Optimization
operators can further improve the quality of convergent individuals. (6) MPMGA improves the
population initialization process, crossover operator and mutation operator. MPMGA improves the
quality of the initial population by improving the population initialization process. MPMGA further
enhances the global search ability of the algorithm by improving the crossover operator. MPMGA
further enhances the local search ability of the algorithm by improving the mutation operator.

The remainder of this paper is organized as follows: Section 2 introduces the algorithm framework
of MPMGA. Section 3 introduces the modeling method of the two-dimensional space environment
and the preprocessing process for irregular obstacles. In Section 4, we introduce the various aspects
of MPMGA in detail, including encoding methods, population initialization process, cross mutation
operator, migration operator, etc. In Section 5, we compare the performance of each algorithm and the
quality of path planning of each algorithm in two different scale simulation maps through simulation
programs. We analyze in detail the reasons why each algorithm produces good or poor performance.
In Section 6, we summarize the entire paper and discuss the applicability and problems of MPMGA on
a real mobile robot. According to these issues and limitations, we discuss future work.

2. MPMGA Framework

We propose MPMGA based on the standard genetic algorithm. MPMGA randomly divides a large
population into several small populations with identical numbers. By assigning different functions
to different small populations, MPMGA successfully makes the high-quality individuals in ordinary
populations rise to high-quality populations and inferior individuals in high-quality populations sink
to ordinary populations and randomly exchanges individuals from different populations.

As shown in Figure 1, the initial population is randomly divided into populations A–C.
After evaluating the fitness of different individuals, according to the fitness, we can complete the
migration operations such as the rising, sinking and communication of individuals among different
populations. Then we perform the crossover and mutation operations. After the evolution is over,
the best individual can be obtained. Through performing the second optimization on the best individual,
the quadratic optimization individual is obtained.

3. Environment Modeling

In this paper, the grid method is used to build the environment model. The grid method is a
method that divides the two-dimensional workspace of mobile robots into several grids of the same
size. As shown in Figure 2, the entire two-dimensional workspace is divided into a 20 × 20 grid map
by using the grid method. In the grid map, the numbers are 0, 1, 2, 3, 4...399 from left to right and
bottom to top. The white grid represents the feasible area, and the black grid represents the infeasible
area, i.e., the obstacle area. Grid coordinates are represented by grid center points.
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Figure 1. MPMGA frame diagram.

The corresponding relationship between grid number and grid coordinate is{
x = mod(p, N) + 1
y = f ix(p/N) + 1

(1)

p = (x− 1) + (y− 1) ∗N (2)

Equation (1) converts grid numbers into grid coordinates and Equation (2) converts grid coordinates
into grid numbers. In the Equations (1) and (2), p is the grid number, (x,y) is the coordinate point
corresponding to the grid, N is the grid number per row, mod is the remainder operation, and fix is the
rounding operation.
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To improve the security of the grid map and the efficiency of the algorithm, the following
preprocessing is required:



Sensors 2020, 20, 5873 5 of 23

(1) The mobile robot is equivalent to the mass point, and the obstacle is expanded. The expansion
size is the sum of the radius and reserved safety distance of the mobile robot.

(2) If the obstacle is irregular, the grid is marked in black, where the obstacle is located.
(3) If all eight directions of a white grid are black grids, this white grid is also marked as a black grid.

4. Algorithm Design

4.1. Coding Mode

Common coding methods include binary coding, gray coding, floating-point coding, real coding,
permutation coding, etc. In this paper, variable-length real-number coding is used. Variable-length
real-number coding refers to real-number coding with a variable chromosome length (as shown
in Figure 3).
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4.2. Initial Population

The barrier-free intermittent path refers to a path that selects a series of free grids between the
starting point and the target point and does not require continuity between the grids [21]. Based on the
barrier-free intermittent path, this paper connects the barrier-free intermittent path into a barrier-free
continuous path through the connection operator. Then we use the deletion operator to delete the
circular partial path in the barrier-free continuous path; thus, we can generate high-quality initial
populations. The connection operator refers to an operator that connects a barrier-free intermittent
path into a barrier-free continuous path (as shown in Figure 4). For example 0,60 is a barrier-free
intermittent path. It becomes a barrier-free continuous path such as 0, 20, 40, 60, after the operation of
the connection operator. The connection method is the intermediate value insertion method. i.e., if two
adjacent path points in a path are not continuous, the middle grid of the connection line between
two path points is inserted into the middle of two path points. If the inserted grid is an obstacle grid,
we replace the obstacle grid with a free grid around the obstacle grid. Then we repeat the insertion
process in such a loop until the entire path becomes a barrier-free continuous path.
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Figure 4. The connection operator.

The deletion operator refers to an operator that deletes a circular partial path in a barrier-free
continuous path. For example: in paths 0, 20, 40, 21, 41, 40, 60, paths 21, 41, 40 are circular partial
paths; then, the path after using the deletion operator is: 0, 20, 40, 60.The deletion operator deletes the
circular partial path by removing any repeated path point and the partial path between repeated path
points in the barrier-free continuous path (as shown in Figure 5).
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The generation process of the initial population is shown in Figure 6.
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4.3. Fitness Function

Fitness is often used to evaluate the quality of path individuals. High fitness implies good individual
quality. Compared with the traditional single-objective optimization, this paper comprehensively
considers two factors: path length and path smoothness. In the form of a weighted sum,
the multi-objective optimization problem is transformed into a single-objective optimization problem.
The fitness function is defined as follows:

f itness = α ∗ f 1 + β ∗ f 2 (3)

α+ β = 1 (4)

where fitness is the total fitness function, f1 is the fitness function of the path length, f2 is the fitness
function of the path smoothness, and α and β are the weights of the two fitness functions.

f1 and f2 are defined as follows: {
f 1 = 1/path
f 2 = c/smoothness

(5)

where path is the length of the path, smoothness is the smoothness of the path and c is a precision
coefficient and c is a fixed constant. By adjusting c, f2 and f1 can be controlled to maintain the same
order of magnitude.

Assuming that a specific route is composed of n waypoints, the coordinate of the i-th waypoint
is Pi(xi,yi) and the coordinate of the i + 1 th waypoint is Pi+1(xi+1,yi+1); then, the path length can be
expressed as:

path =
n−1∑
i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (6)

Suppose that there are three continuous path points Pi−1, Pi, Pi + 1, and two path segments among
the three path points: Pi−1Pi, PiPi + 1. Let θi be the rotation angle between the two path segments and
αi be the included angle between the two path segments, i.e., π−θi, as shown in Figure 7.
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a1 = (xi−1 − xi)
2 + (yi−1 − yi)

2

b1 = (xi+1 − xi)
2 + (yi+1 − yi)

2

c1 = (xi−1 − xi+1)
2 + (yi−1 − yi+1)

2

a =
√

a1
b =
√

b1
c =
√

c1

(10)

di = (a1 + b1− c1)/(2 ∗ a ∗ b) (11)

αi = a cos(di) (12)

where Equations (10)–(12) use the inverse cosine function to calculate angle αi between the two path
segments. Equations (7)–(8) calculate the slope of the two path segments. Due to the inherent defects
of the inverse cosine function, in Equation (9), the value of rotation angle θi is discussed by using the
relationship between the slopes of the two path segments.

Path smoothness is a penalty set according to the value of rotation angle θi. The smoothness of
the path can be measured by smoothness as follows:

smoothnessi =


0,θi = 0
5, 0 < θi < π/2
25,θi = π/2
125,θi > π/2

(13)

smoothness =
n−1∑
i=2

smoothnessi (14)

In Equation (13), a larger the rotation angle θi corresponds to a greater smoothness value of
the path, which indicates that the path is not smooth. In addition, when the value of θi is too large,
the mobile robot has great challenges in terms of energy consumption and safety, so it must be given a
high penalty.
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4.4. Migration Operator

Common selection strategies include roulette selection, elite selection, tournament selection,
truncation selection, etc. However, there are some problems in these selection strategies, such as serious
homogenization, easy convergence to local optimal solutions and loss of population diversity. The most
prominent problem is the serious homogenization phenomenon. The phenomenon of homogenization
implies that as the number of iterations increases, a particular individual will appear in large numbers
in the population. The phenomenon of homogeneity will make the effect of the crossover operator
gradually decrease as the number of iterations increases. When the entire population is composed of
the same individuals, the crossover operator is completely invalid.

Based on the ideas of population mobility and social division of labor proposed in the
reference [22–24], this paper proposes a migration operator. The migration operator refers to a
comprehensive mechanism that assigns different functions to different small populations, maintains
normal communication among different small populations and ensures that high-quality individuals
in ordinary populations rise to high-quality populations and inferior individuals in high-quality
populations sink to ordinary populations. The migration process of the migration operator is shown
in Figure 8.
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Figure 8. Migration process.

In Figure 8, three small populations are given different functions by setting different crossover
rates and mutation rates. By giving population A low crossover rate and low mutation rate. We make
population A well preserve high-quality individuals. This way can prevent the loss or destruction of
high-quality individuals. Therefore, population A is designated as a high-quality population. By giving
population B high crossover rate and low mutation rate and giving population C low crossover rate
and high mutation rate. We make population B and population C act as resource banks. This way can
provide many crossover and mutation individuals and is conducive to expanding the solution space
search coverage. Hence, we designate population B and population C as ordinary populations.

In the migration process of Figure 8, several high-quality individuals in population B and
population C rose to population A to be preserved, and a part of the poor individuals in population A
were eliminated into population B and population C to act as raw materials for crossover or mutation.
The latter process can play the role of waste utilization. In addition, a certain individual communication
mechanism has been maintained between population B and population C to break the gap between
the two populations.

In summary, the migration operator has the advantages of accelerating the convergence rate,
increasing the population diversity, breaking the local optimal solution and solving the serious
homogenization of the population individual in the middle and late iterations.

4.5. Crossover Operator

The crossover operator is an operator that generates new individuals through the crossover
recombination of two individuals. Common crossover operations include single-point crossover,
multipoint crossover, uniform crossover, etc. Reference [25] uses a single-point crossover method and
notes that single-point crossover is more efficient and easier to implement than other crossover methods.
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Single-point crossover randomly selects any path point with the same grid number in the two paths
and exchanges the chromosome fragments after the selected path point to form two new individuals.
This crossover method is also called homologous single-point crossover [26].

This paper proposes a heterologous single-point crossover based on the homologous single-point
crossover and adopts the individual reception method proposed in the reference [27]. If the individual
after crossover is better than the individual before crossover, then the individual after crossover is
accepted. If the individual after crossover is worse than the individual before crossover, then the
individual before crossover is accepted. The heterogeneous single-point crossover operator no longer
looks for a common path point with identical grid numbers but finds a pair of path points that satisfy
the condition that the two new paths are still continuous after the crossing. Such a group of path points
must satisfy two conditions:

(1) The grid corresponding to the i-th path point in the first path and the grid corresponding to the j
+ 1-th path point in the second path are continuous.

(2) The grid corresponding to the i + 1-th path point in the first path and the grid corresponding to
the j-th path point in the second path are continuous.

Such a set of path points i, j is the cross path point for which the heterogeneous single point cross
operator is looking. The two new individuals obtained by crossing the chromosome segment after the
i-th path point in the first path and the chromosome segment after the j-th path point in the second
path are still unobstructed continuous paths (as shown in Figure 9).
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The cross-path point searched by the heterologous single-point crossover operator includes the
cross-path points searched by the homologous single-point crossover operator. So the homologous
single-point crossover operator is a special case of the heterologous single-point crossover operator.

4.6. Mutation Operator

MPMGA proposes the single-gene segment mutation and uses a simulated annealing algorithm
to improve the receiving method of mutant individuals. Single-gene segment mutation refers to the
mutation way of mutating a specific gene segment rather than mutating a certain gene point (as shown
in Figure 10). i.e., it mutates a random gene segment. Specific operation is to randomly delete a
specific gene segment on the individual and then use the connection operator to repair the damaged
individual. Single-gene segment mutation ensures the continuity and accessibility of the individual
after the mutation. Single-gene segment mutation greatly improves the quality of the mutation and
enhances the ability to explore the solution space.
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Figure 10. Mutation graph.

Compared with the method of full reception or optimal reception, the simulated annealing
algorithm is more flexible for receiving mutated individuals. When the mutant individual is better
than the original individual, the mutant individual will be accepted. When the mutant individual is
worse than the original individual, the mutant individual will be accepted with a certain probability.
The advantage is that it can consider the retention of high-quality individuals and give some tolerance
to inferior individuals to expand the diversity of the population.

Assume that the individual before mutation is represented as old, the individual after mutation is
represented as new, and fitness() represents the fitness of an individual. Then, the simulated annealing
algorithm receives the mutation individual probability equation as follows:

a = ( f itness(old) − f itness(new))/T (15)

p(new) =

{
1, f itness(new) > f itness(old)
1/(1 + ea), f itness(new) ≤ f itness(old)

(16)

T = c1 ∗wt (17)

In Equation (15), T is the current temperature and a is a parameter. In equation (16), p(new) is the
probability of receiving the mutated individual. In Equation (17), c1 is the initial temperature, w is
the temperature decay rate and t is the current number of iterations. Obviously, when the number
of iterations t increases, temperature T will decrease and the tolerance for individuals who become
worse after mutation will decrease. Until a certain generation, the algorithm will no longer tolerate
individuals who become worse after mutation.

4.7. Optimization Operator

The initial population will converge to the optimal individual through several iterations. Then the
optimization operator performs the second optimization based on the optimal individual. This paper
adopts the deletion point method to design the optimization operator (as shown in Figure 11).
The deletion point method refers to the method of deleting redundant path points in the barrier-free
continuous path so that the barrier-free continuous path becomes a barrier-free discontinuous path again.
This barrier-free discontinuous path is a safe path with great performance indicators. The difference
between the optimization operator and the previous deletion operator is that the deletion operator
deletes the circular path in the unobstructed continuous path. After the deletion, it is still an
unobstructed continuous path. But the optimization operator deletes the redundant path points in
the unobstructed continuous path. The path after deletion is the barrier-free discontinuous path.
Assuming that the path path contains n path points, path(i) represents the grid number corresponding
to the i-th path point in the path path, and the optimization operator design steps are as follows:

(1) Initialize i = 1, j = i + 1, the list table is empty, add path (i) to the list.
(2) Determine whether j is equal to n. If they are equal, add path (j) to the list and go to step (4).

If they are not equal, go to step (3).
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(3) Determine whether the connection line between i-th path point and j + 1-th path points passes
through the obstacle grid. If it does not pass, then j = j + 1 and go to step (2). If it passes, then i = j
and add path (i) to the list; then, go to step (3) again.

(4) Output the grid number in the list.
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It is known from the optimization operator design steps. The grid number in the list table is the
optimized result of the optimization operator.

5. Numerical Results and Analysis

5.1. Simulation Environment

This paper compares and analyzes the performance of MPMGA, SGA and PCDA algorithms in
the natural simulation environment and the artificial simulation environment. Such as path generation,
fitness and algorithm running time. The natural simulation environment refers to a simulation
map that completely obeys the distribution of obstacles on the actual map. The natural simulation
environment is mainly used to verify the feasibility and effectiveness of the algorithm, as well as various
performance indicators, and enhance the application ability of the algorithm in real life. The artificial
simulation environment refers to a simulation map that artificially sets the distribution of obstacles.
The artificial simulation environment is mainly used to verify the adaptability of the algorithm in
different environments. The software and hardware configuration of the simulation environment are
shown in Table 1.

Table 1. The software and hardware configuration.

Hardware
Processor AMD Ryzen 5 4500U with Radeon Graphics 2.38 GHz

RAM 8.00 GB (7.37 GB available)

Software
Operating System Windows 10(64-bit operating system)
Simulation Tool Matlab r2018a

5.2. Natural Simulation Environment

The actual map environment simulated by the natural simulation environment is our school
library. The library area is 30 m × 30 m. We divide the entire map into 25 × 25 grid models, and the
actual area of each grid is 1.2 m × 1.2 m. According to the preprocessing process of grid model provided
in Section 3, the 25 × 25 grid model is preprocessed, and the simulation map obtained is shown in
Figure 12. In the simulation map, black obstacles represent unfeasible areas such as desks, sofas,
bookcases, toilets, walls, and isolation belts and white grids represent feasible areas. The mobile robot
enters from grid 10 and leaves from grid 624.
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The parameter design of the three algorithms is shown in Table 2.

Table 2. Algorithm parameters.

MPMGA

Start grid number 10
Target grid number 624

Initial population size 60
The size of each small population 20

Number of iterations 200

Crossover probability High crossover probability 0.8
Low crossover probability 0.1

Mutation probability High mutation probability 0.8
Low mutation probability 0.1

Weight coefficient α = 0.8, β = 0.2
Accuracy coefficient 1

The initial temperature 1
Temperature decay rate 0.7

PCDA/SGA

Start grid number 10
Target grid number 624

Initial population size 60
Number of iterations 200
Crossover probability 0.8
Mutation probability 0.1

Weight coefficient α = 0.8, β = 0.2
Accuracy coefficient 1

5.2.1. Path Generation

The simulated paths of the three algorithms are shown in Figure 13. It can be seen from Figure 13
that all three algorithms can generate effective paths in the simulation map. MPMGA has the feasibility
and effectiveness in the simulation map of the actual map and has the ability of practical application.
In terms of the quality of the generated path, whether it is path length or path smoothness, the path
generated by MPMGA is better than the path generated by PCDA and SGA.
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Figure 13. Simulated paths of the three algorithms. (a) SGA; (b) PCDA; (c) MPMGA.

Figure 14 shows the situation that the mobile robot encounters sudden obstacles and re-plans
the local path when it moves according to the predetermined route. In Figure 14, the mobile robot
moves according to the global path generated by MPMGA. In the process of driving according to the
predetermined route, obstacles suddenly appear at the grids No. 320 and 345, blocking the path of
the mobile robot. (here, two sudden obstacles are used to simulate two mobile pedestrians or mobile
devices that suddenly appear on the predetermined path.)



Sensors 2020, 20, 5873 14 of 23Sensors 2020, 20, x FOR PEER REVIEW 14 of 23 

 

 

Figure 14. Mobile robot uses MPMGA for local path replanning. 

When the mobile robot moves to the grid number 295, MPMGA is used to replan the local path. 

Taking the number 295 grid as the starting node, and the number 370 grid as the target node and 

performing local path planning, the path shown in Figure 14 is obtained. In the process of local path 

replanning, the time consumption is about 0.3~0.4 s. It can be seen that MPMGA can not only be used 

for global path planning to produce high-quality solutions, but also for local path re-planning to 

avoid sudden threats, and it can meet real-time requirements. 

5.2.2. Fitness Analysis 

The evolutionary comparison process of the optimal individual fitness of the three algorithms is 

shown in Figure 15. From the perspective of the quality of the first-generation optimal individuals, 

MPMGA is far superior to PCDA and SGA. This is mainly because MPMGA optimizes the quality of 

the initial population through connection operators and deletion operators. From the number of 

iterations of convergence, MPMGA converges around the 50th generation, PCDA converges around 

the 85th generation, and SGA converges around the 175th generation. MPMGA is superior to PCDA 

and SGA. Because MPMGA replaces the original selection operator with a migration operator. The 

migration operator can save high-quality individuals and further accelerate the convergence speed. 

From the perspective of the quality of convergent individuals, MPMGA is far superior to PCDA and 

SGA. This is because the optimization operator proposed by MPMGA can optimize the convergent 

individuals for the second time. Therefore, the optimization operator can greatly improve the quality 

of convergent individuals.  

 

Figure 15. Evolutionary comparison diagram of optimal individual fitness. 

From Figure 15, we can also find that SGA has a data drop phenomenon. The data drop 

phenomenon means that the optimal individual fitness of the next generation is worse than the 

Figure 14. Mobile robot uses MPMGA for local path replanning.

When the mobile robot moves to the grid number 295, MPMGA is used to replan the local path.
Taking the number 295 grid as the starting node, and the number 370 grid as the target node and
performing local path planning, the path shown in Figure 14 is obtained. In the process of local path
replanning, the time consumption is about 0.3~0.4 s. It can be seen that MPMGA can not only be used
for global path planning to produce high-quality solutions, but also for local path re-planning to avoid
sudden threats, and it can meet real-time requirements.

5.2.2. Fitness Analysis

The evolutionary comparison process of the optimal individual fitness of the three algorithms is
shown in Figure 15. From the perspective of the quality of the first-generation optimal individuals,
MPMGA is far superior to PCDA and SGA. This is mainly because MPMGA optimizes the quality
of the initial population through connection operators and deletion operators. From the number of
iterations of convergence, MPMGA converges around the 50th generation, PCDA converges around
the 85th generation, and SGA converges around the 175th generation. MPMGA is superior to
PCDA and SGA. Because MPMGA replaces the original selection operator with a migration operator.
The migration operator can save high-quality individuals and further accelerate the convergence speed.
From the perspective of the quality of convergent individuals, MPMGA is far superior to PCDA and
SGA. This is because the optimization operator proposed by MPMGA can optimize the convergent
individuals for the second time. Therefore, the optimization operator can greatly improve the quality
of convergent individuals.
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From Figure 15, we can also find that SGA has a data drop phenomenon. The data drop
phenomenon means that the optimal individual fitness of the next generation is worse than the optimal
individual fitness of the previous generation. This phenomenon is caused by the traditional roulette
selection strategy and the way of receiving cross-mutated individuals. Because MPMGA uses a
migration operator and improves the receiving method of cross-mutated individuals, there is no data
drop phenomenon in MPMGA.

The evolutionary comparison process of population fitness standard deviation is shown in
Figure 16. This paper uses the standard deviation of population fitness to measure the diversity of
the entire population. It can be seen from Figure 16 that the standard deviation of population fitness
produced by MPMGA has been maintained at a high level. This shows that the diversity of the entire
population has been high during the evolution process, and the algorithm has been more active in
exploring the entire solution space. The population fitness standard deviation produced by PCDA
showed a short-term increase and then continued to decrease. This shows that the ability to explore
the solution space of the algorithm is gradually enhanced at the beginning of the iteration. In the
middle stage of the iteration, with the increase of the number of iterations, the ability of the algorithm
to explore the solution space is gradually weakened. In the later stage of the iteration, the exploration
ability of the algorithm has been maintained at a weak level. The standard deviation of population
fitness produced by SGA also shows a trend of temporary increase and then a continuous decrease.
After the 120th generation, the diversity of the entire population is zero, the phenomenon of population
homogeneity is completely formed, the entire population is composed of the same individuals, and the
crossover operator is completely invalid.
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The evolutionary comparison process of population average fitness is shown in Figure 17.
This paper uses the average fitness of the population to measure the evolution of the entire population.
It can be seen from Figure 17 that the average fitness of the initial population produced by MPMGA is
better than the average fitness of the initial population produced by PCDA and SGA. The main reason
is that MPMGA improves the generation way of the initial population and produces many feasible
high-quality first-generation individuals. However, from the perspective of the evolution of the entire
population, the evolution curve produced by MPMGA is inferior to the evolution curve produced
by PCDA and SGA. The evolution speed of the entire population is also slower. In fact, we need to
use Figure 16 to analyze the evolution of the entire population. In Figure 16, SGA completely fell
into homogeneity in the later stage of the iteration. The entire population is composed of the same
individuals, and the population completely loses its evolutionary potential. Although PCDA did not
completely fall into homogeneity in the later stage of the iteration, the diversity of the entire population
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was relatively poor. This means that the evolutionary potential of the entire population is weak.
MPMGA has strong population diversity from beginning to end. This shows that the entire population
has always had strong evolutionary potential. We can see from Figure 17 that although MPMGA
evolves slowly, it has been evolving. In PCDA and SGA, the evolution of the entire population has
stalled around the 105th generation. Therefore, through the two figures, we can analyze that PCDA
and SGA evolve rapidly in the early stage of iteration, which is the illusion caused by homogenization.
Essentially, a large number of identical individuals are produced in the entire population.
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5.2.3. Time Analysis

Table 3 shows the running time of each stage of MPMGA algorithm during the program running
in detail. It can be seen from Table 3 that the program running time of MPMGA is longer than the
program running time of PCDA and SGA. The main reason is that the initial population generation of
MPMGA takes a relatively high time. This is mainly because MPMGA chooses to sacrifice a certain
amount of time to improve the quality of the initial population. In the initial population generation,
the connection operator and the deletion operator are introduced to optimize the initial population.

Table 3. Comparison table of the running time of each segment program of the three algorithms.

Algorithm
Initial Population
Generation Time

(s)

Population
Evolution
Time (s)

Second
Optimization

Time (s)

Total
Time (s)

The Proportion of the Initial
Population Generation Time

to the Total Time

MPMGA 1.4153 1.2616 0.136 2.8129 50.31%
PCDA 0.8494 1.1891 - 2.0385 41.67%
SGA 1.0065 1.2797 - 2.2862 44.03%

5.2.4. Comprehensive Comparison

In the natural simulation environment, each algorithm is simulated 20 times, and then the average
value is obtained (as shown in Table 4).

Table 4. Data comparison table of the three algorithms.

Algorithm Average
Fitness

Average Path
Length (m)

Average Path
Smoothness

Average Number of
Convergence Iterations

Average Program
Running Time (s)

MPMGA 0.03930 30.8085 15 69.1 2.7352
PCDA 0.03363 31.5877 24.09 87.6 1.9434
SGA 0.03053 32.5383 33.64 119.3 2.2678
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It can be seen from Table 4 that MPMGA is better than PCDA and SGA in average fitness, average
path length, average path smoothness, and average number of convergence iterations. But MPMGA is
worse than PCDA and SGA in average program running time.

5.3. Artificial Simulation Environment

The second simulation environment is an artificial simulation environment, and the simulation
map is a 50 × 50 grid model. The area of each grid is 1.2 m × 1.2 m, so the area of the simulation map
is 60 m × 60 m. The simulation map is shown in Figure 18. In the simulation map, black obstacles
represent infeasible areas, and white grids represent feasible areas. The mobile robot enters from grid 0
and leaves from grid 2499.
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The parameter design of the three algorithms is shown in Table 5.

Table 5. Algorithm parameters.

MPMGA

Start grid number 0
Target grid number 2499

Initial population size 120
The size of each small population 40

Number of iterations 500

Crossover probability High crossover probability 0.8
Low crossover probability 0.1

Mutation probability High mutation probability 0.8
Low mutation probability 0.1

Weight coefficient α = 0.8, β = 0.2
Accuracy coefficient 1

The initial temperature 1
Temperature decay rate 0.7

PCDA/SGA

Start grid number 0
Target grid number 2499

Initial population size 120
Number of iterations 500
Crossover probability 0.8
Mutation probability 0.1

Weight coefficient α = 0.8, β = 0.2
Accuracy coefficient 1

5.3.1. Path Generation

The simulated paths of the three algorithms are shown in Figure 19. It can be seen from Figure 19
that MPMGA can still generate feasible and effective planning paths in a 50 × 50 grid simulation map.
In terms of the quality of the generated path, whether it is path length or path smoothness, the path
generated by MPMGA is better than the path generated by PCDA and SGA.
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Figure 20 shows the situation that the mobile robot encounters sudden obstacles and re-plans the
local path when it moves according to the predetermined route.
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In Figure 20, the mobile robot moves according to the global path generated by MPMGA. In the
process of driving according to the predetermined route, large obstacles suddenly appeared at nine
grids numbered 810, 811, 812, 860, 861, 862, 910, 911, and 912, blocking the path of the mobile robot.

When the mobile robot moves to the grid number 759, MPMGA is used to replan the local path.
Taking the number 759 grid as the starting node and the number 963 grid as the target node and
performing local path planning, the path shown in Figure 20 is obtained. In the process of local path
replanning, the time consumption is less than 1 s. Therefore, MPMGA meets the real-time requirement
of local path planning in the artificial simulation environment.

5.3.2. Fitness Analysis

Figure 21 shows the evolutionary comparison process of optimal individual fitness under the
current parameter settings. Figure 22 shows the evolutionary comparison process of the population
fitness standard deviation under the current parameter settings. Figure 23 shows the evolutionary
comparison process of the average fitness of the population under the current parameter settings.
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The graph distributions shown in Figures 21–23 are approximately the same as the graph
distributions shown in Figures 15–17. This indicates that no matter what kind of map environment,
no matter how the obstacles are distributed, MPMGA is always better than PCDA and SGA.

5.3.3. Time Analysis

Table 6 shows the running time of each stage of MPMGA algorithm during the program running
in detail. Comparing Tables 3 and 6, we can find that as the scale of the map increases, the proportion
of the initial population generation time to the total time gradually increases. In the 50 × 50 grid map
model, this proportion is as high as 80%. Therefore, for large-scale maps, it is necessary to reduce the
initial population generation time and thus reduce the running time of the program.

Table 6. Comparison table of the running time of each segment program of the three algorithms.

Algorithm
Initial Population
Generation Time

(s)

Population
Evolution
Time (s)

Second
Optimization

Time (s)

Total
Time (s)

The Proportion of the Initial
Population Generation Time

to the Total Time

MPMGA 102.7476 18.8514 0.241 121.84 84.33%
PCDA 79.2217 20.1283 - 99.35 79.74%
SGA 84.7192 19.4608 - 104.18 81.32%

5.3.4. Comprehensive Comparison

In the artificial simulation environment, each algorithm is simulated 20 times, and then the average
value is obtained (as shown in Table 7). It can be seen from Table 7 that MPMGA is better than PCDA
and SGA in average fitness, average path length, average path smoothness, and average number of
convergence iterations. But MPMGA is worse than PCDA and SGA in average program running time.

Table 7. Data comparison table of the three algorithms.

Algorithm Average
Fitness

Average Path
Length (m)

Average Path
Smoothness

Average Number of
Convergence Iterations

Average Program
Running Time (s)

MPMGA 0.02347 72.6975 20.5 179.8 120.5906
PCDA 0.01702 76.2673 34 207.3 96.5157
SGA 0.01554 76.9703 61.5 312.9 102.1386

The average program running time of MPMGA has reached an astonishing 120 s. Comparing
Tables 4 and 7, we can find that as the scale of the map increases, the program running time will also
increase rapidly. From the above analysis, it can be concluded that:
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(1) Whether in the natural simulation environment or the artificial simulation environment, MPMGA
is feasible and effective. And MPMGA has the ability of application in the actual environment.

(2) No matter what scale of the map, no matter how the obstacles are distributed, the path planned
by MPMGA is always better than the path planned by PCDA and SGA. In addition, MPMGA can
make local path re-planning in the emergencies, so as to achieve emergency avoidance.

(3) MPMGA is better than PCDA and SGA in optimal individual fitness, average population fitness,
standard deviation of population fitness, and optimal individual convergence iteration number.
However, as the scale of the map increases, it takes a longer time for MPMGA to generate the
initial population. In terms of the average program running time, MPMGA takes a longer time
than PCDA and SGA.

6. Conclusions

In this paper, a multi-population migration genetic algorithm is proposed, and the framework
and operators of the standard genetic algorithm are improved. In terms of framework, the algorithm
proposes a parallel interactive framework. This framework has good parallelism and robustness.
Especially when there are many individuals in the initial population, and the performance of a single
processor is limited. A parallel interactive framework can divide a large population into several small
populations, and each small population is equipped with a processor. The data among the small
populations interacts through the bus, which can greatly reduce the running time of the program.
Even if a processor fails and some data are lost, the impact on the algorithm is relatively limited.
In terms of operators, the algorithm proposes a migration operator and an optimization operator.
The migration operator replaces the selection system of the selection operator by the migration system,
and the optimization operator performs the second optimization of the convergent optimal individual.
In addition, the algorithm also improves the population’s initialization process, crossover operator,
and mutation operator. By using the new operators or improving the original operators, the algorithm
breaks the local optimal solution, solves the phenomenon of serious homogenization of population
individuals, accelerates the convergence speed of the algorithm and improves the quality of convergent
individuals. The simulation results show that MPMGA is not only suitable for simulation maps of
various scales and various obstacle distributions, but also has superior performance. But the MPMGA
program takes too long time to run.

In fact, if we consider implementing MPMGA on a real mobile robot, MPMGA may face the
following problems: First, in actual large-scale scenarios, the MPMGA program takes a long time to
run. Although MPMGA has excellent performance in large-scale maps, the long program running time
limits the application of MPMGA in actual large-scale scenarios. Second, MPMGA is not sensitive to
unknown environments. It means MPMGA does not consider how to generate a high-quality path in
an unknown environment. We know that the map environment is unknown in many actual scenarios.
In this case, the application of MPMGA has been greatly restricted. Third, MPMGA does not consider
the preprocessing process of grid maps more comprehensively. This may cause MPMGA to fail to
generate feasible paths in actual maps with a large number of irregular obstacles.

In the future, we need to do four aspects: First, we need to reduce the running time of the program.
On the one hand, we can compress map models or simplify map models. On the other hand, we can
improve the population’s initialization process. Second, we need to enhance the application capabilities
of algorithms in different environments. MPMGA can perform static global path planning; it can also
effectively deal with sudden threats and perform local path re-planning. However, the global or local
path planning in an unknown environment is not considered. Therefore, global or local path planning
in an unknown environment can also be used as the next research content. Third, we need to consider
the preprocessing process of grid maps more comprehensively. We can use adaptive grid map method.
In other words, the grid size in the grid map is no longer fixed. The size of the grid is automatically
adjusted according to the size of the mobile robot and obstacles. The adaptive grid map method can
effectively deal with the actual map with a large number of irregular obstacles. Fourth, we consider
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applying MPMGA on actual mobile robots. Mobile robots can obtain information about obstacles in
the surrounding environment through visual sensors to generate electronic maps. We need to use
the grid environment modeling method and map preprocessing process given in Section 3 to process
the electronic map. After processing the electronic map, we get a grid map that algorithm can run.
Then we can run the MPMGA program on the grid map to generate the actual path we need.
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