
healthcare

Article

Clinical Outcomes of Genotype-Matched Therapy for Recurrent
Gynecological Cancers: A Single Institutional Experience

Kiyoka Sawada, Kentaro Nakayama *, Kohei Nakamura , Yuki Yoshimura, Sultana Razia, Masako Ishikawa,
Hitomi Yamashita, Tomoka Ishibashi, Seiya Sato and Satoru Kyo

����������
�������

Citation: Sawada, K.; Nakayama, K.;

Nakamura, K.; Yoshimura, Y.; Razia,

S.; Ishikawa, M.; Yamashita, H.;

Ishibashi, T.; Sato, S.; Kyo, S. Clinical

Outcomes of Genotype-Matched

Therapy for Recurrent Gynecological

Cancers: A Single Institutional

Experience. Healthcare 2021, 9, 1395.

https://doi.org/10.3390/

healthcare9101395

Academic Editors: Nur Mohammad

Hassan and Rahena Akhter

Received: 6 September 2021

Accepted: 15 October 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan;
kiyoka.0504@gmail.com (K.S.); knakamura320@keio.jp (K.N.); y-yuki@med.shimane-u.ac.jp (Y.Y.);
raeedahmed@yahoo.com (S.R.); m-ishi@med.shimane-u.ac.jp (M.I.); memedasudasu1103@gmail.com (H.Y.);
tomoka@med.shimane-u.ac.jp (T.I.); sato_seiya9534@yahoo.co.jp (S.S.); satoruky@med.shimane-u.ac.jp (S.K.)
* Correspondence: kn88@med.shimane-u.ac.jp

Abstract: Recent advances in next-generation sequencing and genome medicine have contributed to
treatment decisions in patients with cancer. Most advanced gynecological cancers develop resistance
to chemotherapy and have a poor prognosis. Therefore, we conducted genomic tests in gynecological
tumors to examine the efficacy and clinical feasibility of genotype-matched therapy. Target sequencing
was performed in 20 cases of gynecological cancers (cervical cancer, 6; endometrial cancer, 6; and
ovarian cancer, 6). Both actionable and druggable genes were identified in 95% (19/20) of the cases.
Among them, seven patients (35%) received genotype-matched therapy, which was effective in three
patients. Of the three patients, one patient with a PTEN mutation received everolimus, another
patient with a TSC2 mutation received everolimus and letrozole, and the patient with a BRIP1
mutation received olaparib. Subsequently, disease control in these three patients lasted for more
than half a year. However, all patients relapsed between 9 and 13 months after the initiation of
genotype-matched therapy. In this study, the response rate of genotype-matched therapy was 43%
(3/7), which may have contributed to improved prognoses. Therefore, genotype-matched therapies
may help patients with refractory gynecological cancers achieve better outcomes.

Keywords: gynecological cancer; clinical sequence; genotype-matched therapy

1. Introduction

A total of 41,000 women are newly diagnosed with gynecological cancer in Japan each
year, and approximately 10,000 women die from gynecological cancers [1]. The current
standard treatment for gynecological cancer includes surgery, cytotoxic chemotherapy, and
radiotherapy. These treatment methods are performed alone or in combination, depending
on the stage of the disease and the patient’s clinical situation. For advanced gynecological
cancers, first-line chemotherapy or adjuvant chemotherapy is performed; however, cur-
rently available cytotoxic chemotherapeutic drugs are limited, and the prognosis is often
poor despite the use of chemotherapy. Furthermore, in ovarian cancer, recurrent tumors
are often resistant to chemotherapy compared to the initial treatment [2]. Therefore, more
effective treatments for gynecological cancers are needed.

In recent years, with the development of molecular biology techniques, targeted
therapies against various molecular targets have been developed. For example, poly (ADP-
ribose) polymerase (PARP) inhibitors for BRCA1/2 mutation-positive cases in ovarian
cancer and programmed cell death protein 1 (PD-1) monoclonal antibody for microsatellite
instability (MSI-high) in solid tumors. In a phase 2 study, it was reported that using
PD-1 monoclonal antibody such as pembrolizumab for MSI-high solid tumors excluding
intestinal cancer has been effective [3].

With the advent of next-generation sequencing (NGS), it has become possible to
identify gene alterations related to carcinogenesis in each patient and to comprehensively
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analyze cancer genomes. Furthermore, NGS has been applied both clinically and in research.
Genotyped-matched therapy based on the results of the NGS test has been initiated in
patients with cancer; however, the use of NGS is still limited.

There are reports that targeted therapies for patient tumors using NGS have better
outcomes than therapies that did not use NGS [4,5]; however, there is not enough evidence
on improved prognoses or methods of target treatment selection. This study aimed to
analyze the molecular characteristics of gynecological cancers that were treated at our
institution, and the effect and clinical usefulness of genotype-matched therapy. We investi-
gated whether the NGS test is reliable and useful for treatment selection of patients with
gynecological cancer using a 160-gene panel test.

2. Results
2.1. Patient’s Clinical Information and Genome Sequence

From January 2018 to January 2019, genomic tests were performed on 20 patients with
recurrent gynecological cancer. The patient characteristics are listed in Table 1. Among
20 cases, there were eight cases of cervical cancer (CC), six cases of endometrial cancer
(EC), and six cases of ovarian cancer (OC). The median age was 58.5 years (range, 39–75).
The median number of actionable gene alterations per patient was three (range, 0–9), and
the median number of prior therapies was two (range, 0–4). The most common actionable
gene alteration was TP53 (7/20 patients analyzed, 35%), followed by PTEN (4/20, 20%)
and PIK3CA (4/20, 20%). The other actionable gene alterations were less than three. Both
actionable gene alteration and druggable gene alteration rates were 95% (19/20 cases).
Targeted therapy was performed in 35% of the cases (7/20), and the response rate (rate of
stable disease [SD] or partial response [PR] or complete response [CR]) was 43% (3/7 cases)
(Table 1).

Table 1. Patient characteristics (n = 20).

Age (years)

Median (range) 58.5 (39–75)

Tumor type, n (%)

cervical cancer 8 (40%)
endometrial cancer 6 (30%)

ovarian cancer 6 (30%)

Genomic alterations, n (%)

TP53 7 (35%)
PTEN 4 (20%)

PIK3CA 4 (20%)
Actionable alteration, n (%) 19 (95%)
Druggable alteration, n (%) 19 (95%)

Prior chemotherapy (n)

Median (range) 2 (0–4)
Genotype matched therapy

Matched therapy, n (%) 7 (35%)
Response rate, n (%) 3/7 (43%)

2.2. Mutation Map

Genomic testing of 20 patients identified 70 molecular alterations. Among the gene
alterations, 35 tumor suppressor gene (TSG), 28 oncogene (OG), four homologous recom-
bination deficiency (HRD)-related gene, two deficient mismatch repair (dMMR)-related
gene, and one other gene alterations were observed (Figure 1a,b).
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Figure 1. Distribution of molecular alterations identified by 160-gene panel investigation. (a). Genes related to dMMR, 
HRD, and TSG alterations. Orange is an oncogenic alteration and gray is VUS. (b). There are OG alterations and others 
identified by 160-gene panel investigations. Orange is an oncogenic alteration and gray is VUS. (c). There are various types 
of molecular alterations: blue, loss; green, somatic UPD; orange, amp (CN > 4); and red, amp (CN > 8). (d). Comparison of 
gene mutations in primary and metastatic lesions in ovarian and cervical cancers.TMB: tumor mutation burden, MSI: 
microsatellite instability, dMMR: deficient mismatch repair, HRD: homologous recombination deficiency, TSG: tumor 
suppressor gene, VUS: variants of unknown significance, OG: oncogene, UPD: uniparental disomy, Amp: amplification. 
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and TSG alterations. Orange is an oncogenic alteration and gray is VUS. (b). There are OG alterations and others identified
by 160-gene panel investigations. Orange is an oncogenic alteration and gray is VUS. (c). There are various types of
molecular alterations: blue, loss; green, somatic UPD; orange, amp (CN > 4); and red, amp (CN > 8). (d). Comparison
of gene mutations in primary and metastatic lesions in ovarian and cervical cancers.TMB: tumor mutation burden, MSI:
microsatellite instability, dMMR: deficient mismatch repair, HRD: homologous recombination deficiency, TSG: tumor
suppressor gene, VUS: variants of unknown significance, OG: oncogene, UPD: uniparental disomy, Amp: amplification.

Seventy molecular alterations included 18 deletions, seven somatic uniparental disomy
(UPD), and seven amplifications (CNV > 4 = 5, CNV > 8 = 2) (Figure 1c). Comparison of
gene alterations between the primary and metastatic lesions in one ovarian cancer and one
cervical cancer cases showed almost similar distribution between primary and metastatic
lesions (Figure 1d). Both cases showed similar actionable variant patterns; however, the
deletion patterns were different between the primary and metastatic sites.

2.3. Genotype-Matched Therapy

Genotype-matched therapy was performed in seven cases (35%). Among them, there
was one case of cervical cancer, five cases of endometrial cancer, and one case of ovarian
cancer. Pembrolizumab was used in two patients (based on MSI-high status): one patient
had progressive disease (PD), and the other had an unknown outcome for transfer to
another hospital. Olaparib was used in one patient (based on HRD) who showed a CR
on a computed tomography (CT) scan, which was performed after 2 months. However,
9 months later, recurrence was observed. Four patients were treated with everolimus (based
on PTEN, TSC2, mTOR, CTNNB1, and NF1 status): in one case (based on PTEN status),
only everolimus was used, whereas in the rest of the cases it was combined with letrozole.

The patients with EC who only used everolimus were positive for the neuron specific
enolase (NSE) marker in immunohistochemistry. In Japan, in most cases, the cost of
genotype-matched therapy is not covered by insurance. If the patients are positive for the
NSE marker, insurance can be used to cover their expenses. For this reason, letrozole was
not used. One study found that a combination of everolimus and letrozole was associated
with extend PFS in cases of ER-positive high-grade ovarian cancer in a phase II study [6].
Therefore, in our study, a combination of everolimus and letrozole was used in cases of
ovarian cancer if the patient was positive for ER. One case (based on PTEN status) showed
SD, one case (based on TSC2 status) showed PR, and two cases had PD (Table 2).

Table 2. Summary of patients who received genotype-matched therapy.

No Age Stage Tumor Type Histological Type Targets Targeted Therapy Best Response

1 62 IIB CC SCC Hypermutated and
MSI-high MLH1 (Loss) pembrolizumab PD

2 65 IB EC EM(G3) PTEN (mut) everolimus SD
3 68 IVB EC EM(G3) TSC2 (somatic UPD) everolimus letrozole PR

4 59 IVB EC EM(G3) AKT1, MTOR,
CTNNB1(mut) everolimus letrozole PD

5 59 IVB EC EM(G3) Hypermutated and
MSI-high pembrolizumab -

6 70 IVB EC HGSC HRD, BRIP1(mut) olaparib CR
7 41 IVB OC HGSC NF1 (Loss) Everolimus letrozole PD

2.4. Three Cases of Successful Genotyped-Matched Therapy
2.4.1. Case 1

A 65-year-old woman who was diagnosed with stage IB endometrial cancer, G3
endometrioid carcinoma after surgery, received six cycles of carboplatin and paclitaxel.
Twenty-three months after chemotherapy, multiple lung metastases were found on a
CT scan and after that genomic test was performed. The patient received six cycles
of doxorubicin and cisplatin. However, 5 months later, the number of multiple lung
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metastases increased and pleural dissemination appeared. The patient was initially treated
with everolimus (based on a PTEN mutation) 9 months after the genomic test. After
1 month, these lesions were stable (Figure 2) and continued to remain so until 13 months
after the initiation of everolimus therapy, after which the lesions were found to be increased
on a CT scan.
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Figure 2. (A) Chest computed tomography showing a lung metastatic lesion before everolimus
treatment. (B) Chest computed tomography showing a shrunken lung metastatic lesion, treated with
everolimus, at the end of the first month.

2.4.2. Case 2

A 68-year-old woman diagnosed with stage IVB endometrial cancer (multiple lung
metastases), G3 endometrioid carcinoma underwent six cycles of carboplatin and pacli-
taxel after surgery. Nineteen months after chemotherapy, multiple lung metastases were
observed on a CT scan and then a genomic test was performed. The patient received six
cycles of doxorubicin and cisplatin. However, 3 months later, the number of multiple lung
metastases increased. Furthermore, thrombocytopenia appeared. The patient was started
on everolimus 10 months after the genomic test, and everolimus therapy was ceased for
3 weeks. After platelet recovery, everolimus dose was reduced to half and the therapy was
re-initiated. However, 10 months after the initiation of everolimus therapy, multiple lung
metastases were found to be increased on a CT scan (Figure 3).

2.4.3. Case 3

A 70-year-old woman was diagnosed with stage IVB endometrial cancer (multiple
swollen cardiophrenic, paraaortic, and left lateral iliac lymph nodule, omental cake), G3 en-
dometrioid carcinoma. The patient underwent six cycles of carboplatin and paclitaxel after
surgery. The genomic test was performed prior to chemotherapy. Details of this patient’s
clinical sequence and therapy have already been reported in our previous case report [7].
Therefore, this case is briefly introduced in the present report. After chemotherapy, SD
was observed on a CT scan. The patient received six cycles of doxorubicin and cisplatin.
Subsequently, the lesions were stable with swollen paraaortic and left lateral iliac lymph
nodules. The patient was then administered with PARPi olaparib (based on HRD and
BRIP1 mutation status) 8 months after the genomic test. Two months after the initiation
of olaparib therapy, all swollen lymph nodules disappeared as observed on a CT scan.
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However, 9 months after starting olaparib therapy, tumor recurrence was indicated on a
CT scan.
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3. Discussion

In this study, a panel test of 160 cancer-related genes was conducted, which revealed
that both actionable and druggable gene alterations were found in 95% of the cases (19/20).
The most frequent actionable gene mutation was TP53 (35%), followed by PTEN (20%),
and PIK3CA (20%). It has been reported that PIK3CA is more frequently found in solid
tumors, such as breast cancer and lung cancer [8]. In gynecological cancers, it has also
been reported that gene alterations of PTEN and PIK3CA are more frequent [9]. PTEN
mutations were found in 50% of endometrial cancer [10]. In other reports of endometrial
cancer, PIK3CA was detected in 22% of cases [11] and Makker et al. [12] reported it to be
in 24% of cases. The results for the detected gene alterations in this study were similar to
those reported previously.

In addition, in this study, we compared the differences in gene mutations between
the primary and metastatic lesions in two cases. However, almost similar distributions of
genetic alterations were observed in either case, and the actionable mutations were similar.
The current finding is similar to those in previous reports, which state that there is almost
no difference in actionable mutations between the primary and metastatic lesions [8].

In this study, druggable gene alterations were found in 95% of the cases. The SHIVA
trial reported that gene alteration that could lead to treatment was found in 40% of cases [13]
and another study [14] reported that clinically actionable genes were detected in 37% of
cases, while the MOSCATO 01 trial reported it to be in 49.3% of cases [15]. Compared with
previous reports, more druggable gene alterations were detected in the current study.

However, in reality, only 35% of the patients (7/20) received genotype-matched
therapy. A study so far conducted in Japan reported that targeted therapy was performed
in 13.3% [16], and another study [17] reported that it was performed in 15.2% of the
patients. Thus, the patients who were able to receive targeted therapy were limited.
The main reasons for failure included worsening condition before treatment and lack of
participation in clinical trials. In addition, the availability of off-label drugs depended
on the patient’s financial status. All of these issues have been highlighted in similar
reports [18,19]; therefore, it is important to conduct genomic tests earlier and determine
the available drugs or clinical trials before the patient’s condition deteriorates.

Of the seven patients who received genotype-matched therapy, five had endometrial
cancer, one had cervical cancer, and one had ovarian cancer. Of these patients, only three
patients with endometrial cancer (43%) achieved the effectiveness of genotype-matched
therapy. These three successful patients remained without any deterioration in patient
condition for more than half a year; however, all cases recurred within 9–13 months after
the initiation of genotype-matched therapy. Some previous trials have evaluated the
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effectiveness of genotype-matched therapy in patients with difficult-to-treat cancers. In one
report on advanced gastrointestinal cancer, the disease control rate was 45% [20]. In another
report on metastatic breast cancer, 56% of the patients experienced clinical benefits with a
progression-free survival ratio ≥ 1.3 [21]. The MOSCATO 01 trial [15] showed improved
outcomes in 33% of patients with advanced cancers. In the SAFIR01 trial [22], 30% of
the patients had an objective response or SD. In the SHIVA randomized trial [13] when
comparing genotype-matched therapy and conventional standard therapy, no significant
difference was found in progression-free survival. In contrast, according to another report,
genotype-matched therapy had a better outcome than unmatched therapy [18].

Patients who received targeted therapy had better outcomes than those who did
not. One patient with PTEN mutation received the mTOR inhibitor, i.e., everolimus treat-
ment, the second patient with TSC2 mutation also received everolimus and an aromatase
inhibitor, letrozole. PTEN and TSC2 genes are related to the phosphoinositol-3 kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. This pathway is often dys-
regulated in gynecological cancers [23] and is associated with an aggressive disease and a
poor prognosis [24]. Therefore, mTOR inhibitors may provide a novel therapeutic approach
for the dysregulation of the PI3K/AKT/mTOR pathway. The effectiveness of a single-agent
therapy with mTOR inhibitors in recurrent metastatic EC has been reported [11]. Further-
more, recently, letrozole in combination with everolimus showed a high clinical benefit
rate and response rate in a phase II clinical trial in advanced EC [25]. In this study, mTOR
inhibitors were effective in both patients, therefore, we expect that mTOR inhibitors could
improve prognosis in recurrent EC with dysregulation of the PI3K/AKT/mTOR pathway.
However, in advanced gynecological cancers, which exhibit standard treatment resistance,
the effect of PI3K pathway inhibitors is not due to mutations in the PI3K pathway [9].
Further investigation of the effect of mTOR inhibitors is warranted.

In this study, we showed that genomic testing will be useful in advanced recurrent
gynecological cancer to identify new treatment options based on gene alterations. The
limitation of this study is the small sample size. To overcome this limitation, strategies are
being devised to increase the number of patients for clinical sequencing in our hospital.
Furthermore, genotype-matched therapy may help improve gynecological cancer outcomes.
Recently, cancer genomic tests have become available for the health insurance system
in Japan, and whole exome analysis at one’s own expense has also been investigated.
Therefore, more genomic alterations are expected to be revealed for larger sample sizes.
Another limitation was that we used cancer tissues obtained by surgery or biopsy at first
onset. We did not check whether any genomic changes occurred during chemotherapy.
Nowadays, new noninvasive approaches, such as cell-free DNA (cfDNA) analysis, have
been attracting more attention. Therefore, at the time of recurrence, it may be essential to
check for treatment-induced genotype changes using cfDNA.

In summary, we performed clinical sequencing in 20 cases of gynecological cancers
and found that the response rate of genotype-matched therapy was 43% (3/7), which
may contribute to improved prognoses. Therefore, genotype-matched therapies may help
patients with refractory gynecological cancers achieve better outcomes.

4. Materials and Methods
4.1. Study Design and Patients

We performed a target sequence to examine mutations in 160 cancer-related genes in
patients with advanced gynecological cancer (n = 20). Participants were aged ≥20 years,
had previously received at least one chemotherapy, had a performance status ≤1, and had
a prognosis of at least 3 months or more. Acquisition of tumor tissues was approved by the
Shimane University Institutional Review Board (IRB No. 20070305-1 and No. 201701207-1,
Approval date: 5 March 2007, 26 June 2018). The study was conducted in accordance
with the tenets of the Declaration of Helsinki and Title 45 (United States Code of Federal
Regulations), Part 46 (Protection of Human Subjects), effective from December 13, 2001.
All participants provided informed consent.



Healthcare 2021, 9, 1395 8 of 10

4.2. Genomic Analysis

Genomic tests were performed using a PleSSision® internal clinical sequencing ap-
paratus (Keio University, Tokyo, Japan). After obtaining informed consent for genomic
testing, including tumor biopsy and analysis of germline DNA, we prepared samples from
cancer tissues and cut them into 10 µm sections. The sample and peripheral blood extracted
from patients with cancer were sent to the Keio University. Genomic DNA was extracted
from tumor samples and peripheral blood.

To check the quality of the extracted DNA, the DNA integrity number (DIN) was
calculated using an Agilent 2000 TapeStation (Agilent Technologies, Waldbronn, Germany).
Next, the targeted amplicon exome sequencing analysis of the 160 genes was conducted
using the Illumina MiSeq sequencing platform (Illumina, San Diego, CA, USA). The
160 genes investigated in this study are listed in Supplementary Figure S1.

The sequencing data were input to the Genome Jack bioinformatics pipeline (Mitsubishi
Space Software, Tokyo, Japan) for analysis. Cancer-specific changes in somatic genes,
including single-base variants (SNVs), insertions/deletions, and copy number alterations
(CNVs), have been detected and compared with published data to investigate the clinical
significance of these variants. Furthermore, secondary germline findings were identified by
comparing the genomic profiles obtained from the tumor samples and peripheral blood. The
sequence report created in this manner was returned to our institution for approximately
3 weeks, after which analysis at the cancer genomic board (CGB) was performed.

4.3. Definition of Actionable and Druggable Variants

We used “Clinical Practice Guidance for Next-generation Sequencing in Cancer Di-
agnosis and Treatment (Edition 1.0)” as definition of actionable and druggable gene vari-
ants [26]. Details of defining actionable and druggable variants have already been reported
in previous report [27]. Supplementary Figure S2 shows details of categories of drug
recommendation levels.

CGB

Based on the report obtained from the results of genomic tests, we had discussions at
the CGB at the Keio University and other related hospitals, consisting of medical oncolo-
gists, pathologists, and medical geneticists. In this report, the actionable (cancer-related
gene), druggable (related to the effectiveness of treatment), and germline gene variants
were presented. On the basis of these variants, a comprehensive treatment strategy consid-
ering the clinical background such as the treatment history of patients and the availability
of treatment insurance was recommended. However, few targeted therapies include clini-
cal trials or self-pay care fees. Thus, the recommended treatment could not be provided in
all cases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/healthcare9101395/s1, Figure S1: Comprehensive Cancer Panel: 160 gene list, Figure S2:
Criteria and categories of genotype-matched therapy based on clinical sequencing.
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