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Simple Summary: Hepatocellular carcinoma (HCC) still poses a major challenge for curative treat-
ment. Although some new therapeutic options arose during the last decade, the overall prognosis
remains poor. New therapies might include the modification of tumor-promoting or -inhibiting
mediators of the immune system, such as interleukin (IL)-22 and its natural antagonist IL-22 bind-
ing protein (IL-22BP). Thus, this study aimed to investigate the role and underlying mechanisms
of IL-22 and IL-22BP signaling in liver cancer. Using two different mouse models, we found that
IL-22 promoted HCC development, while IL-22BP led to reduced tumor growth. IL-22 was mainly
produced by a subset of T cells in HCC, whereas IL-22BP was abundantly secreted by neutrophils.
Importantly, we identified hepatocytes as a major target of this pathological IL-22-signaling. More-
over, abrogation of IL-22 signaling in hepatocytes reduced STEAP4 expression-a known oncogene-in
an HCC mouse model in vivo, and STEAP4 expression correlated with IL22 levels in human HCC
samples. Taken together, these data might pave the way for new therapeutical approaches by blocking
IL-22 or its downstream signaling in HCC.

Abstract: Hepatocellular carcinoma (HCC) ranks among the five most common cancer entities
worldwide and leads to hundred-thousands of deaths every year. Despite some groundbreaking
therapeutical revelations during the last years, the overall prognosis remains poor. Although the
immune system fights malignant transformations with a robust anti-tumor response, certain immune
mediators have also been shown to promote cancer development. For example, interleukin (IL)-22 has
been associated with HCC progression and worsened prognosis in multiple studies. However, the
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underlying mechanisms of the pathological role of IL-22-signaling as well as the role of its natural an-
tagonist IL-22 binding protein (IL-22BP) in HCC remain elusive. Here, we corroborate the pathogenic
role of IL-22 in HCC by taking advantage of two mouse models. Moreover, we observed a protective
role of IL-22BP during liver carcinogenesis. While IL-22 was mainly produced by CD4+ T cells in
HCC, IL-22BP was abundantly expressed by neutrophils during liver carcinogenesis. Hepatocytes
could be identified as a major target of this pathological IL-22-signaling. Moreover, abrogation of
IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced STEAP4 expression-a known
oncogene-in HCC in vivo. Likewise, STEAP4 expression correlated with IL22 levels in human HCC
samples, but not in healthy liver specimens. In conclusion, these data encourage the development of
therapeutical approaches that target the IL-22–IL-22BP axis in HCC.

Keywords: hepatocellular carcinoma; IL-22; IL-22BP; Th22; neutrophils

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary tumor of the liver
and is often associated with a pre-damaged and cirrhotic liver [1]. It ranks among the
five most common cancer entities worldwide and causes hundred-thousands of cancer-
related deaths every year [2]. Many patients in Europe and Northern America that suffer
from HCC are diagnosed at a rather late time point [3], rendering them unsuitable for
potentially curating therapies such as surgical resection, radiofrequency ablation (RFA), or
liver transplantation [4]. Although some progress has been made during the last years in
treating even advanced stages of HCC by introducing multikinase inhibitors and checkpoint
inhibitors to the therapeutic regimes [5,6], the overall prognosis remains poor. In Europe,
around 80% of patients die within 5 years of the initial diagnosis of HCC [7], justifying the
urgent need for innovative therapies to limit tumor progression.

Among potential therapeutic options, the inhibition of tumor-promoting aspects of
the immune system plays more and more a central role. While the immune system and its
mediators foremost contribute to a potent anti-tumor response, certain mechanisms are
indeed capable of promoting cancer under certain circumstances and thus, might have
an overall detrimental effect on the host [8]. With regard to the cytokine interleukin (IL)-
22, dichotomous functions with partial tumor-promoting effects have been described in
many studies [9,10].

IL-22 is a mainly pro-inflammatory cytokine that maintains homeostatic effects at
barrier sites through its anti-infective and genome-protective effects [11]. It is produced by
a variety of immune cells, among them natural killer T (NKT) cells [12], gamma delta (γδ) T
cells [10,13,14], T helper 17 (Th17) cells [14–16], T helper 22 (Th22) cells [17] or type 3 innate
lymphoid cells (ILC3s) [10,18]. IL-22 signals through a heterodimeric receptor consisting
of the ubiquitously expressed IL-10 receptor 2 (IL-10R2) and the IL-22-specific receptor
IL-22 receptor 1 (IL-22R1) [19,20], which is predominately expressed on non-hematopoietic
cells [21]. A second soluble receptor can equally bind to IL-22 and, thus, is termed IL-22
binding protein (BP) [9]. IL-22BP can therefore neutralize the bioactivity of IL-22 since it
inhibits the binding to its membrane-bound counterpart [9,22–24]. Thus, a delicate balance
between IL-22 and IL-22BP is generally needed physiologically, since both the lack of IL-22
as well as its uncontrolled expression can lead to pathogenesis such as infections [25] or
cancer development [9,26], respectively.

In the liver, IL-22 is capable of protecting from both invasion of pathogens, as well as
tissue harm through toxic damage [27]. Furthermore, IL-22 can enhance liver regeneration
by reducing the expression of apoptotic genes and increasing the expression of proliferative
genes in hepatocytes [28]. In addition, IL-22 was identified to possess anti-tumorigenic traits
in different tumor models of colorectal and breast cancer [9,10,29]. However, as mentioned
above, many studies also reported a robust pathogenic effect of IL-22 in different preclinical
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mouse models [9,15,30–40], although mechanistic explanations for this dichotomous effect
of IL-22 remain scarce.

The first studies investigated the role of IL-22 during the development of HCC as
early as 2011 [41,42]. By using IL-22-deficient mice [42] as well as IL-22 transgenic (TG)
mice [41], which continuously overexpress this cytokine, an HCC-promoting effect of IL-22
was concluded. In line with these observations, an increased number of IL-22-producing
cells infiltrating the tumor and high levels of IL-22 in the serum of patients were found to
be negative prognostic factors for the progression of HCC [43–45]. Nonetheless, specific
target cells that might explain the pathogenic influence of IL-22 during HCC development
remain yet to be elucidated. Moreover, the relevancy of IL-22BP during liver carcinogenesis
has not been studied so far.

To answer these questions, we investigated the effect of IL-22 and IL-22BP using
two different murine models of HCC development. Indeed, deficiency of IL-22 protected
from HCC development. Furthermore, we are the first ones to show a significant role
of endogenous IL-22BP in controlling IL-22 in liver cancer. IL-22 was mainly produced
by CD4+ T cells during liver carcinogenesis, while IL-22BP was abundantly secreted by
neutrophils during HCC development. Mechanistically, we found that IL-22 exerted these
pathogenic effects by acting directly on hepatocytes. Furthermore, RNA sequencing of
hepatocytes revealed five genes that were upregulated upon IL-22 stimulation in vitro,
many of them known to possess tumor-promoting effects in similar contexts. Indeed, many
of these genes are also correlated with IL22 expression in the liver of patients suffering
from HCC. Strikingly, a correlation in non-tumorous livers could not be determined. Taken
together, our data indicate a critical role of the IL-22–IL-22BP axis in HCC and we revealed
potential downstream targets of IL-22 signaling.

2. Materials and Methods
2.1. Human Samples and Studies

Liver biopsies were taken from patients suffering from HCC or patients suffering
from steatohepatitis without any signs of malignant transformation. Human studies were
approved by the local ethical committee “Ethik-Kommission der Ärztekammer Hamburg”
under the approval codes PV-3578 and PV-3548. Written informed consent to the study
protocol was obtained from all participants before inclusion in this study.

2.2. Animals

C57BL/6J, IL22-/-, IL22bp-/-, Il10eGFP × Foxp3mRFP × Il17aKatushka × IL22sgBFP, IL22ra1-/-,
IL22ra1flox/flox × AlbCre+ and IL22ra1flox/flox × Cdh5Cre+ mice were bred and housed under
specific pathogen-free conditions in the animal facility of the University Medical Center
Hamburg Eppendorf. Age- and sex-matched littermates were used. All experiments were
carried out in accordance with the Institutional Review Board “Behörde für Justiz und
Verbraucherschutz (Veterinärwesen/Lebensmittelsicherheit)” (Hamburg, Germany).

2.3. Chemical Induction of Liver Carcinogenesis

The induction of HCC via the DEN-TCPOBOP approach is well described [46,47]. In
brief, fourteen-day-old mice were intraperitoneally (i.p.) injected with diethylnitrosamine
(DEN) once (20 mg/kg body weight, dissolved in saline). From the fourth week of life,
these mice received TCPOBOB (3 mg/kg body weight, dissolved in corn oil) i.p. for tumor
promotion every two weeks. At six months of age, mice were sacrificed. The tumor burden
was assessed by macroscopic and microscopic counting as well as by determining the
liver weight.

2.4. Choline-Deficient High-Fat Diet

This model was carried out according to previous descriptions [48]. Fourteen-day-old
mice were injected with DEN i.p. once (20 mg/kg body weight, in saline). From the fourth
week of life, these mice were constantly fed a choline-deficient high-fat diet. The usual
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chow diet was used as a control diet. At six months of age, mice were sacrificed. The tumor
burden was assessed by macroscopic and microscopic counting as well as by determining
the liver weight.

2.5. Magnetic Resonance Imaging (MRI)

The development of HCC was monitored by MRI (Bruker MRI) examinations once a
month starting at three months of age. During the MRI examinations, the mice were narco-
tized with isoflurane by inhalation. Based on the MRI, the tumor volume was determined.

2.6. Measurement of Alanine Transaminase (ALT)

Plasma samples were diluted and ALT enzyme levels were analyzed at the Department
of Clinical Chemistry (University Medical Center Hamburg- Eppendorf, Hamburg, Germany).

2.7. Leucocyte Isolation from the Liver

Leucocytes were isolated from the murine liver with or without HCC. First, mice were
euthanized and their liver was perfused with PBS via the inferior vena cava and the portal
vein. After the removal of the gall bladder, the liver was excised. Then, the murine tissue
was cut into small pieces and minced using scissors. Subsequently, the hepatic tissue was
incubated for 30 min at 37 ◦C on a shaking incubator in HBSS (including Ca2+ and Mg2+),
supplemented with Collagenase (1 mg/mL) and DNase I (10 U/mL). After a washing
step with PBS and 1% FBS, leucocytes were further enriched by a Percoll gradient (GE
Healthcare, Chicago, IL, USA).

2.8. Fluorescent-Activated Cell Sorting (FACS)

Fc-γ receptors were blocked using a monoclonal antibody (clone 2.4G2). The cells
were stained with fluorochrome-conjugated antibodies (Table S1). BD LSRFortessa and
FACSAria (BD Biosciences, San Jose, CA, USA) were used for cell analysis and cell sorting,
respectively. Data were analyzed using FlowJo v.6.1 (Tree Star, Ashland, OR, USA).

2.9. Isolation of Primary Hepatocytes

The isolation was carried out according to standard protocols [49]. First, the liver was
digested by perfusion with Liberase (Roche Diagnostics, Basel, Switzerland) and was then
gently disrupted to free residual cells. The single-cell suspension was filtered through a
100 µm cell strainer and the cells were allowed to settle by gravity for 20 min. Subsequently,
parenchymal cells were separated by 10 min centrifugation in a 90% Percoll gradient (GE
Healthcare, Chicago, IL, USA). For primary hepatocyte culture, William’s E + GlutaMAX
-I medium (Life Technologies, Karlsruhe, Germany) was supplemented with 10% FBS
(Life Technologies, Karlsruhe, Germany), 1% penicillin/streptomycin (Life Technologies,
Karlsruhe, Germany), and 1% L-glutamine (Life Technologies, Karlsruhe, Germany). Cells
were incubated overnight at 37 ◦C with 40% O2. On the next day, the hepatocytes were
washed and incubated with 1 ng/mL recombinant mIL-22 (eBioscience, San Diego, CA,
USA) for 15 min.

2.10. Murine RNA Extraction

Total RNA was extracted from tissue or isolated cells as indicated in the main text. A
standard protocol using TRIzol® Reagent (Invitrogen, Waltham, MA, USA) was used.

2.11. Human RNA Extraction

Total RNA was extracted from tissue using the Rneasy® Plus Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions.

2.12. cDNA Synthesis and qPCR

The High-capacity cDNA Synthesis Kit (Applied Biosystems, Waltham, MA, USA) was
used for cDNA synthesis. Probes were purchased from Applied Biosystems (Tables S2 and S3).
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Real-time PCR was performed using the Kapa Probe Fast qPCR Master Mix (Kapa Biosys-
tems, Kapa Biosystems) on the StepOne Plus system (Applied Biosystems, Waltham, MA,
USA). For both humans and mice, relative expression was normalized to HPRT and calcu-
lated using the 2−∆∆Ct method.

2.13. RNA-seq

Using 2 mg of RNA per sample, sequencing libraries were generated using NEBNext
UltraTM RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA).
cDNA libraries were sequenced on Illumina HiSEquation 2500 yielding ∼15 million 50 bp
single-end reads per sample. Overall quality was assessed with FastQC v. 0.11.5, low-
quality bases were trimmed off with Trimmomatic v. 0.33 [50], followed by alignment to the
Mus musculus genome draft GRCm38.84 using STAR v. 2.5.0 [51]. For visualization and
hierarchical clustering, reads were normalized using the transcripts per million method [52],
but raw read counts were used for differential expression analysis using DESeq2 v. 1.14 [53].

2.14. Statistical Analysis

Sample size was calculated using G*power, assuming α = 0.05, β = 0.8, and ρ = 0.3.
No data were excluded. Transgenic animals were enrolled case–control-wise and data
acquisition was blinded. Statistical analysis was performed using GraphPad Prism® Soft-
ware (GraphPad Software, San Diego, CA, USA). For paired group comparison, the non-
parametric two-sided Mann–Whitney test was used. Sample size (n) refers to biological
replicates. The mRNA expression of the cytokines was transformed using a base 2 loga-
rithm. The significance level α was set to 0.05.

3. Results
3.1. A Critical Role of the IL-22–IL-22BP Axis in HCC Mouse Models

To investigate the effects of the cytokine IL-22 and its natural inhibitor IL-22BP dur-
ing HCC development, we applied a well-known chemical model of HCC induction to
C57BL/6-, IL22-/--, and IL22bp-/--mice. Fourteen-day-old mice were injected once with DEN.
From the fourth week of life, these mice were then injected with TCPOBOP every two
weeks for six months (Figure 1A). When assessing the tumor burden in six-month-old mice,
IL22-deficient mice indeed possessed significantly less tumor burden than the wild-type
control ones, while IL22bp-deficient mice had significantly more tumors than C57BL/6
mice (Figure 1B). An equal observation could be made by performing MR-imaging of the
livers of these mice that allowed a three-dimensional assessment of the tumor volume
(Figure 1C). In line with these results, the liver weight and transaminase levels–which allow
an assessment of liver damage–were also elevated in IL22bp-deficient animals compared
to IL22-deficient mice (Figure 1D,E). Taken together, we could demonstrate that IL-22
promotes HCC development, while IL-22BP attenuates tumorigenesis in the liver.

To corroborate our findings, we applied a second model for HCC development during
which we fed the mice with a special high-fat diet after an initial injection with DEN
(Figure 2A). Indeed, this model reproduced the initial findings, since IL22-deficient mice
were once again protected from tumor development, while IL22bp-deficient mice developed
significantly more tumors than the control mice (Figure 2B). Using MR-imaging, we likewise
found a reduction in tumor volume in IL22-/--mice, while IL22bp-/--mice displayed an
increased tumor volume (Figure 2C). Moreover, IL22bp-deficient animals also displayed
increased liver weight and transaminase levels compared to IL22-/--mice (Figure 2D,E).
Taken together, IL-22 displays pathogenic effects in the two examined murine models of
HCC, while IL-22BP exerts significant protective effects in both the chemical and high-fat-
diet model of liver tumor development.
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Figure 1. IL-22 and IL-22BP display contrary effects in a chemical mouse model of HCC.
(A) A schematic timeline describing chemical HCC induction with DEN and TCPOBOP in mice;
(B) left: number of macroscopic tumor lesions in livers of 6 -month-old mice that were either wild type
(C57BL/6, left, black, n = 7), IL22-deficient (IL22-/-, middle, blue, n = 14) or IL22bp-deficient (IL22bp-/-,
right, red, n = 12); right: representative macroscopic pictures; (C) left: tumor volume (in mm3)
assessed by MRI in livers of 6 month-old mice after HCC induction that were either wild type
(C57BL/6, left, black, n = 7), IL22-deficient (IL22-/-, middle, blue, n = 14) or IL22bp-deficient (IL22bp-/-,
right, red, n = 12); right: representative macroscopic pictures; (D) liver weight of 6 -month-old mice
after HCC induction that were either wild type (C57BL/6, left, black), IL22-deficient (IL22-/-, middle,
blue) or IL22bp-deficient (IL22bp-/-, right, red); (E) serum ALT levels (in U/l) of 6-month-old mice
after HCC induction that were either wild type (C57BL/6, left, black), IL22-deficient (IL22-/-, middle,
blue) or IL22bp-deficient (IL22bp-/-, right, red). Data are pooled from 2 independent experiments.
Data presented as mean ± SEM. ns: p > 0.05; *: p < 0.05; **: p ≤ 0.01; ***: p ≤ 0.001 as assessed by
Mann–Whitney U test.

3.2. CD4+ T Cells and Neutrophils Show a High Expression of IL-22 and IL-22BP in
HCC, Respectively

We next wanted to determine the cellular sources of IL-22 and IL-22BP during HCC devel-
opment, respectively. To that end, we chemically induced liver tumors with DEN/TCPOBOP
treatment in reporter mice, in which IL-10-producing cells co-express green fluorescent
protein (GFP), Foxp3-positive cells red fluorescent protein (RFP), IL-17A-producing cells
Katushka and IL-22-producing cells blue fluorescent protein (BFP) (Figure 3A). When
then performing an unsupervised t-SNE analysis, we found that IL-22 production was
mainly concentrated in two clusters, with one of them co-expressing IL-17A (Figure S1 and
Figure 3B). Further analysis revealed that these clusters consisted of Th17 cells (defined
as CD45+ CD3+ CD4+ Foxp3- IL-17A+ IL-22+) and Th22 cells (defined as CD45+ CD3+

CD4+ Foxp3- IL-17A- IL-22+), respectively (Figure 3C). Indeed, both frequencies of IL-22-
producing Th17 and Th22 cells increased in HCC compared to healthy controls (Figure 3C).
In line with this, CD4+ T cells showed the highest IL22 expression compared to the other
analyzed cell types in HCC (Figure 3D). To identify the source of IL-22BP in HCC, we sorted
different immune cell populations and measured the levels of IL22bp expression with qPCR.
We found that both CD4+ T cells (defined as CD45+ CD3+ CD4+) as well as CD8+ T cells
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(defined as CD45+ CD3+ CD8+) showed increased IL22bp expression in HCC compared to
control (Figure 3E). Nonetheless, the highest IL22bp expression both in the healthy liver as
well as in the liver with liver tumors was found in neutrophils (defined as CD45+ CD11b+

Ly6G+) (Figure 3E). In summary, we found that CD4+ T cells, and in particular Th22 cells
show a high expression of IL-22 during HCC, while neutrophils, besides other cells, show a
high expression of IL-22BP during liver carcinogenesis.
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Figure 2. IL-22 and IL-22BP display contrary effects in a nutrition-based mouse model for HCC.
(A) A schematic timeline describing the used nutrition-based HCC induction with CD-HFD in mice;
(B) left: number of macroscopic tumor lesions in livers of 6 -month-old mice that were either wild type
(C57BL/6, left, black, n = 5), IL22-deficient (IL22-/-, middle, blue, n = 7) or IL22bp-deficient (IL22bp-/-,
right, red, n = 6); right: representative macroscopic pictures; (C) left: tumor volume (in mm3) assessed
by MRI in livers of month-old mice after CD-HFD feeding that were either wild type (C57BL/6,
left, black, n = 5), IL22-deficient (IL22-/-, middle, blue, n = 7) or IL22bp-deficient (IL22bp-/-, right,
red, n = 6); right: representative macroscopic pictures; (D) liver weight of 6 -month-old mice after
CD-HFD feeding that were either wild type (C57BL/6, left, black), IL22-deficient (IL22-/-, middle,
blue) or IL22bp-deficient (IL22bp-/-, right, red); (E) serum ALT levels (in U/l) of 6-month-old mice after
CD-HFD feeding that were either wild type (C57BL/6, left, black), IL22-deficient (IL22-/-, middle,
blue) or IL22bp-deficient (IL22bp-/-, right, red). Data are pooled from 2 independent experiments.
Data presented as mean ± SEM. ns: p > 0.05; *: p < 0.05; **: p ≤ 0.01; ***: p ≤ 0.001 as assessed by
Mann–Whitney U test.
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Figure 3. Th22 cells and neutrophils comprise the major cellular sources of IL-22 and IL-22BP in
HCC, respectively. (A) A schematic timeline describing chemical HCC induction with DEN and
TCPOBOP in mice; (B) unbiased tSNE-analysis of CD45+ leucocytes analyzed with FACS isolated
from the healthy murine liver (upper panel, n = 5) or murine liver after chemical induction of HCC
(lower panel, n = 5), color change indicates levels of IL-22 (left panels) or IL-17A (right panels);
(C) left: representative FACS dot plots of CD45+ CD3+ CD4+ Foxp3- leucocytes analyzed with FACS
isolated from the healthy murine liver (left) or murine liver after chemical induction of HCC (right);
right: percentage of IL-17A+IL-22- (left), IL-17A+IL-22+ (middle) and IL-17A-IL-22+ (right) CD45+

CD3+ CD4+ Foxp3- leucocytes analyzed with FACS isolated from the healthy murine liver (black,
n = 5) or murine liver after chemical induction of HCC (red, n = 5); (D) relative expression of IL22 in
comparison to HPRT of indicated leucocyte subsets isolated from either healthy murine liver (black,
n = 3 pooled samples of sorted cells, for each pooled sample 4 mice were used) or murine liver after
chemical induction of HCC (red, n = 3 pooled samples of sorted cells, for each pooled sample 4 mice
were used). (E) relative expression of IL22bp in comparison to HPRT of indicated leucocyte subsets
isolated from either healthy murine liver (black, n = 12) or murine liver after chemical induction of
HCC (red, n = 12). Leucocytes were all cell-sorted on CD45+ and then on indicated markers. Data are
pooled from 2 independent experiments. Data presented as mean ± SEM. ns: p > 0.05; *: p < 0.05;
**: p ≤ 0.01 as assessed by Mann–Whitney U test.
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3.3. IL-22 Signaling in Hepatocytes Promotes HCC Development

In the next step, we sought to investigate possible mechanisms and cellular targets,
through which IL-22 promotes tumor development. Thus, we chemically induced HCC
in different mouse lines (Figure 4A). As expected, mice lacking the receptor for IL-22,
IL-22RA1, were protected from tumor development (Figure 4B). To narrow down potential
targets, we used conditional mouse lines, in which IL-22RA1 is only depleted on specific
cell subsets. Since IL-22RA1 is primarily expressed on non-hemopoietic cells, we focused
our investigation on endothelial cells and hepatocytes. To that end, IL22ra1flox/flox; Cdh5Cre+

mice were used to specifically deplete IL22ra1 on endothelial cells. Interestingly, these mice
did not develop fewer liver tumors than IL22ra1+/+; Cdh5Cre+ control mice (Figure 4C). Thus,
IL-22 does not act on endothelial cells to promote hepatocellular cancer.

Next, we chemically induced HCC in IL22ra1flox/flox; AlbCre+ mice, which lack the
expression of IL22ra1 on hepatocytes. Strikingly, mice lacking IL22ra1 expression on
hepatocytes were protected from HCC development (Figure 4D). Taken together, IL-22
exerts its tumor-promoting effects mainly via IL-22RA1-mediated signaling on hepatocytes.

3.4. Deficiency of IL-22 Signaling in Hepatocytes Leads to Downregulation of STEAP4 in HCC

To elucidate potential downstream mechanisms that are induced by IL-22 signaling
within hepatocytes, we isolated hepatocytes from murine livers and stimulated them
in vitro with recombinant IL-22 (rIL-22) (Figure 5A). After performing RNA sequencing,
we identified several upregulated genes in hepatocytes upon rIL-22 stimulation, including
STEAP4, IL33, FGA, FGB, and CEBPD (Figure 5B,C). Indeed, validation of these results
with qPCR revealed that these five genes were drastically upregulated in hepatocytes
upon stimulation with IL-22 (Figure 5D). To verify that IL-22 also regulated these genes
within hepatocytes and during carcinogenesis in vivo, we measured their RNA levels
in IL22ra1flox/flox; AlbCre+ mice as well as their matched controls after HCC development.
Indeed, IL22ra1flox/flox; AlbCre+ mice displayed a significantly reduced expression of STEAP4
and FGA, while expression levels of the other three genes remained unchanged (Figure 5E).
As a control, we also measured the expression levels of these five genes in IL22ra1flox/flox;
Cdh5Cre+ mice as well as their matched controls. As expected, no difference in gene expres-
sion levels in any of the five target genes of IL-22 could be detected (Figure 5F).

3.5. STEAP4 Correlates with IL22 in Patient Samples of HCC

Finally, we investigated the expression of these five IL-22-associated genes in human
samples of HCC and appropriate controls. Indeed, STEAP4, CEBPD, and IL33 were
positively correlated to IL22 expression levels in human HCC, but not in healthy liver
specimens (Figure 6A–C). Such a correlation could neither be found for FGA in human
HCC (Figure 6D) nor for FGB (Figure 6E). In summary, IL22 expression correlates with
STEAP4 in samples of HCC, but not in healthy liver specimens. Likewise, a correlation of
CEBPD or IL33 with IL22 could be equally detected.
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Figure 4. IL-22 signaling in hepatocytes promotes HCC development. (A) A schematic timeline
describing chemical HCC induction with DEN and TCPOBOP in mice; (B) left: number of macroscopic
tumor lesions in livers of 6-month-old mice that were either wild type (C57BL/6, left, black, n = 9), or
IL22ra1-deficient (IL22ra1-/-, right, blue, n = 8); middle: representative macroscopic pictures; right:
representative MRI pictures; (C) left: number of macroscopic tumor lesions in livers of 6-month-
old mice that were either controls (IL22ra1+/+;AlbCre+, left, black, n = 9), or deficient for IL22ra1 on
hepatocytes (IL22ra1flox/flox; AlbCre+, right, blue, n = 8); middle: representative macroscopic pictures;
right: representative MRI pictures; (D) left: number of macroscopic tumor lesions in livers of 6-month-
old mice that were either controls (IL22ra1+/+;Cdh5Cre+, left, black, n = 9), or deficient for IL22ra1
on endothelial cells (IL22ra1flox/flox; Cdh5Cre+, right, blue, n = 8); middle: representative macroscopic
pictures; right: representative MRI pictures. Data are pooled from 2 independent experiments. Data
presented as mean ± SEM. ns: p > 0.05; ***: p ≤ 0.001 as assessed by Mann–Whitney U test.
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Figure 5. IL-22 signaling induces transcriptional changes in murine hepatocytes. (A) A schematic
picture describing the experimental setup; (B) volcano-plot depicting the differently expressed genes
in hepatocytes upon in vitro PBS-stimulation (left, n = 3) versus rIL-22 stimulation (right, n = 3);
(C) heatmap and hierarchical clustering of differentially expressed genes in hepatocytes upon in vitro
IL-22 stimulation (left, n = 3) versus PBS-stimulation (right, n = 3); (D) relative expression of STEAP4,
IL33, FGA, FGB and CEBPD in comparison to HPRT in murine hepatocytes that were either stimulated
with 0.1% BSA as control (black, n = 6) or rIL-22 (red, n = 10); (E) relative expression of STEAP4,
IL33, FGA, FGB and CEBPD in comparison to HPRT in the livers of IL22ra1+/+; AlbCre+ (black, n = 9)
or IL22ra1flox/flox; AlbCre+ (red, n = 8) 6-month-old mice that underwent chemical HCC induction as
outlined above; (F) relative expression of STEAP4, IL33, FGA, FGB and CEBPD in comparison to HPRT
in the livers of IL22ra1+/+;Cdh5Cre+ (black, n = 9) or IL22ra1flox/flox; Cdh5Cre+ (red, n = 8) mice 6 months
after chemical HCC induction. Data are pooled from 2 independent experiments. Data presented as
mean ± SEM. ns: p > 0.05; *: p < 0.05; **: p ≤ 0.01; ***: p ≤ 0.001 as assessed by Mann–Whitney U test.
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Figure 6. IL22 expression is associated with the expression of CEBPD, STEAP4, and IL33 in HCC
but not in healthy livers. (A) correlation of relative expression of IL22 and CEBPD in comparison to
HPRT in liver samples with HCC (red, n = 42) and in normal liver tissue (blue, n = 24); (B) correlation
of relative expression of IL22 and STEAP4 in comparison to HPRT in liver samples with HCC (red,
n = 42) and in normal liver tissue (blue, n = 24); (C) correlation of relative expression of IL22 and
IL33 in comparison to HPRT in liver samples with HCC (red, n = 42) and in normal liver tissue (blue,
n = 24); (D) correlation of relative expression of IL22 and FGA in comparison to HPRT in liver samples
with HCC (red, n = 42) and in normal liver tissue (blue, n = 24). (E) correlation of relative expression
of IL22 and FGB in comparison to HPRT in liver samples with HCC (red, n = 42) and in normal liver
tissue (blue, n = 24). Displayed are all samples with detectable IL22 expression from 60 samples
analyzed of HCC and 37 samples analyzed of healthy livers. Each data point represents one patient
sample. (F) graphical representation depicting the role of the IL-22−IL-22BP axis in HCC.
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4. Discussion

In this study, we investigated the roles of IL-22 and its endogenous inhibitor, IL-22BP,
during the development of HCC. Using two different mouse models, we found a pathogenic
role for IL-22 but showed that IL-22BP exerts protective effects in the same setting. We
determined CD4+ T cells and neutrophils as significant sources for IL-22 and IL-22BP
during HCC, respectively. Furthermore, we showed that IL-22 acted on hepatocytes by
increasing the expression of different pro-tumorigenic genes, such as STEAP4 (Figure 6F).
Moreover, a correlation between STEAP4 and IL-22 could also be shown in human HCC
liver samples.

The immune system possesses potent anti-tumor functions that inhibit tumor for-
mation in many settings. However, tumors can also exploit certain parts of the host’s
immune response to promote cancer growth, often by subverting cues for wound healing.
Thus, it is no wonder that IL-22, a cytokine that promotes tissue regeneration in many
settings, can also promote tumors. Regarding the development of HCC, two landmark
studies have previously explored the influence of IL-22. Using a transgenic mouse strain, in
which IL-22 was artificially overexpressed, a pathogenic effect on HCC development upon
DEN injection was observed [41]. Likewise, a reduced HCC count upon DEN treatment in
IL22-deficient mice could be observed in a second study [42]. Our study corroborates these
findings by adding two further murine HCC models to the record, which show that IL22
deficiency indeed protects from tumor development in the liver.

Moreover, we demonstrate for the first time that IL-22BP protects from liver tumor
development and that IL-22BP is produced from neutrophils in addition to dendritic cells
(DCs), CD4+, and CD8+ T cells during HCC development. The anti-tumorigenic effect of
IL-22BP is well documented in colorectal cancer, while its effect on other tumor entities is
not known to this current date. In colorectal cancer, the source of IL-22BP was determined
to consist of DCs, CD4+ T cells, and eosinophils. Our study identifies neutrophils as an
additional potential source of IL-22BP. We additionally sought to determine the cellular
source of IL-22 in HCC. In line with former publications [45,54], we found that both Th17
and Th22 cells can produce IL-22 in steady state and liver tumors.

Many studies imply that IL-22 exerts its tumor-promoting effects directly by inducing
a STAT3-mediated signal cascade in the malignantly transformed hepatocytes [42,45,55].
However, corresponding in vivo examinations of these and other cellular targets were
missing. Here, we identified hepatocytes as the main cellular target of IL-22 during liver
carcinogenesis in vivo and showed that signaling of this cytokine on endothelial cells is
dispensable for overall tumor development.

Furthermore, we identified potential downstream targets of IL-22-among them STEAP4.
Indeed, abrogation of IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced
STEAP4 in HCC in vivo. Finally, IL22 expression also correlated with STEAP4 in samples
of HCC in humans, but not in healthy liver specimens. STEAP4 was previously shown to
enhance tumorigenesis and metastasis in the colon by fueling copper metabolism [56,57].
Equivalent to our finding, STEAP4 was upregulated by IL-22 in this study, but also by
other cytokines such as IL-17A. However, another study describes this gene as a tumor-
suppressing gene whose expression is downregulated in HCC [58]. Thus, further studies
are warranted to clarify the role of STEAP4 in HCC.

5. Conclusions

In summary, this study highlights the pro-tumorigenic effect of IL-22 in liver car-
cinogenesis while underlining the anti-tumorigenic effects of IL-22BP. Further analysis
suggests that IL-22 acts directly on hepatocytes thereby promoting tumorigenesis. Thus,
the IL-22–IL-22BP axis is a novel target in HCC.
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