
Alterations in circulating extracellular vesicles underlie
social stress-induced behaviors in mice
Shinji Sakamoto1, Dania Mallah2, Destynie J. Medeiros2 , Eisuke Dohi1,2 , Takashi Imai1,
Indigo V. L. Rose1 , Ken Matoba2, Xiaolei Zhu1 , Atsushi Kamiya1 and Shin-ichi Kano1,2

1 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA

2 Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA

Keywords

exosome; extracellular vesicles;

inflammation; microRNA; resilience; social

defeat stress

Correspondence

S. Kano, Department of Psychiatry and

Behavioral Neurobiology, University of

Alabama at Birmingham School of Medicine,

1720 7th Ave South, Birmingham, AL

35233, USA

Tel: +1 205 975 7466

E-mail: sikano@uabmc.edu

A. Kamiya, Department of Psychiatry and

Behavioral Sciences, Johns Hopkins

University School of Medicine, 600 N.

Wolfe Street, Baltimore, MD 21287, USA

Tel: +1 410 502 0060

E-mail: akamiya1@jhmi.edu

Shinji Sakamoto and Dania Mallah

contributed equally to this work

(Received 10 April 2021, revised 4 May

2021, accepted 25 May 2021)

doi:10.1002/2211-5463.13204

Chronic stress induces peripheral and intracerebral immune changes and

inflammation, contributing to neuropathology and behavioral abnormali-

ties relevant to psychiatric disorders such as depression. Although the

pathological implication of many peripheral factors such as pro-

inflammatory cytokines, hormones, and macrophages has been demon-

strated, the roles of circulating extracellular vesicles (EVs) for chronic stress

mechanisms remain poorly investigated. Here, we report that chronic social

defeat stress (CSDS)-induced social avoidance phenotype, assessed by a

previously untested three-chamber social approach test, can be distin-

guished by multiple pro-inflammatory cytokines and EV-associated molecu-

lar signatures in the blood. We found that the expression patterns of

miRNAs distinguished the CSDS-susceptible mice from the CSDS-resilient

mice. Social avoidance behavior scores were also estimated with good accu-

racy by the expression patterns of multiple EV-associated miRNAs. We

also demonstrated that EVs enriched from the CSDS-susceptible mouse

sera upregulated the production of pro-inflammatory cytokines in the LPS-

stimulated microglia-like cell lines. Our results indicate the role of circulat-

ing EVs and associated miRNAs in CSDS susceptibility, which may be

related to pro-inflammatory mechanisms underlying stress-induced neu-

robehavioral outcomes.

Accumulating preclinical evidence suggests that repeated

stress induces peripheral and intracerebral immune

changes and inflammation, leading to neuropathology

and behavioral abnormalities relevant to psychiatric

symptoms such as depression and anxiety [1-7]. Consis-

tently, altered expression of multiple inflammatory

cytokines and chemokines including IL-1β, TNF-α,
IL-6, IL-8, IFNα, CXCL4, CXCL7, and CCL4, and

other inflammatory factors, such as CRP and MCP-1,

in the cerebrospinal fluid and/or peripheral blood are

observed in patients with stress-related psychiatric dis-

orders such as depression, whereby high stress
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environments may exacerbate their perturbed regulation

[8-14]. While the pathological mechanisms underlying

stress-induced behaviors mediated by circulating inflam-

matory cytokines, hormones, and immune cells such as

macrophage have been extensively studied

[1,2,4,5,6,15,16], other soluble factors in the peripheral

blood may also play critical roles for body-to-brain

communication of which disturbances contribute to

neurobehavioral outcomes.

Extracellular vesicles (EVs) have recently gained

greater attention to mediate intercellular communica-

tions by secreting various cellular components, which

are transferred from donor to recipient cells in a para-

crine and endocrine manner [17-21]. MicroRNAs

(miRNAs) are small noncoding RNAs that regulate

molecular expression via binding to their target mRNA

30 untranslated region, leading to the formation of the

RNA induced silencing complex, which sequesters and

degrades mRNA to suppress targeting protein expres-

sion [22-24]. Recent studies demonstrate that circulating

EVs could be taken up by brain cells under inflamma-

tory conditions [19,20,25,26,27]. In addition, EV-

associated miRNAs have been shown to modulate the

functions of recipient cells through modification of gene

expression [20,28,29,30,31]. EV-associated miRNAs also

contribute to inflammation by triggering macrophage

activation and innate immune responses [32,33]. These

results suggest that EVs and associated miRNAs may

mediate inflammatory responses in the peripheral and

brain immune cells.

There is a growing body of literature on the role of

EVs and associated miRNAs in immune and inflamma-

tory alterations in brain disorders [34-39]. It has been

reported that various stress paradigms induce differen-

tial expression of multiple miRNAs from peripheral ori-

gins that include serum EVs, blood NK cell EVs, and

blood monocyte [35,40,41]. EV-associated miRNAs

(EV-miRNAs) in the blood circulation have also been

shown to reach the brain under systemic inflammation,

mediating body–brain communication [42]. Nonethe-

less, although chronic social defeat stress (CSDS) is a

widely used stress paradigm for the investigation of the

neural mechanisms related to depression and anxiety

and has been shown to be associated with systemic

inflammation, the impact of CSDS on circulating EV-

miRNAs that potentially mediate blood-brain commu-

nication linked to immune/inflammatory responses

remains unexplored.

Here, we report CSDS-induced differential expression

of peripheral pro-inflammatory cytokines and circulat-

ing EVmiRNAs and their relationship with social avoid-

ance phenotypes by performing cytokine multiplex

assay and miRNAs profiling. We used previously

untested three-chamber social approach test to identify

‘susceptible’ and ‘resilient’ mice to CSDS. We also

demonstrate that EV-miRNAs can distinguish CSDS

‘susceptible’ from ‘resilient’ mice. Finally, we found that

circulating EVs from CSDS ‘susceptible’ mice potentiate

cellular inflammatory responses. Our results highlight

the importance of circulating EVs and associated molec-

ular cargos in stress-induced behavioral abnormalities.

Methods

CSDS mouse models

C57BL/6 (C57) mice were purchased from the Jackson Labo-

ratory (Bar Harbor, ME, USA). Mice were housed in specific

pathogen-free facilities at the Johns Hopkins University. All

procedures were approved by the Institutional Animal Care

and Use Committee of the Johns Hopkins University and

the University of Alabama at Birmingham. CSDS was per-

formed by our published method with minor modification

[43]. Briefly, aggressive male CD-1 mice were screened out as

resident aggressors and singly housed before CSDS experi-

ments. Intruder male C57 mice were exposed to a CD-1

aggressor for 10 min daily. After exposure, C57 mice were

separated by a transparent and porous Plexiglas barrier

within the home cage of the CD-1 aggressors to enable con-

stant sensory exposure for 24 h. CSDS was repeated with a

novel CD-1 aggressor mouse each day for 10 consecutive

days. During bouts of exposure to the CD-1 mice, hallmark

behavioral signs of CSDS were observed in C57 mice includ-

ing escape, submissive postures (e.g., defensive upright or

supine stance), and freezing. Nonstressed control C57 mice

were daily placed in a similar cage, but in the absence of

exposure to aggressor CD-1 mice.

Three-chamber social approach test

Social approach test was performed by our published

method with minor modification [43]. Briefly, a 40 cm

width × 20 cm height × 26 cm depth three-chamber appara-

tus was used for the test. Both side chambers contained a

plastic cage in the corner, with a plastic cup and weight on

top, to prevent the subject mouse from climbing. The assay

consisted of three sessions. The first session began with 10-

min habituation in the center chamber, and the second 10-

min session allowed subject mouse to explore freely all three

chambers including two side chambers. Before the third ses-

sion, the subject mouse was gently confined in the center

chamber, while a C57 male stranger mouse (stranger) was

placed in one of the two plastic cages, and an inanimate

object (inanimate) was placed into another cage in the other

side chamber. The inanimate objects we used were mouse

toys with similar size and color as the C57 stranger mice. In

the third session, the subject mouse was allowed to freely

explore all three chambers for 10 min. Mouse behaviors were
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video-monitored, and the trajectory of mouse ambulation

was automatically determined and recorded by video track-

ing system, TOPSCAN 3.0 (CleverSys, Reston, VA, USA). Time

spent in each chamber and sniffing each object were

recorded. Based on social interaction ratio (SIR, time in

chamber with stranger/time in chamber with inanimate),

mice were designated as susceptible (SIR < 1.0) or resilient

(SIR ≥ 1.0). Social sniffing was scored as the sum of nose-to-

nose sniffing (sniffing or snout contact with the head/neck/-

mouth area) and nose-to-tail sniffing (sniffing or snout con-

tact with the tail area). The heat maps were generated by

ETHOVISION XT 11.0 (Noldus, Leesburg, VA, USA).

Multiplex profiling assay for serum cytokines

According to the manufacturer’s protocol, 24 h after

10 days CSDS followed by social interaction test (SIT),

cytokine, and chemokine expressions in serum at the pro-

tein level were measured by conducting multiplex profiling

assays (Meso Scale Diagnostics, Rockville, MD, USA).

EV enrichment and characterization

Extracellular vesicles were enriched using the protocol

adapted from published methods with minor modifications

[16,44,45]. Briefly, serum was collected and centrifuged at

2000 g for 30 min at 4 °C to remove cell debris. Cleared

supernatants were processed to enrich EVs using Total

Exosome Isolation Kit (cat# 4478360; Thermo Fisher Sci-

entific, Waltham, MA, USA) according to the manufac-

turer’s protocol. Following mixing and 30-min incubation

with the reagents on ice, samples were centrifuged at

10 000 g for 10 min. Pellets were resuspended in PBS and

stored at 4 °C for up to 1 week.

Transmission electron microscopy

Freshly prepared EV samples were adsorbed onto carbon-

coated/palladium grids and negatively stained with 2% (w/v)

uranyl acetate. EVs were visualized under a Tecnai Spirit

T12 Transmission Electron Microscope, Thermo Fisher Sci-

entific (formerly FEI), Waltham, MA, USA.

Nanoparticle tracking assay (NTA)

Single particles were detected with a NANOSIGHT NS 300 and

NANOSIGHT NTA software (ver. 3.4) (Malvern Panalytical, Mal-

vern, Worcestershire, UK). The samples with vesicle concentra-

tions of 107 to 108 were used for size distribution and

concentration analyses. Raw concentration data were converted

to the concentration in sera considering the dilution factor.

Isolation of microglia-enriched CD11b+ cells

Microglia-enriched CD11b+ cells were isolated from the

prefrontal cortex (PFC) of mice as we have previously

described [43]. Briefly, mice were deeply anesthetized with

isoflurane, and cardiac perfusions were performed. PFC

was defined by landmarks and neuroanatomical nomencla-

ture in the atlas of Franklin and Paxinos [46]. PFC: antero-

posterior (AP): +2.57 to +1.53 mm, mediolateral (ML):

�2.75 mm from bregma, dorsoventral (DV): −1.75 to

−3.05 mm from the dura according to the atlas. Bi-lateral

PFC was rapidly dissected on icy plate, minced in HBSS

(Sigma-Aldrich, St. Louis, MO, USA), and dissociated with

neural tissue dissociation kits (MACS Miltenyi Biotec,

Auburn, CA, USA). After passing through a 70-μm cell

strainer, homogenates were centrifuged at 300 g for 10 min.

Supernatants were removed, cell pellets were resuspended,

and myelin was removed using Myelin Removal Beads II

(MACS Miltenyi Biotec). Myelin-removed cell pellets were

resuspended and incubated with CD11b MicroBeads

(MACS Miltenyi Biotec) for 15 min, loaded on LS col-

umns, and separated on a quadroMACS magnet. CD11b+

cells were flushed out, washed, and resuspended in sterile

HBSS (Sigma-Aldrich). Isolated microglia-enriched

CD11b+ cells were immediately used for further assays.

RNA extraction and real-time qPCR analysis

Isolated microglia-enriched CD11b+ cells were washed three

times with PBS, and total RNA was isolated using the

RNeasy Mini Kit (Qiagen, Germantown, MD, USA)

according to the manufacturer’s guidelines. RNA concentra-

tions were determined using a NanoDrop ND 1000 spec-

trophotometer (Thermo Fisher Scientific, Wilmington, DE,

USA). Expression levels of TNF-α, IL-6, and IL-1β mRNA

were confirmed by real-time (RT)-qPCR analysis. In brief,

cDNA synthesis was performed using SuperScript® III Cells-

Direct™ cDNA Synthesis Kit (Life Technologies Corpora-

tion, Grand Island, NY, USA) from total RNA in the range

of 10–100 ng. Real-time PCR contained diluted cDNA from

the synthesis reaction and 200 nM specific forward and

reverse TaqMan primers specific to targeted cytokine (Assay

IDs for TNF-α, IL-6, and IL-1β are Mm00443260_g1,

Mm00446190_m1, and Mm00434228_m1, respectively)

(Applied Biosystems, Foster City, CA, USA). Primers for

GAPDH were used to normalize the expression data. The

real-time PCR and measurement were carried out with

Applied Biosystems PRISM 7900 HT. PCR conditions were

as follows: 50 °C, 2 min; 95 °C, 10 min; 40 cycles of 95 °C,
15 s and 60 °C, 1 min, including a dissociation curve at the

last step to verify single amplicon in the reaction. Quantifica-

tion was performed using the ΔCt method (2�ΔΔCt ). Data

were normalized to GAPDH.

Western blotting

Prefrontal cortex tissue or cell lysates were prepared with

RIPA buffer and separated on 4–12% NuPAGE Bis-Tris

Mini Gels (Thermo Fisher Scientific, Waltham, MA, USA),
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followed by transfer to PVDF membrane (Millipore,

Burlington, MA, USA) following a standard protocol.

After blocking in 5% skim milk/PBS-T, membranes were

incubated with the primary antibody overnight at 4 °C and

then incubated with the secondary antibody for 1 h at

room temperature. Target-specific bands were visualized by

ECL substrate (Thermo Fisher Scientific, Waltham, MA,

USA) and imaged with ImageQuant LAS 4000 (GE

Healthcare, Chicago, IL, USA). The following primary

antibodies and corresponding HRP-conjugated secondary

antibodies were used: Iba1 (1 : 500, 016-20001, Wako

Chemicals USA, Inc., Richmond, VA, USA), β-tubulin
(1 : 4000; Sigma-Aldrich), CD9 (1 : 1000; Abcam, RRID:

_10561589, Cambridge, UK), Alix (1 : 1000; Abcam,

RRID:_2754981), and Calnexin (1 : 1000; Enzo Life

Science, RRID:_1061834, Farmingdale, NY, USA).

Cell culture

BV2 cells were maintained in DMEM/F12 supplemented

with 15% FBS and penicillin/streptomycin (all from

Thermo Fisher Scientific, Waltham, MA, USA). EV-rich

fractions (10 µg) were added to BV2 cell culture

(5 × 104 cell/100 μL medium per well in 96-well culture

plate) in the presence or absence of lipopolysaccharides

(LPS, 100 ng�mL−1; Sigma-Aldrich), and the culture super-

natants were collected 6 h later. The levels of pro-

inflammatory cytokines, including TNF-α (cat # MTA00B;

R&D Systems, Minneapolis, MN, USA), IL-1β (cat #

MLB00C; R&D Systems), and IL-6 (cat # M6000B, R&D

Systems), were measured with commercially available

ELISA kits according to manufacturer’s protocols.

miRNA profiling

miRNAs were collected from EV fractions using miRNeasy

mini kit (cat# 217004; Qiagen) following the manufacturer’s

instructions. Then, miRNA expression profiling was con-

ducted using TaqMan™ OpenArray™ Rodent MicroRNA

Panel (#4470188; Thermo Fisher Scientific, Waltham, MA,

USA) on QuantStudio™ 12K Flex Real-Time PCR system

(Thermo Fisher Scientific, Waltham, MA, USA). Averaged

Cq value for controls (U6 snRNA) on will be subtracted from

that for each miRNA to calculateΔCq values on each plate.

Data analyses

Support vector machine model

A support vector machine (SVM) model is a method in

supervised machine learning and was used to predict

the CSDS-susceptible and CSDS-resilient mice using the

expression data of circulating EV-miRNAs (ΔCq values).

SVM models are used for both classification and regression

problems, essentially creating a line or plane that separates

data into classes. Such models uniquely find the best line or

plane separator that will have the maximal margin from both

classes. In this study, we used NEUROMINER, version 1.05

(http://proniapredictors.eu/neurominer/index.html) [47] on

MATLAB 2018a (MathWorks Inc., Natick, MA, USA). A

unique aspect of the NEUROMINER software is its ability to use

nested cross-validation, which involves the separation of two

cross-validation schemes: an inner cross-validation (CV1) and

an outer cross-validation (CV2). In the inner CV1 cross-

validation, features can be selected and parameters for models

can be optimized. Then, these models are applied to the held-

out information in the outer CV2 cross-validation folds.

Models are trained in the CV1 cycle, and then, the best-

performing models are applied to the CV2 data. This separa-

tion of CV2 and CV1 data avoids overfitting [47]. For our

model, we used a pooled CV framework, where the outer and

inner cross-validation folds will be automatically and ran-

domly defined, and adjusted the CV settings to include two

permutations and 4-fold for both the outer cross-validation

(CV2) cycle and the inner cross-validation (CV1) cycle. This

means that the dataset will be randomly split into four CV1

folds and go into the CV1 training cycle. The program will

then cycle through all of the CV2 folds and then will repeat

this entire process two times (i.e., two permutations).

Regularized linear regression analysis

Elastic net regularization was used to select predictor miR-

NAs for SIR. Elastic net regularization is a statistical

approach designed to select models in the context of

collinearity, which produces challenges for older stepwise

selection approaches [48]. Elastic net linear regression is a

combination of ridge and lasso, and uses the penalties from

both the lasso and ridge techniques [13,16]. The elastic

net algorithm has two parameters to be tuned. The first is

a regularization parameter, lambda (λ), controlling overfit-

ting and can be tuned via cross-validation. When λ = 0, no

shrinkage occurs, and as λ increases, coefficients are shrunk

more strongly regardless of the second parameter, α. For

our elastic net model, we performed 5-fold cross-validation

(CV) to calculate the value of λ that gives the minimum

mean cross-validated error. A 5-fold CV will randomly

divide our observations into five nonoverlapping folds of

approximately equal size where the first fold will be used as

the validation set, and the model is then fit on the four

remaining folds. We ran this model 100 times and averaged

the error curves to tune our λ in order to reduce random-

ness [49-52]. The second parameter to tune is the α parame-

ter (between 0 and 1) where if α is equal to 0, the model

corresponds to ridge, and if α is equal to 1, the model cor-

responds to lasso. To optimize our α parameter, we exam-

ined the averaged minimum cross-validated error during λ
tuning from 100 runs using the following α values: 0.1, 0.3,

0.5, and 0.75. We found that α set to 0.75 resulted in the

smallest averaged minimum cross-validation error and was
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used to generate the predictive data meaning nonsignificant

coefficients were more likely to be completely eliminated

from our model (Fig. S1). The analysis was conducted with

glmnet on MATLAB 2018a (MathWorks Inc.).

Other statistical analyses

Statistical differences among more than two groups were

determined using one-way ANOVA, or two-way ANOVA,

followed by the Bonferroni multiple comparison test. A

value of P < 0.05 in two-tailed test was considered statisti-

cally significant. All data are presented as the mean �
SEM. Single regression analysis and multivariable regres-

sion analysis were used to evaluate the relationships

between SIR and the level of serum cytokines or EV-

miRNAs. SIR and either serum level of IL-1β, IL-6, and

TNF-α or EV-miRNAs were included in variables.

Regression analyses and Pearson’s correlation test were

performed using SPSS STATISTIC software version 25.0 (SPSS

Inc., Chicago, IL, USA) and MATLAB 2018a (MathWorks

Inc.).

Results

CSDS susceptibility assessed by three-chamber

social approach test

Repeated exposure to social defeat stress in rodents

causes behavioral abnormalities marked by social

avoidance, consummatory behaviors, and anxiety-like

phenotypes [53]. While one-chamber SIT is widely

used to classify the response to the CSDS as ‘suscepti-

ble’ and ‘resilient’ subpopulation [4,54], three-chamber

social approach test has advantages for the assessment

of social behaviors [55-59]. Nonetheless, to our knowl-

edge, there is no report differentiating ‘susceptible’ and

‘resilient’ behavioral phenotypes induced by CSDS

using three-chamber social approach test. Thus, we

firstly examined the different social behavior pheno-

types of mice subjected to CSDS by the three-chamber

social approach test (Fig. 1A). Based on previous

studies using one-chamber SIT and our data from con-

trol mice, we proposed an SIR above on or equal to 1,

in which more or equal time is spent in the chamber

with stranger versus in the chamber with inanimate, as

the threshold for dividing defeated mice into the sus-

ceptible and resilient categories [17,21]. While control

mice showed a strong tendency to spend greater than

or equal amounts of time in the chamber with stranger

mouse, 22 (52.4%) out of 42 defeated mice displayed

significant social avoidance behavior as indicated by

their SIR (Fig. 1B). Control mice and CSDS-resilient

mice exhibited significant preference for exploring a

stranger mouse relative to an inanimate object, as mea-

sured by the total amount of time spent in each chamber

and sniffing each cage, whereas susceptible mice did not

show preference for exploring the stranger mouse rela-

tive to the inanimate object (Fig. 1C,D). These results

are highly representative of a standard social defeat

experiment. We then examined the effect of CSDS on

microglia, which are involved in the pathophysiologi-

cal mechanisms underlying stress-induced social

abnormalities [2,7]. After being subject to CSDS,

expression of Iba1, a microglial marker, was mea-

sured by western blotting. CSDS specifically increased

Iba1 expression in the PFC of the susceptible mice

(P < 0.01, Fig. 1E). We also examined the effect of

CSDS on PFC microglial cytokine expression, includ-

ing IL-1β, TNF-α, and IL-6, as those are reportedly

increased in the cerebrospinal fluid and/or peripheral

blood of patients with depression [10,11]. We found

that CSDS induced increased mRNA expression of

IL-1β and TNF-α, but not IL-6 in microglia-enriched

CD11b+ cells isolated from PFC of susceptible mice,

compared with those from control mice and resilient

mice (susceptible-control; IL-1β: P < 0.01; TNF-α:
P < 0.01; IL-6: P = 0.74, susceptible-resilient; IL-1β:
P < 0.01; TNF-α: P < 0.01; IL-6: P = 0.96, Fig. 1F).

Thus, enhanced expression of IL-1β and TNF-α in

microglia in the PFC may characterize the susceptibility

to CSDS.

Fig. 1. CSDS susceptibility assessed by three-chamber social approach test. (A) Experimental timeline was shown. Eight-week-old C57BL/6

mice were subjected to 10 days of CSDS. Next day, three-chamber SIT was performed, and serum or brain tissue and cell sample were

subsequently collected. (B) CSDS results in a spectrum of social avoidance behavior, defined as ‘susceptible’ and ‘resilient’ phenotypes

using their SIR score. Representative heat map images (lower panels) represent movements of the Control, Resilient, and Susceptible mice.

(C) Susceptible mice spend significantly more time in the chamber with an inanimate object, whereas both control and resilient mice spend

significantly more time in the chamber with a stranger mouse. (D) Both control and resilient mice spend significantly more time sniffing the

stranger mouse, whereas there is no difference of the time of susceptible mice spend on sniffing the stranger mouse and the inanimate

object. **P < 0.01, determined by two-way ANOVA with Bonferroni multiple comparison test. (B–D) Control, n = 21; Resilient, n = 20;

Susceptible, n = 22. (E) Western blotting for Iba1 expression in the PFC. β-tubulin was used as loading control. Iba1 expression was

increased in susceptible mice. (F) TNF-α and IL-1β production is increased in the microglia of the PFC of susceptible mice, compared to

resilient and control mice. (E, F) **P < 0.01, determined by one-way ANOVA with Bonferroni multiple comparison test. n = 3–4 per each

group. Data are presented as the mean � SEM.
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CSDS-induced elevation of serum inflammatory

cytokines correlates with social avoidance

phenotypes

Previous studies demonstrate that CSDS also

increases serum levels of IL-6 and TNF-α expression,

which contribute to social avoidance behaviors

[4,5,60,61]. To validate the effect of CSDS on circu-

lating cytokine expression in the resilient and suscep-

tible mice defined by three-chamber social approach

test, we measured serum cytokine expression in the

mice subjected to CSDS by conducting multiplex

profiling assays. Consistent with previous studies,

expression of IL-6 and TNF-α in susceptible mice is

higher than those in resilient and control mice

(Table 1). We also observed that IL-1β expression is

elevated in susceptible mice (Table 1). Single regres-

sion analysis showed that the level of IL-1β, IL-6,

and TNF-α was inversely correlated with SIR, indi-

vidually (IL-1β, R2 = 0.5728, P = 0.0007; IL-6,

R2 = 0.6505, P = 0.0005; TNF-α, R2 = 0.3755,

P = 0.0198) (Fig. 2A–C). We next wondered whether

combination of measurement of these cytokines may

provide better prediction of severity of social avoid-

ance phenotypes. Compared with the results of single

regression analysis, multivariable regression analysis

revealed more significant correlation between combi-

nation of IL-1β, IL-6, and TNF-α expression and

SIR (R2 = 0.8100, P = 0.0017) (Fig. 2D), suggesting

that multivariable model with measurement of multi-

ple circulating inflammatory cytokines may provide a

pathological hallmark to detect stress-induced behav-

ioral abnormalities.

Estimation of CSDS-induced social avoidance

phenotypes by circulating EV-miRNAs

Previous human studies showed that blood EV miR-

NAs of patients with major depressive disorder

(MDD) differed from those of controls and that EVs

from MDD patients altered normal mouse behaviors

in forced swim, tail suspension, and novelty suppressed

feeding tests [39]. Thus, we examined the serum EV

miRNA profiles in mice after CSDS using multiplex

qPCR array. Successful collection of EVs containing

exosomes from serum samples of CSDS mice was con-

firmed by the size and morphological analysis of vesi-

cles assessed by transmission electron microscopy,

nanoparticle tracking assay, and western blotting for

EV-enriched proteins (Fig. 3A–C). There was no sig-

nificant difference in EV size and concentration

between the susceptible and resilient mice (Fig. S2).

Among 408 targets on the panel, 24 targets were

detected in all the samples (n = 6, susceptible; n = 6,

resilient; n = 6, control). With recent annotation data

from miRbase (ver. 22), eight targets turned out to be

non-miRNA RNAs. There were no differentially

expressed miRNAs in pairwise comparison (susceptible

vs. resilient) among these 16 miRNAs (Table S1). We

also tested if the CSDS susceptible and resilient mice

could be distinguished by the patterns of EV-miRNA

expression. To this end, we first tested if EV-miRNA

data could classify susceptible from resilient mice using

a SVM model (Fig. 3D–G). The analysis showed that

EV-miRNAs discriminate susceptible mice from resili-

ent mice with an area under curve (AUC) of 0.83

(Fig. 3D,E). Ten miRNAs were determined as signifi-

cant predictors by sign-based consistency mapping

[P < 0.05 for false discovery rate (FDR)] (Fig. 3F,G).

We also performed elastic net regularized linear

regression analysis using 16 miRNA data to predict

SIR. The 12 miRNAs (miR-93-5p, miR-712-5p, miR-

467b-3p, miR-24-2-5p, miR-1839-5p, miR-215-5p,

miR-31-5p, miR-29b-1-5p, miR-18a-3p, miR-212-3p,

miR-877-3p, miR-1928) were identified as significant

features to predict SIR scores (Fig. 3H). The predicted

SIR scores were highly correlated with the observed

Table 1. The effect of CSDS on circulating cytokine expression. Mean � SEM are shown. P < 0.05 are boldfaced.

Cytokines Control (N = 5) Resilient (N = 6) Susceptible (N = 6) F value P value

IL-1β (pg�mL−1) 1.10 � 0.23 1.20 � 0.13 2.21 � 0.29 7.72 0.0062

IL-6 (pg�mL−1) 15.13 � 3.82 53.45 � 10.73 110.95 � 35.5 4.12 0.046

TNF-α (pg�mL−1) 13.82 � 1.31 18.90 � 1.46 20.55 � 1.66 4.43 0.039

IL-2 (pg�mL−1) 3.35 � 0.27 3.42 � 0.31 3.94 � 0.57 1.08 0.37

IL-4 (pg�mL−1) 0.84 � 0.15 0.49 � 0.11 0.56 � 0.17 1.21 0.37

IL-5 (pg�mL−1) 8.45 � 1.20 6.18 � 0.84 7.22 � 1.30 0.97 0.41

IL-10 (pg�mL−1) 12.67 � 2.03 12.74 � 2.17 14.54 � 3.35 0.14 0.87

IL-12 (pg�mL−1) 12.65 � 3.75 12.91 � 1.92 10.16 � 1.62 0.37 0.70

IFN-γ (pg�mL−1) 1.48 � 0.32 2.13 � 0.30 2.50 � 0.61 1.33 0.30

KC/GRO (pg�mL−1) 126.75 � 14.22 120.26 � 7.25 163.25 � 47.47 0.59 0.57
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SIR scores (R2 = 0.9371, P = 4.92e-11) (Fig. 3I).

Among these significant predictor EV-miRNAs (Fig. 3

G,H), miR-31-5p, miR-712-5p, miR-212-3p, miR-451a,

miR-467b-3p, miR-193b-3p, and miR-93-5p were pre-

viously reported to regulate pro- or anti-inflammatory

responses (Table 2).

Upregulation of cytokines production in BV2

cells treated with serum EVs from CSDS

susceptible mice

We next examined whether circulating EVs in the suscep-

tible mice have a differential immunomodulatory role,

compared with those from the control and resilient mice

(Fig. 4A). Microglia-like cell lines, BV2 cells, were trea-

ted with EV-rich fractions from susceptible, resilient, and

control mice for 6 h, which was started 1 h before admin-

istration of LPS (100 ng�mL−1), followed by measure-

ment of IL-1β, TNF-α, and IL-6 protein expression. We

found that treatment with EVs from susceptible mice

increased TNF-α and IL-6 production, compared to

those from other conditions (Fig. 4B,C). There is also a

trend in an increase of IL-1β expression by treatment

with EVs from susceptible mice (Fig. 4D). These results

suggest that CSDS affects immune modulatory property

of circulating EVs, which may contribute to inflamma-

tory mechanisms underlying stress-induced social avoid-

ance phenotypes.
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Fig. 2. CSDS-induced expression changes of serum pro-inflammatory cytokines correlates with social avoidance phenotypes. (A) Single

regression analysis shows an inverse correlation between IL-1β and SIR (R2 = 0.5728, P = 0.0007). n = 16. (B) Single regression analysis

shows an inverse correlation between IL-6 and SIR (R2 = 0.6505, P = 0.0005). n = 14. (C) Single regression analysis shows an inverse
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Table 2. Predictor miRNAs whose functions are involved in inflammatory responses.

miRNA Pro-/anti-inflammatory Effects on IL-1 β Effects on IL-6 Effects on TNF-α Other effects References

miR-31-5p Pro-inflammatory ↑ ↑ ↑ [74,75]

miR-712-5p Pro-inflammatory, Anti-inflammatory a ↓ ↑, ↓ [76,77]

miR-212-3p Anti-inflammatory a ↓ ↓ [78]

miR-451a Anti-inflammatory ↓ a ↓ [79]

miR-467b-3p Anti-inflammatory ↓ ↓ ↓ [80,81]

miR-193b-3p Anti-inflammatory ↓ ↓ ↓ [82]

miR-93-5p Anti-inflammatory ↓ ↓ ↓ [83,84]

aNot reported.
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Fig. 4. Circulating EVs collected from CSDS susceptible mice induces pro-inflammatory cytokine production in BV2 cells. (A) Schematic

diagram of assessment of cytokine production in the BV2 cells treated with EV-containing fractions collected from susceptible mice. Exposure

to EVs from susceptible mice enhanced production of (B) TNF-α, (C) IL-6, and (D) IL-1β in LPS-treated BV-2 cells. *P < 0.05, **P < 0.01

determined by one-way ANOVA with post hoc Bonferroni test. n = 2–5 per each condition. All data are presented as the mean � SEM.

Fig. 3. Utility of EV-associated miRNAs as biomarkers to distinguish CSDS-induced behavioral alterations. (A) Representative image of EV

samples used in this study. EV particles are indicated by arrowheads. Scale bar, 200 nm. (B) Representative data of vesicle size distribution

measured by NTA. (C) Enrichment of CD9 and Alix, exosomal protein markers, in EV fractions used in this study. Calnexin, a marker for

cellular protein, was not detected in our samples. (D) Classification plot for susceptible vs. resilient mice generated by a SVM model. n = 6

mice per group. (E) Performance metrics of the susceptible vs. resilient SVM classifier. (F, G) Predictive signatures underlying EV-miRNA-

based model generated with SVM. The stability of predictive pattern elements was evaluated using cross-validation ratio mapping (F), and

the significance of predictive features was assessed by means of sign-based consistency mapping (G). Blue lines indicate the CV-ratio

threshold (CV-ratio = �3), and a red line indicates P = 0.05 (FDR), respectively. (H) miRNA predictors of SIR scores and their penalized

coefficients from elastic net model. n = 18 mice, including six susceptible, six resilient, and six control mice. (I) Plot showing a high

correlation between predicted SIR scores and observed SIR scores (R2 = 0.9371, P = 4.92e-11; Pearson’s correlation test).
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Discussion

In this study, we have demonstrated that miRNAs associ-

ated with circulating EVs in the blood reflect stress-

induced behavioral alterations in mice. We have also

found that EVs from stress susceptible mice potentiate

pro-inflammatory responses of microglia-like cells. Nota-

bly, multiple miRNAs predicting stress susceptibility

have been reported to be linked to inflammation. Thus,

our findings suggest that chronic stress in mice induces

systemic pro-inflammatory changes both at the levels of

cytokines and circulating EV miRNAs.

An increasing body of evidence suggests that EVs

and their associated miRNAs are involved in the modu-

lation of immune responses by cultured cells under vari-

ous inflammatory conditions [62-64]. More recently, it

has been shown that stress-induced systemic inflamma-

tion results in the generation of EVs enriched with pro-

inflammatory miRNAs [35,40]. These results suggest

that CSDS-induced alteration in immune modulatory

property of circulating EVs in the susceptible mice may

affect stress-evoked inflammatory response of brain

immune cells, which may in turn contribute to neurobe-

havioral consequences. A previous report showed that

circulating EVs reach brain cells in the parenchyma

during systemic inflammation [42]. In addition, mono-

cytes and macrophages are known to uptake circulating

EVs in vivo [65-67]. Nonetheless, there is currently no

experimental evidence about whether circulating EVs

modify behaviors in response to CSDS. Although our

results suggest that circulating EVs from the CSDS-

susceptible mice elevate pro-inflammatory responses of

microglia-like cells, it remains elusive whether circulat-

ing EVs contribute to microglia activation in vivo.

Multiple circulating EV-miRNAs that predict CSDS-

induced behavioral changes were previously reported to

modulate the production of pro-inflammatory cytoki-

nes, such as IL-1β, TNF-α, and IL-6. Thus, these

miRNAs may underlie pro-inflammatory effects of cir-

culating EVs from CSDS-susceptible mice. These out-

standing questions warrant further investigation.

We utilized the three-chamber social approach test

to differentiate ‘susceptible’ and ‘resilient’ mice as the

response to CSDS. Compared with one-chamber SIT

that classically used for evaluating stress susceptibility,

three-chamber social approach test has advantages for

the assessment of social behaviors [55-59]. While the

social interaction is evaluated by encountering time of

the test C57 mouse to CD-1 mouse in one-chamber

SIT [54], three-chamber social approach test assesses

the preference of ‘novel target same strain mouse vs.

inanimate object’ [43,57]. This approach represents

more naturally mimic the social interaction process,

evidenced by loss of sociability in normal C57 mouse

when the target novel C57 mouse was replaced by a

CD-1 mouse in the three-chamber social approach test

[59]. Importantly, we confirmed that resilient and

susceptible mice defined by three-chamber social

approach test displayed serum pro-inflammatory cyto-

kine phenotypes consistent with previous studies using

one-chamber SIT [4,5]. In addition, three-chamber

social approach test can assess the effect of stress on

social novelty preference, a process of social cognitive

process. A limitation of this study is that female mice

were not included in the cohort. Given that CSDS

protocols for female mice have recently been estab-

lished [57,58], utility of three-chamber social approach

test in the CSDS paradigm of female mice need to be

explored in future studies.

Some clinical studies reported that miRNA expres-

sion is changed in blood and peripheral blood mononu-

clear cells of patients with depression compared with

healthy controls [14,68,69,70]. Altered expression of cir-

culating miRNAs in the blood elicited by antidepressant

medication and cognitive behavioral therapy has also

been reported in treatment-responsive patients [69-72].

Our analyses with a supervised machine learning and a

regularized regression model suggest that multiple circu-

lating EV miRNAs may be utilized to predict animal’s

social behavioral status after exposure to CSDS.

Although the current models are based on a very small

rodent cohort and should be regarded as preliminary,

such an approach may be applicable to human studies.

As a previous study in Alzheimer’s disease reported the

utility of plasma miRNAs as useful diagnostic biomar-

ker [73], circulating EVs and their molecular signatures

in stress-related psychiatric disorders may serve as criti-

cal biomarkers for better assessment of disease progres-

sion and therapeutic responses.

Collectively, the results of the present study high-

light the importance of circulating EVs and associated

miRNAs, which may contribute to the inflammatory

mechanisms underlying stress-induced behavioral out-

comes. Given that EVs mediate intracellular communi-

cation via multiple biological components, further

investigation to address causal roles of miRNAs in cir-

culating EVs for stress-induced inflammatory processes

is required for better understanding of pathological

body–brain communication underlying stress-related

psychiatric disorders such as depression.
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Fig. S1. Optimization of alpha (α) parameter for elas-

tic net regularization. (A) Cross-validation error curves

at different α parameters. Shown are average � error

of 100 times repeated 5-fold CV. (B) Minimum cross-

validation error for each α parameter. In our model,

α = 0.75 resulted in the lowest averaged minimum

cross-validated error.

Fig. S2. Comparison of EV size and concentration

between the susceptible and resilient groups after

CSDS. No significant difference was observed in EV

size and concentration between the susceptible (n = 4)

and resilient (n = 3) mice after CSDS.

Table S1. EV-associated miRNAs that were detected

in the serum of mice after CSDS.
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