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protects shrimps against Vibrio
alginolyticus by regulating
inflammation and apoptosis via
a ROS-JNK dependent pathway

Xiaoli Yin, Xueqi Zhuang, Weitao Luo, Meiqiu Liao, Lin Huang,
Qiqian Cui, Jiayi Huang, Chunxia Yan, Zixiang Jiang,
Yuan Liu and Weina Wang*

Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial
Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental
Science in Guangdong Higher Education, College of Life Science, South China Normal University,
Guangzhou, China
Vibrio alginolyticus (V. alginolyticus) is one of the major pathogens causing

mass mortality of shrimps worldwide, affecting energy metabolism, immune

response and development of shrimps. In the context of the prohibition of

antibiotics, it is necessary to develop a drug that can protect shrimp from V.

alginolyticus. Andrographolide (hereinafter called Andr), a traditional drug used

in Chinese medicine, which possesses diverse biological effects including anti-

bacteria, antioxidant, immune regulation. In this study, we investigated the

effect of Andr on growth, immunity, and resistance to V. alginolyticus infection

of Litopenaeus vannamei (L. vannamei) and elucidate the underlying molecular

mechanisms. Four diets were formulated by adding Andr at the dosage of 0 g/

kg (Control), 0.5 g/kg, 1 g/kg, and 2 g/kg in the basal diet, respectively. Each diet

was randomly fed to one group with three replicates of shrimps in a 4-week

feeding trial. The results showed that dietary Andr improved the growth

performance and non-specific immune function of shrimps. L. vannamei fed

with Andr diets showed lower mortality after being challenged by V.

alginolyticus. After 6 h of V. alginolyticus infection, reactive oxygen species

(ROS) production, tissue injury, apoptosis, expression of inflammatory factors

(IL-1 b and TNFa) and apoptosis-related genes (Bax, caspase3 and p53) were

increased in hemocytes and hepatopancreas, while feeding diet with 0.5 g/kg

Andr could inhibit the increase. Considering that JNK are important mediators

of apoptosis, we examined the influence of Andr on JNK activity during V.

alginolyticus infection. We found that Andr inhibited JNK activation induced by
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V. alginolyticus infection on L. vannamei. The ROS scavenger N-acetyl-l-

cysteine (NAC) suppressed V. alginolyticus-induced inflammation and

apoptosis, suggesting that ROS play an important role in V. alginolyticus-

induced inflammation and apoptosis. Treated cells with JNK specific

activator anisomycin, the inflammation and apoptosis inhibited by Andr were

counteracted. Collectively, Andr promote the growth and immunity of L.

vannamei, and protects shrimps against V. alginolyticus by regulating

inflammation and apoptosis via a ROS-JNK dependent pathway. These

results improve the understanding of the pathogenesis of V. alginolyticus

infection and provide clues to the development of effective drugs against

V. alginolyticus.
KEYWORDS

andrographolide, Litopenaeus vannamei, Vibrio alginolyticus, ROS, JNK,
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Introduction

Vibrio alginolyticus (V. alginolyticus), a Gram-negative

marine Vibrio, is ubiquitously found in the ocean and offshore

coastal and estuarine areas. According to an increasing number

of studies, V. alginolyticus is not only limited to infecting marine

species such as oysters (1), groupers (2), and shrimps (3), but

also gradually become an opportunistic pathogen of human

infection (4–6). Over the last decade, aquatic animal diseases

caused by V. alginolyticus occur frequently with the expansion of

aquaculture scale and the deterioration of water environment,

leading to enormous economic losses to the aquaculture industry

(7–10). In recent years, research on the pathogenic mechanisms

of V. alginolyticus has gained momentum. A number of key

virulence factors including the iron uptake system,

lipopolysaccharide (LPS), haemolysin, extracellular proteases

and type III secretion system (T3SS), likely play a role in its

pathogenesis (11–17).

Invertebrates such as shrimp and crab, due to lack of

adaptive immunity unique to vertebrates, mainly rely on

innate immune system to resist the invasion of bacteria and

viruses (18). The innate immune system possesses many

arsenals to fight off pathogens, include antimicrobial peptides

at mucosal surfaces, activation of the complement system in

the blood. Chemoattraction of immune cells to the infection

site and pattern recognition receptors that evolved to sense

pathogen-associated molecular patterns and to consequently

activate inflammatory pathways required for pathogen

elimination (19). In addition, phagocytic immune cells, such

as neutrophils and macrophages, are important effector cells

mediating inflammatory response and reactive oxygen species

(ROS) production for host defense, and play an important role

in nonspecific immune defense. Under normal physiological
02
conditions, neutrophils proliferation and apoptosis maintain a

dynamic balance, which is conducive to both the body’s

defense response and the dissipation of inflammatory

response. However, apoptosis can be accelerated under the

action of many factors such as LPS and TNFa. Within the host,

physiological clearance systems such as superoxide dismutase

(SOD) and catalase mediate ROS levels and prevent damage to

host molecules. If homeostasis is disrupted, uncontrolled ROS

production will result in oxidative stress, excessive

inflammatory responses, tissue damage, apoptosis (20) and

necrosis, thus detrimental to host defense (21). Our previous

study found that the ROS production and DNA damage

accumulation in hemocytes increased after V. alginolyticus

infected L. vannamei for 6 h, leading to a decrease in THC

(22). In addition, studies have found that ROS formation was

accelerated during V. alginolyticusWT infection, promoting

hemocyte apoptosis in the oyster and fish (14, 23). VscC,

VopS and VopQ in V. alginolyticus T3SS is involved in the

induction of apoptosis (14, 23). Therefore, controlling ROS

production, inflammation and inhibiting apoptosis can

effectively reduce the damage caused by bacterial infection

(24). In aquaculture, many studies reported that adding natural

substances with anti-inflammatory effect to feed could improve

the survival rate of aquatic animals under bacterial infection

stress (25, 26). On the one hand, adding natural substances in

the feed can improve the non-specific immune function of

aquatic animals (27); on the other hand, natural substances can

control the inflammatory response of the body and avoid

excessive inflammatory response to the body damage in the

process of bacterial infection (28). In recent years, Chinese

herbal feed additives are more and more favored by people with

the implementation of the policy of banning antibiotics

in China.
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Andrographolide (Andr), a labdane diterpenoid and the

major constituent of A. paniculata, has been widely used

in Asia as herbal medicine (29, 30). Andr possesses

diverse biological effects including anti-viral (31), anti-bacteria

(32), antioxidant, immune regulation, gastrointestinal

protective effects, hepatoprotective (33), anti-cancer (34) and

anti-inflammatory (35) properties. Clinical studies have

demonstrated that Andr could be useful in therapy for a wide

range of diseases such as osteoarthritis, upper respiratory

diseases, multiple sclerosis, fever, hepatic and neural toxicity,

cancer, etc. (36, 37). As a natural anti-inflammatory drug,

Andr reduces the expression of several proinflammatory

genes, including cyclooxygenase-2 (COX-2), IL-6, IL-8, IL-1b,
TNFa and inducible nitric oxide synthase (iNOS) (38, 39). The

proinflammatory and hemodynamic effects of lipopolysaccharide

(LPS) were decreased by intragastric or intraperitoneal injection

of 1 mg/kg Andr (40, 41). In addition, Andr also protects cells

from oxidative stress (42) and can inhibit TNF-a-induced ROS

generation, Src phosphorylation, NADPH oxidase activation, and

ICAM-1 expression (43, 44). Previous study have shown that

Andr can target multiple inflammatory cytokines related

pathways, such as NF- kB, AP-1, HIF-1, PI3K/Akt, MAPK,

JNK, JAK/STAT and so on (45). Furthermore, Andr mainly

initiates immune responses by regulating complementary

systems of the body, granulocytes and macrophages, which play

a very important role in overcoming various diseases and

infections in immunodeficient patients (46, 47). The purified

diterpene Andr has been reported to stimulate non-specific

immune responses in mice (48) and Labeo rohita (49).

Although Andr has been reported as a feed additive in aquatic

animals (49, 50), few studies have explored the specific

mechanisms of Andr on bacteria-induced inflammation and

apoptosis. In the present study, different levels of Andr were

supplemented into basal diets to investigate the effects of Andr on

growth performance, immunity, resistance toV. alginolyticus and

its mechanism of L. vannamei. The results could contribute to the

healthy cultivation of L. vannamei.
;

Materials and methods

Preparation of experimental diet

The Andr (HPLC≥98%) was procured from Yuanye

Biotechnology Co., Ltd. (Shanghai, China). Four experimental

diets were basal diet (Control), basal diet supplemented with 0.5,

1 and 2 g/kg Andr. Basal diet was purchased from Shuyuan

Aquatic Science and Technology Co., LTD (Guangdong, China).

Pulverize the basal diet with a grinder and sieve it using a nylon

sieve (300 mesh size). The experimental diets were prepared by

mixing the basal diet pulverized powder and different

concentrate of Andr, then adding 40% water until a stiff dough

was obtained. The dough was pelletized by double-
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screwextruders (F-26 [III], China) with diameters of 1.0 mm.

The difference of Andr supplemental amount in each group was

replaced by the same amount of basal feed pulverized powder.
Experimental design

Healthy shrimps (L. vannamei) free of bacterial and viral

infections were collected from an aquaculture farm in Panyu,

Guangdong Province, China. They were acclimatized in fiberglass

tanks with 10 ± 1 ppt seawater in an aeration system for 7 days.

During acclimatization, the shrimps were fed 3 times (08:00, 14:00

and 20:00) per day with commercial feed (Shuyuan Aquatic

Science and Technology Co., LTD, Guangdong, China).

Shrimps in the intermolt stage (stage C) were selected for the

experiments. A total of 240 tails L. vannamei shrimps (weight of

2.311 ± 0.105 g) were randomly distributed into twelve 100 L glass

aquaria containing 50 L of sea water (3 replicates of 4 treatments,

randomly assigned 20 tails/aquarium). Experimental diets were

fed to shrimp in each group 3 times (08:00, 14:00 and 20:00) daily

for 4 weeks. The daily feeding quantity was 5%–8% of body weight

and adjusted according to previous feeding response. During the

experiment, the water temperature was maintained at 28 ± 2°C,

salinity at 10 ± 1 ppt, and pH at 8.2 ± 0.2.
Investigation of growth performance

After the 4-week feeding trial, all shrimps were fasted for

24 h and then weighed to calculate weight gain rate (WG),

specific growth rate (SGR), feed conversion ratio (FCR) and

survival rate (SR) according to the following equations (51):

Weight gain rate  WGð Þ 
=   Final weight  −  Initial weightð Þ = Initial weight½ � � 100;

 Specific growth rate  SGRð Þ  =  (ln Final weight  −

 ln Initial weight = Experimental daysÞ �  100

Feed conversion ratio  FCRð Þ 
=  Feed intake  FIð Þ =  Final weight  gð Þ  –  Initial weight  gð Þð Þ;

Survival rate  SRð Þ = Number of final shrimps=

Number of initial shrimps  �  100;
Challenge test

The V. alginolyticus was cultured overnight at 37°C using

Luria-Bertani (LB) medium. Then, bacteria solution was
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harvested and washed three times with sterilized phosphate-

buffered saline (PBS) by centrifugation at 3000 rpm for 10 min.

After the 4-week feeding regime, the bacterial challenge test was

carried out. Shrimps were fasted 24 h before trial to avoid

interference of diet. Forty shrimps from each treatment were

challenged with V. alginolyticus by injecting 10 mL of bacterial

suspension into the ventral sinus of the shrimp at a dose of 107

colony forming units (CFU) ml-1. While, the shrimps that

received no Andr and received V. alginolyticus suspension (10

mL) or only PBS (10 mL) performed as the challenged control and

unchallenged control, respectively. Experimental shrimps were

kept into ten plastic aquariums (50 × 38 × 30 cm, randomly

assigned 20 tails/aquarium). Each aquarium was provided with

continuous aeration during the challenge test. The mortality in

each replicate tank was recorded for 7 days. The SR was

calculated using the following formula:

SR %ð Þ = number of shrimps that survivedð Þ=
number of shrimps that injectedð Þ � 100
Primary hemocyte culture of shrimp

Shrimp hemocytes were filtered out with a 70 mm filter

membrane. Then the hemocytes were washed with PBS twice.

Leibovitz’s−15 (L-15) (ThermoFisher, MA, US) medium

containing 0.1% penicillin-streptomycin solution and 10% fetal

bovine serum (FBS) (ThermoFisher, MA, US) was used to

resuspend the hemocytes. The hemocyte seeded into 24 well

plates at the density of 1 × 106/well and cultured in a CO2 free

incubator at 28°C. Trypan blue staining was used to determine the

cell viability of primary hemocytes. If the positive rate of trypan

blue staining of primary hemocyte was less than 5%, cells isolated

from that shrimp could be used for further experiments. The

treatment experiment can be carried out after the hemocytes were

cultured to semi-adherent. Except the control group, the other

groups were treated with inactivated V. alginolyticus for 3 h. Then,

the corresponding concentration of Andr, N-acetyl-L-cysteine

(NAC) or anisomycin was added to inhibit the ROS generation

or activate the JNK signaling of hemocytes respectively.
Phagocytic activity assay

Three shrimps of each group were used to investigate the

phagocytic activity of hemocyte in L. vannamei. Hemocytes were

adjusted to 1 × 107 cells/mL using Leibovitz’s L-15 medium

supplemented with 10% FBS. Hemocytes were incubated with

0.5 μm microspheres (Red beads) (Huge biotechnology,

Shanghai, China) at a 1:20 (cells: beads) ratio for 4 h at 28°C,

respectively. After incubation, the cells were collected and

centrifuged at 100 × g for 10 min at 4°C to remove excess
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beads. Then the cells were resuspended in 1 mL PBS. After three

times washes with PBS, the phagocytic activities of hemocyte

from each group were independently analyzed by using BD Arial

III flowcytometer (BD, USA). Hemocytes incubated without

microspheres were also included as blank controls. Data

analyses were performed using FlowJo X. Phagocytic activities

of hemocytes were expressed as phagocytic rate and phagocytic

index, were calculated as:

Phagocytic rate  %ð Þ 
=   Phagocytic hemocytesð Þ=  Total hemocytesð Þ �  100

Phagocytic index

= Beads per phagocytic cellð Þ= Number of phagocytic cellsð Þ
Total RNA isolation and quantitative
real-time PCR

The total RNA in each sample was extracted using Trizol

(Vazyme Biotech, Nanjing, China) following the manufacturer’s

instructions. The RNA concentration and quality were assessed

with NanoDrop ND-2000 Spectrophotometer (Thermo

Scientific, Waltham, MA, USA). The integrity of extracted

RNA was determined by electrophoresis on a 1.2%(w/v)

agarose gel. After that, 1 mg total RNA was reversely

transcribed to cDNA in 20 ml reactions using HiScript III 1st

Strand cDNA Synthesis Kit (+gDNA wiper) (R312-01, Vazyme,

Nanjing, China) according to the manufacturer’s instructions.

Then, qRT-PCR was performed in a total 20 ml volume: 2 ml
of cDNA template; 0.5 ml of Forward primer (10 mM); 0.5 ml of
Reverse primer (10 mM); 6.6 ml of Nuclease-free treated water

(TransGen Biotech, Beijing, China); 0.4 ml of Passive Reference
Dye II (TransGen Biotech, Beijing, China) and 10 ml of

TransStart® Top Green qPCR SuperMix (AQ131-01,

TransGen Biotech, Beijing, China). A two-step real-time qPCR

was carried out in an ABI 7500 Thermal Cycler (Applied

Biosystems, Foster City, CA) with amplification program as

follows: 95°C for 10 min and then 40 cycles of 95°C for 15 s

and 60°C for 60 s. All primers used in RT-qPCR are shown in

Table S1. The relative values of gene expression levels were

expressed as 2−DDCt. All experiments were repeated three times.
Antioxidant enzyme detection

Collect the blood with an anticoagulant tube and mix it

upside down. Centrifuge at 600 g at 4°C for 10 min, remove the

supernatant into a new 1 mL centrifuge tube. After being diluted

twice with PBS, it can be used as a plasma sample for testing. The

hepatopancreas tissues of shrimps were accurately weighed, and
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9 times the volume of PBS was added according to 1:9.

Mechanical homogenization was performed under ice water

bath, and centrifugation was conducted for 10 min at 2500

rpm. Supernatant was taken for testing. Superoxide dismutase

(SOD), catalase (CAT), total antioxidant capacity (T-AOC) and

malondialdehyde (MDA) were detected using relevant assay kits

(Beyotime Biotechnology, Shanghai, China) following the

manufacturer’s instructions.
Histopathology

The hepatopancreas tissue of L. vannamei were immobilized

in 10% formalin for 24 h and then dehydrated in increments of

alcohol (50%–95%). The dehydrated tissues were embedded in

paraffin and cut into 4 mm thick slices. Tissues sections were

stained with hematoxylin and eosin (H&E), then examined

using a light microscope (DM6, Leica, Germany).
Determination of intracellular
ROS generation

To measure the production of ROS by hemocytes, the cell-

permeant probe 2’,7’-dichlorofluorescein diacetate (DCFH-DA)

kit (Beyotime, Shanghai, China) was used according to the

manufacturer’s instructions. The hemolymph and anticoagulant

mixture were incubated in the dark for 30 min with 10 mM
DCFH-DA. The cell suspension was prepared after washing with

PBS for 3 times. Then, the fluorescence of the cell suspensions was

recorded using flow cytometry. ROS production is represented by

the mean DCF fluorescence. For each sample, 10,000 events

were collected.
Apoptosis assay

Hemocytes of shrimp were collected and resuspended with

PBS. Subsequently, cells were mixed with binding buffer 100 mL.
The apoptosis levels of cells were detected with Annexin V-FITC/

PI apoptosis detection Kit (Yeasen Biotechnology, Shanghai,

China) according to manufacturer’s protocol. Annexin V-FITC

5 L and PI 10 mL were added into the mixture and incubated for

10 min at room temperature in the dark. The apoptosis levels were

analyzed under flowjo_V10 software.
TUNEL assay

Apoptosis was determined by the TUNEL detection apoptosis

kit (Elabscience, Wuhan, China). The sections of hepatopancreas

tissue were deparaffinized in 1X Dewaxing solution for 50 min at

60°C and then incubated with 1X proteinase K for 20 min at 37°C.
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After washing three times with PBS buffer, the sections were

incubated in TdT equilibration buffer for 30 min, then incubated

with 50 mL TUNEL reaction mixture containing 35 mL of TdT

equilibration buffer, 10 mL of AF488-labeling solution and 5 mL of

TdT Enzyme for 60 min at 37°C in the dark. Then, the slides were

rinsed in PBS three times and nuclei were counterstained with 4,

6-diamidino-2-phenylindole dihydrochloride (DAPI) for 5 min at

room temperature in the dark. The specimen was covered in

streptavidin‐HRP for 30 min and washed in PBS three times. The

slides were rinsed in PBS four times and observed by microscope

(DM6, Leica, Germany).

Hemocytes were treated with V. alginolyticus or Andr or

NAC or Anisomycin and then cultured 24 h. After rinsing three

times with PBS, the cells were fixed with 4% paraformaldehyde

for 20 min and permeabilized in 0.2% Triton-X 100 for 30 min at

room temperature. The labeling process of cell slides were the

same as hepatopancreas tissue sections. The results of cell slide

were photographed using the laser confocal scanning

microscopy (Carl Zeiss LSM 800). TUNEL‐positive cells were

counted, and the apoptotic index was calculated as a ratio of

(apoptotic cell number)/(total cell number) in each field. All

experiments were conducted in triplicate.
Western blotting analysis

After extracting the proteins from the hepatopancreas

samples collected from shrimps of each group were lysed in

the RIPA lysis buffer (Beyotime, China) for 30 min on the ice.

The sample lysates were centrifuged (12,000 g, 10 min) at 4°C,

and the supernatant was transferred to a new sterile tube and

store to -20°C. Total protein was quantified using BCA Protein

Quantification Kit (Yeasen, Shanghai, China). The protein

samples were isolated by 12% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE), and

transferred to polyvinylidene difluoride (PVDF) membranes

(GE healthcare, Uppsala, Sweden). The membranes were

blocked with 5% nonfat dried milk in TBST (containing 0.05%

Tween-20) and incubated with primary antibodies (JNK1/2/3

rabbit monoclonal antibody, Phospho-JNK1/2/3 rabbit

monoclonal antibody, b-Actin mouse monoclonal antibody)

overnight at 4°C. Bound antibodies were visualized with AP-

labeled goat anti-rabbit IgG (H+L) or AP-labeled goat anti-

mouse IgG (H+L) and immunoreactivity assessed by

chemiluminescence reaction, using the NBT/BCIP western

detection system. Densitometric scanning analysis was

performed using NIH ImageJ 7 software.
Statistical analysis

All analyses were implemented in GraphPad Prism V8.0.2

(GraphPad, San Diego, CA, USA). And the differences between
frontiersin.org
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the different groups were analyzed by one-way analysis of

variance (ANOVA) using SPSS software version 18.0 (IBM,

Armonk, NY, USA). All of the experiments described in this

study were conducted in triplicates, and data was presented as

the mean ± standard error. p< 0.05 was considered

statistically significant.
Results

The effect of Andr supplementation on
growth performance of L. vannamei

L. vannamei fed diets with 0.5 g/kg Andr showed

significantly higher WG and SGR than the shrimps fed diet

with 0 g/kg, 1 g/kg and 2 g/kg Andr (p< 0.05). Meanwhile, the

FCR of 0.5 g/kg Andr group was 2.292 ± 0.064, which is

significantly lower than the other group (p< 0.05). The SR of

0.5 g/kg and 1 g/kg Andr group were 85.000 ± 1.667%, 88.333 ±

0.076%, have no significantly difference with control group (p<

0.05). However, the SR of 2 g/kg Andr group was significantly

lower than control group (Table 1, p > 0.05). The relationship

between WG, SGR, FCR and Andr levels (Figure 1) was best

expressed by the second-order polynomial regression equations

as follows:

y(WG)  =   − 11:025x2  +  47:738x  +  55:123

y(SGR)  =   − 0:2144x2  +  0:924x  +  1:6995

yðFCRÞ =  0:2871x2 − 1:2997x + 3:6788

This figure showed that the optimum Andr level for

L. vannamei is 0.5 g/kg diet.
Effect of Andr on hemocytes phagocytic
function of L. vannamei

The results of phagocytic function in hemocytes detected by

flow cytometry were shown in Figure 2A. After fed shrimps with
Frontiers in Immunology 06
diet containing different concentration of Andr, the phagocytic

rate and phagocytic index of hemocytes were significantly higher

than the control group (Figures 2B–D, p< 0.05). The expression

of phagocytic genes in hemocytes was consistent with flow

cytometry (Figure 2E). Diet Andr significantly upregulated the

expression of phagocytic associated gene Integrin, Mas,

Proxinectin (p< 0.05). The gene expression of Integrin, Mas,

Proxinectin were highest in the 0.5 g/kg Andr group, and then

gradually decreased. In addition, the THC was significantly

higher in shrimps fed 0.5 g/kg and 1 g/kg Andr compared

with control group (Figure 2F, p< 0.05).
Effect of Andr on immune-related gene
of L. vannamei

To further explore the role of Andr on immunity of

L. vannamei, expression of a series of immune related genes

after fed the Andr for 4-week in vivo was investigated using RT-

qPCR method, shown in Figure 3. Feeding diets supplemented

with 0.5 g/kg Andr expression of almost all the examined immune

effector genes involved in humoral immunity, including immune

functional proteins (LSZ, PO and SOD), antimicrobial peptides

(ALF1, PEN3 and crustin) and antioxidant protein (GST, GPX

and CAT) significantly increased whether in hemocytes or

hepatopancreas (Figures 3A–F, p< 0.05).
Antioxidative parameters

Dietary Andr significantly enhanced the SOD activity in

plasma and hepatopancreas of L. vannamei (Figures 4A, E, p<

0.05). However, there was no significant difference in SOD

activity between 0.5 g/kg and 1 g/kg Andr groups and the

control group (p > 0.05). The capacity of T-AOC and the

activity of CAT increased initially and decreased afterwards

with increasing dietary Andr levels, which was significantly

higher in shrimps fed 0.5 g/kg Andr group compared with

control group (Figures 4B, C, F, G, p< 0.05). The MDA

content in hepatopancreas was progressively decreased with

the increase of dietary Andr, which had significantly lower
TABLE 1 Growth performance of L. vannamei fed diets supplemented with different levels of Andr for 4 weeks.

Diet 0 g/kg (Control) 0.5 g/kg 1 g/kg 2 g/kg

Initial weight 2.282 ± 0.082 2.198 ± 0.067 2.376 ± 0.151 2.578 ± 0.100

Final weight 4.354 ± 0.161 4.510 ± 0.140 4.414 ± 0.136 4.635 ± 0.318

WG (%) 81.592 ± 11.216 105.240 ± 6.245* 86.102 ± 7.620 79.949 ± 14.563

SGR (%) 2.204 ± 0.232 2.662 ± 0.113* 2.298 ± 0.149 2.168 ± 0.293

FCR 2.720 ± 0.495 2.292 ± 0.064* 2.528 ± 0.157 2.772 ± 0.282

SR (%) 83.333 ± 0.025 85.000 ± 1.667 88.333 ± 0.076 53.333 ± 0.104**
Andr, andrographolide; WG, weight gain rate; SGR, specific growth rate; FCR, Feed conversion ratio; SR, Survival rate. Values are means ± SD. * and ** means significantly difference
compare with control group, * means p < 0.05, ** means p < 0.01.
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values in 0.5 g/kg, 1 g/kg, and 2 g/kg Andr group compared with

control group (Figure 4D, p< 0.05). The content of MDA in

plasma of shrimps fed Andr group was significantly lower than

that of control group (Figure 4H, p< 0.05), but the content of

MDA was the lowest in 1 g/kg Andr group and slightly increased

in 2 g/kg group.
Andr alleviates oxidative damage and
inflammatory response induced by
V. alginolyticus infection on L. vannamei

In order to study the effect of Andr on V. alginolyticus

infection of L.vannamei, V. alginolyticus challenge test was

carried out on shrimps fed with Andr for 28 days (Figure 5).

The results showed that the survival rate of shrimps fed contain

Andr was significantly higher than that of control group after V.

alginolyticus infection (p< 0.05). The survival rates of the control,

0.5 g/kg, 1 g/kg, 2g/kg Andr group were 0%, 77.7%, 22.2% and

0% at 7 days after V. alginolyticus infection, respectively

(Figure 5A). The ROS levels of hemocytes in L. vannamei was

detected by flow cytometry to investigate the effects of Andr on

the oxidative damage of L. vannamei induced by V. alginolyticus

infection. The result indicated that the generation of ROS in

hemocytes of shrimps fed with Andr group were lower than that

in control group (p< 0.05) (Figures 5B, C). Then, the damage of

the hepatopancreas of shrimps was observed by histomorphology

after V. alginolyticus infection. The results showed that the

hepatopancreas of shrimps appeared fragmentation and

hepatic tubular cavitation after V. alginolyticus infection.

Feeding a diet containing Andr can alleviate hepatopancreas

injury caused by V. alginolyticus infection (Figure 5D).

Concurrently, the gene expression of TNFa and IL-1b in

hemocytes and hepatopancreas were measured. The expression

of inflammatory factors TNFa and IL-1b in hemocytes and

hepatopancreas of shrimps were significantly up-regulated after

V. alginolyticus infection. Feeding 0.5 g/kg Andr significantly
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inhibited the up-regulation of inflammatory factors induced byV.

alginolyticus (Figures 5E, F, p< 0.05). However, the addition of 1 g/

kg and 2 g/kg Andr showed no anti-inflammatory effect in

hemocytes (p< 0.05).
Andr inhibits cell apoptosis induced by
V. alginolyticus infection on L. vannamei

The expression of apoptosis-related gene in hemocytes and

hepatopancreas was detected by qRT-PCR (Figures 6A, B). The

expression of pro-apoptotic genes (Bax, caspase3 and p53) was

significantly up-regulated in hemocytes and hepatopancreas of

shrimps infected with V. alginolyticus (p< 0.05). Compare with

control group, the expression of pro-apoptotic genes (Bax,

caspase3 and p53) in shrimps fed with 0.5 g/kg and 1 g/kg

Andr was significantly decreased (p< 0.05). The anti-apoptotic

gene Bcl-2 showed an opposite trend to the pro-apoptotic gene,

and the difference was significant (p< 0.05). To further verify the

effect of Andr on the apoptosis of shrimp induced by V.

alginolyticus, flow cytometry was used to detect the apoptosis

of hemocytes in shrimp (Figure 6C). After V. alginolyticus

infection, the apoptosis rate of shrimps fed with Andr (0.5 g/

kg, 1 g/kg and 2 g/kg) was significantly decreased than that in

control group (Figure 6D, both p< 0.05). Similarly, TUNEL

positive cell rate in shrimp hepatopancreas revealed that

apoptotic cells increased after V. alginolyticus infection.

Compare with control group, the rate of TUNEL-positive cells

in hepatopancreas of shrimps fed with Andr was significantly

reduced (Figures 6E, F, p< 0.05).
Andr inhibited JNK activation induced by
V. alginolyticus infection on L. vannamei

Considering that JNK is important mediators of apoptosis,

we examined the influence of Andr on JNK activity during V.
B CA

FIGURE 1

The relationship between WG (%) (A), SGR (%) (B), FCR (C) of L. vannamei and different levels of Andr. WG, weight gain rate; SGR, specific
growth rate; FCR, Feed conversion ratio.
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B C D

E F

A

FIGURE 2

Effect of Andr on hemocytes phagocytic function of L. vannamei. (A) Scatter plot of phagocytic hemocytes ingested 0.5 µm microspheres.
(B–D) The phagocytic rate, phagocytic index and phagocytic cells MFI in hemocytes. (E) The expression of phagocytic related genes in
hemocytes detected by qPCR. (F) Total hemocytes count (THC) of L. vannamei fed a diet containing Andr for 28 days. Values are means ± SD.
a,b,c Value bars not sharing the same superscript letter are significantly different as evaluated by Duncan ‘s test (p< 0.05).
B C

D E F

A

FIGURE 3

Effect of Andr on Immune-related gene in hemocyte and hepatopancreas of L. vannamei. (A, D) antimicrobial peptides; (B, E) immune
functional proteins; (C, F) antioxidant protein. ALF1, Anti-lipopolysaccharide factor 1; PEN3, Penaeidin-3; LSZ, lysozyme; pro-PO, phenol
oxidase; SOD, superoxide dismutase; CAT, catalase; GPX, glutathione peroxidase; GST, Glutathione S-transferase. Values are means ± SD. a,b,c,d

Value bars not sharing the same superscript letter are significantly different as evaluated by Duncan ‘s test (p< 0.05).
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alginolyticus infection. qRT-PCR analysis revealed an increase in

the expressions of JNK whether in hemocytes or in

hepatopancreas of shrimp after V. alginolyticus infection,

indicating that JNK was activated by V. alginolyticus infection

(Figures 7A, B, both p< 0.05). Fed shrimps with Andr mitigated

this increase induced by V. alginolyticus (Figures 7A, B, both p<

0.05). Further study by western blot analysis found that V.

alginolyticus infection could induce phosphorylation of JNK,

while Andr could inhibit such phosphorylation (Figures 7C, D,

both p< 0.05).
Andr reduces V. alginolyticus-induced
apoptosis by inhibiting ROS generation
and JNK activation

To further clarify the mechanism of Andr alleviating V.

alginolyticus-induced apoptosis from the perspective of JNK and

ROS, we treated hemocytes in vitro with the JNK specific

inhibitor anisomycin and the ROS scavenger NAC,

respectively. Then, the generation of ROS, the rate of

apoptosis, the expressions of apoptosis-related genes and

inflammatory factor was analyzed. The generation of ROS

induced by V. alginolyticus was detected by DCFH-DA

staining and flow cytometry analysis. Compared with the

control group, DCFH-DA fluorescence intensity in vitro was

dramatically stimulated by V. alginolyticus. The Andr obviously

weakened the production of ROS in hemocytes treated with V.

alginolyticus, with the same effect observed in the group treated

with NAC (Figures 8A, B, p< 0.05). Treat with anisomycin, the

attenuating effect of Andr and NAC on the ROS production of
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hemocytes under V. alginolyticus infection disappeared (p<

0.05). Meanwhile, the gene expression of JNK was significantly

suppressed by Andr and NAC, and activated by anisomycin

(Figure 8C, p< 0.05). Furthermore, changes in cell apoptosis

were detected by TUNEL-stain assay to investigate the

mechanism of Andr on the apoptosis induced by V.

alginolyticus. The TUNEL-positive rate was significantly

elevated in response to V. alginolyticus treatment, which could

be reversed by treatment with NAC. The addition of Andr also

substantially decreased the TUNEL-positive rate, similar to NAC

treatment (Figures 8H, I, p< 0.05). Consistent with the result of

TUNEL stain, the up-regulation of pro-apoptosis genes (Bax,

caspase 3 and p53) and the down-regulation of anti-apoptosis

genes (Bcl-2) induced by V. alginolyticus was suppressed by

Andr and NAC (Figures 8C–G, p< 0.05). Moreover, we further

verified whether Andr could inhibit the V. alginolyticus -induced

activation of inflammation through ROS. As illustrated in

Figures 8J, K, Andr and NAC both clearly reversed the over

expression of TNFa and IL-1b induced by V. alginolyticus

stimulation (p< 0.05). These results indicated that V.

alginolyticus could activate JNK and the apoptosis signaling

pathways by inducing ROS overproduction. Meanwhile, Andr

could inhibit the above inflammatory response through ROS-

JNK signaling.
Discussion

Bacterial infection is an important biological factor restricting

the development of shrimp culture. V. alginolyticus is one of the

major pathogens causing mass mortality of shrimps worldwide,
B C D

E F G H

A

FIGURE 4

Effects of dietary Andr on antioxidative indices in plasma and hepatopancreas of L.vannamei. (A, E) SOD, total superoxide dismutase; (B, F) CAT,
catalase; (C, G) T-AOC, total anti-oxidation capacity; (D, H) MDA, malondialdehyde. Values are means ± SD. a,b,c,d Value bars not sharing the
same superscript letter are significantly different as evaluated by Duncan ‘s test (p< 0.05).
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affecting energy metabolism, immune response and development

of shrimps (52–54). Our previous studies have shown that the

infection of V. alginolyticus can affect the survival, growth and

metabolism of shrimp, induce the production of ROS, apoptosis

and autophagy, reduce immune function, and cause DNA damage

(22, 55–57). Therefore, it is necessary to find a drug that can

protect shrimp fromV. alginolyticus. Andr has been reported to be

a promising therapeutic for treatment of multiple types of

infectious diseases, with anti-inflammatory, antioxidant, and

immunomodulatory functions (58). However, little is known
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about the effects and biochemical mechanisms of action of Andr

in the infection of V. alginolyticus on L. vannamei. In the present

study, the results demonstrated that Andr promote the growth

and immunity of L. vannamei, and protects shrimp against V.

alginolyticus by regulating inflammation and apoptosis via a ROS-

JNK dependent pathway.

Andr being used as a dietary supplement to improve immunity

in patients has a long history (48, 59, 60). In recent years, Andr has

also been used as feed additive in animal husbandry (61) and

aquaculture (49, 50). In the present study, L. vannamei fed diets
B C

D

E

A

F

FIGURE 5

Andr alleviates oxidative damage and inflammatory response induced by V. alginolyticus infection on L. vannamei. (A) Percent survival of L.
vannamei fed diet with Andr challenged with V. alginolyticus. (B, C) The ROS level in hemocytes was evaluated by analyzing DCF fluorescence
intensity by flow cytometry. (D) Histopathological examination of the L. vannamei hepatopancreas under V. alginolyticus infection 6 h. Black
arrows represent lumen of hepatic tubule of hepatopancreas, green arrows represent secretory cells of hepatopancreas, and red arrows
represent absorptive cells of hepatopancreas. Scale bar, 50 mm. (E, F) The expression of TNFa and IL-1b detected by qPCR. Values are means ±
SD. a,b,c,d,e Value bars not sharing the same superscript letter are significantly different as evaluated by Duncan ‘s test (p< 0.05).
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with 0.5 g/kg Andr showed significantly higher WG and SGR than

shrimps fed the diet with 0 g/kg, 1 g/kg and 2 g/kg Andr.

Consistent with many plants extract additive studies, the weight

gain of shrimps first increased and then decreased with increasing

amounts of additive (25). In addition, the addition amount of Andr

varies greatly among different species. In L. rohita, a higher weight

gain (BWG) and protein efficiency ratio (PER) was found when

fed a diet supplemented with Andr (1 -16 g/kg feed) (49). In

M.albus, the optimal supplemental level of Andr was 75-150mg/kg

(50), which was far lower than that of L. rohita and shrimp in the

present study. Several studies showed strong effects of plants in

boosting the shrimp immune system against pathogens in

aquaculture (25, 62). In Crustaceans, THC, phenoloxidase

activity, antioxidant enzyme activity, antimicrobial peptide and

phagocytic activity are commonly considered as useful indicators

of immunosurveillance status in animals (24). It has been shown

that the addition of Andr to fish diets can increase phagocytic

activity of hemocyte (49). In line with the previous findings, dietary

Andr enhanced the THC and phagocytosis of shrimps hemocytes.

Like hemocytes, hepatopancreas are also important immune

organs in crustaceans, which play a very important role in the
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immune response against pathogen invasion (22). Results obtained

in the present study showed that dietary Andr significantly

upregulated the expression of immune-related genes,

antimicrobial peptide genes, antioxidant genes and enzyme

activity in both hemocytes and hepatopancreas. A similar result

was found that Andr increased the activities of SOD, CAT, GPx,

GST, GSH and GR in the liver (50). Considering these indicators

together, we concluded that Andr promoted the immunity of

shrimp organism. In this study, dietary Andr also significantly

enhanced the resistance of shrimp to V. alginolyticus, which

directly reflected the improvement of immune function by Andr.

ROS can function as key indicators that serve a prominent

role in the mediation of both cell survival and death following

exposure to various stimuli (63). Increased ROS can induce

oxidative stress when the balance between oxidation and

reduction-regulated cellular processes is disrupted and cells are

unable to repair the resulting oxidative damage (64). Our previous

studies demonstrated that the increased ROS production and

DNA damage coexisted in hemocytes at 6 h after V. alginolyticus

infection (55, 65). Thus, controlling the cellular ROS levels is

conducive to the survival of cells in adverse environment (66, 67).
B

C D

E F

A

FIGURE 6

Andr inhibits cell apoptosis induced by V. alginolyticus infection on L. vannamei. (A, B) The expression of apoptosis-related gene in hemocytes
and hepatopancreas of L. vannamei under V. alginolyticus infection 6 h. (C, D) Detection of apoptosis in hemocytes of L. vannamei by flow
cytometry after V. alginolyticus infection 6 h. (E, F) Detection of apoptosis in hepatopancreas of L. vannamei by TUNEL stain after V.
alginolyticus infection 6 h. Values are means ± SD. a,b,c,d Value bars not sharing the same superscript letter are significantly different as evaluated
by Duncan ‘s test (p< 0.05).
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Andr has been reported to ameliorate damage caused by disease

by reducing oxidative stress and inflammation (35, 68). Herein,

Andr treatment significantly reduce the increase of ROS

production and inflammation in shrimp hemocytes induced by

V. alginolyticus infection, indicating that Andr ameliorates

oxidative stress and inflammation in shrimp hemocytes induced

by V. alginolyticus infection. Excessive amounts of ROS can affect

multiple signaling pathways, such as MAPKs, JNK, NF-KB, result

in oxidative stress, excessive inflammatory responses, tissue

damage and apoptosis (20, 69). For extracellular bacteria such

as V, alginolyticus, apoptosis induction in host cells is not

necessarily associated with direct bacterial contact. Rather,

various cytokines produced by the immune system plays major

roles in apoptosis-induction and sensitivity (70). V. alginolyticus

regulates proinflammatory cytokines IL-1b, IL-6, IL-12 and TNFa
production in macrophages (5) accompanied by the activation of

JNK pathways (71). Both endogenous and endogenous ROS

induce JNK activation (72), which plays a key role in inducing

apoptosis (73). The JNK pathway represents one sub-group of

MAP kinases that activated by a series of phosphorylation in

response to various stress stimuli like environmental stresses and
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inflammatory cytokines (74–76). The inhibitors of JNK

(SP600125) significantly reduced the production of IL-1b, IL-6,
IL-12 and TNFa induced by V. alginolyticus (71). Therefore,

inhibition of JNK signaling may be a perfect adjuvant therapy for

V. alginolyticus infections. Several studies have demonstrated that

the phosphorylation of MAPKs is mediated by Andr (77–79).

Treatment with Andr significantly increased the expression levels

of phosphorylated JNK in osteosarcoma cells (80). In this study,

we also observed that V. alginolyticus infection could lead to

increased JNK activation and apoptosis in hepatopancreas of L.

vannamei, while Andr could inhibit this increase.

Considering the role of ROS production and JNK activation

in triggering apoptosis and inflammation, we hypothesized that

Andr inhibits the activation of JNK pathway by excessive ROS,

which may be one of the reasons that Andr protects L. vannamei

from V. alginolyticus infection. Thereafter, we investigated the

mechanism of Andr alleviates V. alginolyticus-induced

inflammation and apoptosis from the perspective of ROS and

JNK activation. The ROS scavenger NAC was used to inhibit

ROS production in vitro. The results showed that the ROS

scavenger NAC decreased the expression of apoptotic and
B

C D

A

FIGURE 7

Andr inhibited JNK activation induced by V. alginolyticus infection on L. vannamei. (A, B) The gene expression of JNK in hemocytes and
hepatopancreas detected by qPCR. (C, D) The expressions of JNK, p-JNK in hepatopancreas were analyzed by Western blot. Values are
means ± SD. a,b,c,d Value bars not sharing the same superscript letter are significantly different as evaluated by Duncan ‘s test (p< 0.05).
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inflammation genes (Bax, caspase3, p53 and IL-1b, TNFa) and
the TUNEL-positive cell rate induced by V. alginolyticus

infection, ascertaining that ROS acts as an upstream signal in

V. alginolyticus induced apoptosis. Andr can mitigate ROS

generation and thus reduce the inflammation and apoptosis

caused by V. alginolyticus. Intriguingly, the inhibitory effect of

Andr on ROS generation was similar to that of NAC.

Furthermore, we activated the JNK signaling pathway through

anisomycin on the basis of Andr or NAC treatment of cells.

Anisomycin counteracts the inhibitory effect of Andr or NAC on

V. alginolyticus induced inflammation and apoptosis,

implicating that Andr inhibits V. alginolyticus-induced
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inflammation and apoptosis by inhibiting the activation of

JNK pathway.

In conclusion, the present study showed that the

supplementation of Andr in diets significantly enhanced

the growth and promoted the non-specific immunity and the

resistance to V. alginolyticus in L. vannamei. Furthermore, a

mechanism of Andr protects L. vannamei against V. alginolyticus

was certified in the present study. Andr inhibited the inflammation

and apoptosis induced byV. alginolyticus via a ROS-JNK dependent

pathway (Figure 9). These results improve the understanding of the

pathogenesis of V. alginolyticus infection and provide clues to the

development of effective drugs against V. alginolyticus.
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FIGURE 8

Andr reduces V. alginolyticus-induced apoptosis by inhibiting ROS generation and JNK activation. Uninfected or V. alginolyticus-infected cells
were treated with Andr, NAC or anisomycin. At 24 h, the cells were detected for the related indices. (A, B) The ROS level were detected by flow
cytometry. (C-G) The expression of JNK and apoptosis-related gene detected by qPCR. (H, I) The apoptosis detected by TUNEL stain. (J, K) The
expression of TNFa and IL-1b detected by qPCR. Values are means ± SD. a,b,c,d,e,f Value bars not sharing the same superscript letter are
significantly different as evaluated by Duncan ‘s test (p< 0.05).
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SUPPLEMENTARY FIGURE 1

CCK8 assay was used to determine the concentrations of N-acetyl-l-
cysteine (NAC) and anisomycin.
FIGURE 9

Schematic representation of the inhibitory mechanism of Andr on V. alginolyticus-induced inflammation and apoptosis.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.990297/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.990297/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.990297
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2022.990297
References
1. Wang Z, Wang B, Chen G, Jian J, Lu Y, Xu Y, et al. Transcriptome analysis of
the pearl oyster (Pinctada fucata) hemocytes in response to Vibrio alginolyticus
infection. Gene (2016) 2(575):421–8. doi: 10.1016/j.gene.2015.09.014

2. Mohamad N, Mohd Roseli FA, Azmai MNA, Saad MZ, Md Yasin IS, Zulkiply
NA, et al. Natural concurrent infection of Vibrio harveyi and V. alginolyticus in
cultured hybrid groupers in Malaysia. J Aquat Anim Health (2019) 31(1):88–96.
doi: 10.1002/aah.10055

3. Liao G, Wu Q, Mo B, Zhou J, Li J, Zou J, et al. Intestinal morphology and
microflora to Vibrio alginolyticus in pacific white shrimp (Litopenaeus vannamei).
Fish Shellfish Immunol (2022) 121:437–45. doi: 10.1016/j.fsi.2022.01.026

4. Jacobs Slifka KM, Newton AE, Mahon BE. vibrio alginolyticus infections in
the USA, 1988-2012. Epidemiol Infect (2017) 145(7):1491–9. doi: 10.1017/
s0950268817000140

5. Wang J, Ding Q, Yang Q, Fan H, Yu G, Liu F, et al. Vibrio alginolyticus
triggers inflammatory response in mouse peritoneal macrophages Via activation of
Nlrp3 inflammasome. Front Cell Infect Microbiol (2021) 11:769777. doi: 10.3389/
fcimb.2021.769777

6. Osunla CA, Okoh AI. Vibrio pathogens: A public health concern in rural
water resources in Sub-Saharan Africa. Int J Environ Res Public Health (2017) 14
(10):1188. doi: 10.3390/ijerph14101188

7. Oberbeckmann S, Wichels A, Wiltshire KH, Gerdts G. Occurrence of vibrio
parahaemolyticus and Vibrio alginolyticus in the German bight over a seasonal
cycle. Antonie Van Leeuwenhoek (2011) 100(2):291–307. doi: 10.1007/s10482-011-
9586-x

8. Nguyen HT, Van TN, Ngoc TT, Boonyawiwat V, Rukkwamsuk T, Yawongsa
A. Risk factors associated with acute hepatopancreatic necrosis disease at shrimp
farm level in bac lieu province, Vietnam. Veterinary World (2021) 14(4):1050–8.
doi: 10.14202/vetworld.2021.1050-1058

9. Nunan L, Lightner D, Pantoja C, Gomez-Jimenez S. Detection of acute
hepatopancreatic necrosis disease (Ahpnd) in Mexico. Dis Aquat Organisms (2014)
111(1):81–6. doi: 10.3354/dao02776

10. Chen MX, Li HY, Li G, Zheng TL. Distribution of Vibrio alginolyticus-like
species in shenzhen coastal waters, China. Braz J Microbiol [publication Braz Soc
Microbiol] (2011) 42(3):884–96. doi: 10.1590/s1517-83822011000300007

11. Zanetti S, Deriu A, Volterra L, Falchi MP, Molicotti P, Fadda G, et al.
Virulence factors in Vibrio alginolyticus strains isolated from aquatic
environments. Annali Di Igiene Med Preventiva Di Comunita (2000) 12(6):487–91.

12. Wang Q, Liu Q, Cao X, Yang M, Zhang Y. Characterization of two tonb
systems in marine fish pathogen Vibrio alginolyticus: Their roles in iron utilization
and virulence. Arch Microbiol (2008) 190(5):595–603. doi: 10.1007/s00203-008-
0407-1

13. Zhao Z, Chen C, Hu CQ, Ren CH, Zhao JJ, Zhang LP, et al. The type iii
secretion system of Vibrio alginolyticus induces rapid apoptosis, cell rounding and
osmotic lysis of fish cells. Microbiol (Reading England) (2010) 156(Pt 9):2864–72.
doi: 10.1099/mic.0.040626-0

14. Zhao Z, Liu J, Deng Y, Huang W, Ren C, Call DR, et al. The Vibrio
alginolyticus T3ss effectors, Val1686 and Val1680, induce cell rounding, apoptosis
and lysis of fish epithelial cells. Virulence (2018) 9(1):318–30. doi: 10.1080/
21505594.2017.1414134
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