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Abstract

Aim: To identify long-term effects of preterm birth and of periventricular leukomalacia (PVL) on cortical thickness (CTh). To
study the relationship between CTh and cognitive-behavioral abnormalities.

Methods: We performed brain magnetic resonance imaging on 22 preterm children with PVL, 14 preterm children with no
evidence of PVL and 22 full-term peers. T1-weighted images were analyzed with FreeSurfer software. All participants
underwent cognitive and behavioral assessments by means of the Wechsler Intelligence Scales for Children-Fourth Edition
(WISC-IV) and the Child Behavior Checklist (CBCL).

Results: We did not find global CTh differences between the groups. However, a thinner cortex was found in left
postcentral, supramarginal, and caudal middle rostral gyri in preterm children with no evidence of PVL than in the full-term
controls, while PVL preterm children showed thicker cortex in right pericalcarine and left rostral middle frontal areas than in
preterm children with no evidence of PVL. In the PVL group, internalizing and externalizing scores correlated mainly with
CTh in frontal areas. Attentional scores were found to be higher in PVL and correlated with CTh increments in right frontal
areas.

Interpretation: The preterm group with no evidence of PVL, when compared with full-term children, showed evidence of a
different pattern of regional thinning in the cortical gray matter. In turn, PVL preterm children exhibited atypical increases in
CTh that may underlie their prevalent behavioral problems.
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Introduction

Neonates born preterm have a high risk of developing long-term

psychiatric and behavioral disorders [1–3]. The degree to which

prematurity itself or associated cerebral lesions, i.e. the enceph-

alopathy of prematurity, may account for this elevated risk, is

currently unknown. Specifically, preterm birth has been related to

attention/hyperactivity symptoms [4–6], a high prevalence of

autism [7], and higher scores in other behavioral disorders [8–10].

Normal development in childhood is accompanied by an

increase in cortical thickness (CTh) in almost all brain areas,

whereas there is a progressive cortical thinning during

adolescence [11]. Studies in neurodevelopmental disorders have

reported both thicker and thinner cortical regions. For instance,

cortical thickening has been described in autism [12,13],

whereas cortical thinning has been found in attention deficit

hyperactivity disorder [14].

Several studies have reported global and regional differences in

brain tissue volumes in preterm children [15,16] and PVL preterm

cohorts [17–19]. However, there have been only two studies in

adolescent subjects where the effect of preterm birth on CTh is

investigated. Martinussen et al [20] found different areas of CTh

abnormalities (both increments and decrements) at a mean age of

15 years in very low birth-weight and small for gestational age

preterm subsamples. Moreover, the study of Nagy et al [21] found

similar results in preterm adolescents after controlling for age at

evaluation. Since CTh is subject to dynamic changes during

normal development, it is conceivable that delayed or altered

development in premature children with PVL might result in a

distinct pattern of CTh. Conversely, previous studies in preterm

samples have not characterized the effects of PVL on CTh.

The aim of the current study was to investigate the effect of

prematurity and PVL on CTh in childhood and the putative

impact of the latter on cognition and behavior. Our hypothesis is
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that preterm birth and brain injury such as PVL could have an

impact on CTh and that these cortical abnormalities may be

related to cognitive-behavioral outcomes at school age.

Methods

Participant Characteristics
The PVL group was recruited between June 2008 and May

2009 at the Hospital Universitari Vall d’Hebron (Barcelona,

Spain) and consisted of 75 children (6–12 years of age) born

preterm and with a history of PVL. Selection criteria included:

gestational age (GA) ,37 weeks, full intelligence quotient (FIQ)

.70, neonatal diagnosis of PVL, and signs of PVL in the current

MRI according to the criteria proposed by Flodmark et al [22].

The patients with PVL were recruited after being diagnosed with

PVL in the neonatal period by means of ultrasound scans. This

was defined as the presence of periventricular cysts of differing size

and extension (PVL grades II–IV) or periventricular echodensities

persisting over 14 days during the neonatal period. Neonatal peri/

intraventricular hemorrhage grades III/IV or any other perinatal

brain injury were exclusion criteria. From the 75 subjects, 21 were

not available at the time of the study, 18 declined to participate, 11

were delivered at term, one did not show signs of PVL in the

current MRI and two subjects had a FIQ ,70. After applying

these exclusion criteria, the sample comprised 22 PVL preterm

participants. The clinical and magnetic resonance imaging (MRI)

findings for this sample have previously been published [19].

Fourteen non-PVL preterm children, at low risk for neurode-

velopmental deficits, were selected from a cohort followed at the

Hospital Clinic (Barcelona, Spain). To be considered a low-risk

preterm the following criteria were applied: 1) GA = 30–34 weeks,

2) birth weight below 2500 g, 3) Apgar score at fifth minute .7, 4)

absence of major neonatal morbidity, including severe respiratory

distress syndrome, mechanical ventilation, necrotizing enterocoli-

tis, neonatal sepsis or bronchopulmonary dysplasia, and 5) absence

of cerebral pathology on neonatal cranial ultrasound [16]. For the

current study, the subcohort of low-risk preterms (non-PVL

preterm children) was selected on the basis of their neonatal

characteristics (GA and birth weight), which were group-mean

matched with the PVL preterm sample. In addition, 22 infants

delivered at term at the same center were enrolled as a full-term

control group who were mainly friends and classmates of the

preterm children. Exclusion criteria for all the groups included an

FIQ equal to or less than 70, any history of brain injury and

contraindications for an MRI scan. Table 1 summarizes the

demographic and clinical characteristics of the sample. The

highest education level of the parents was recorded as low,

intermediate or high as in a previous preterm study conducted in

adulthood [23]. The Ethics Committee of the University of

Barcelona approved this study, and written informed parental

consent was obtained for each infant.

Neurodevelopmental Outcome Data
All participants were cognitively assessed with the Wechsler

Intelligence Scales for Children - Fourth Edition (WISC-IV) [24].

Behavioral data were collected by means of the Child Behavior

Checklist (CBCL) [25]. The checklist is a parent-report measure of

children’s behavior. It is divided into the following subscales:

Aggressive Behavior, Anxious/Depressed, Attention Problems,

Delinquent Rule-Breaking Behavior, Social Problems, Somatic

Complaints, Thought Problems, and Withdrawn. Some of these

subscales group into two higher order factors – internalizing

(withdrawn, somatic complaints and anxious/depressed scales) and

externalizing (delinquent and aggressive behavior scales) – whose

sum provides the total score.

MRI Acquisition and Analysis
The three-dimensional MRI data sets were acquired at the

Centre de Diagnòstic per la Imatge (Hospital Clinic, Barcelona, Spain).

High-resolution T1-weighted images were acquired for all subjects

on a 3-Tesla TIM TRIO scanner (Siemens, Erlangen, Germany).

The following parameters were used: a MPRAGE sequence in

sagittal orientation (TR/TE = 2300/2.98 ms; TI = 900 ms;

2566256 matrix, flip angle 9u, 1 mm3 isotropic voxel).

Table 1. Characteristics of the samples: neonatal and demographic data.

PVL-Preterm n = 22 Preterm n = 14 Term n = 22 Statistics (P)

Neonatal data

GA, mean 6 SD, wk 30.262.9 31.961.1 39.561.0 132.12 (,.001)*,{

Birth weight, mean 6 SD, g 15466539 17016474 33926357 102.88 (,.001)*,{

Length at birth, mean 6 SD, cm{ 39.563.9 42.464.5 50.762.1 49.35 (,.001)*,{

Head circumference, mean 6 SD, cmq 27.462.7 29.862.6 35.261.1 53.24 (,.001)*,{

Gender, male/female 13/9 10/4 14/8 0.56 (.754)&

Demographic data

Age at scan, mean 6 SD, y 8.761.8 9.260.7 9.360.6 1.53 (225)*

Right-handed, n (%) 17 (77) 12 (86) 22 (100) 5.44 (.066)&

Parental education, n 8.85 (.065)&

Low 9 2 3

Intermediate 7 4 4

High 6 8 15

*F statistic.
{Significant differences found in term children compared with PVL-preterm and preterm children.
{Available data for length variable: 12 PVL-preterm, 14 preterm and 22 term children.
qAvailable data for head circumference variable: 12 PVL-preterm, 14 preterm and 18 term children.
&X2 statistic.
doi:10.1371/journal.pone.0042148.t001
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An automated cortical reconstruction of the T1-weighted

images was performed by using FreeSurfer (version 4.3.1) software

(http://surfer.nmr.mgh.harvard.edu). This method was used to

create a three-dimensional cortical surface model of CTh using

intensity and continuity information previously described in detail

[26]. Processing of T1 high-resolution images included several

procedures: removal of non-brain tissue [27], automated Talair-

ach transformation, intensity normalization [28], tessellation of the

gray matter/white matter boundary, automated topology correc-

tion, [29,30] and surface deformation to detect gray matter/white

matter and gray matter/cerebrospinal fluid boundaries [26].

Moreover, the cerebral cortex was divided into different regions

according to gyral and sulcal structure information [31]. The

resulting representation of cortical thickness was calculated as the

distance between tissue boundaries (gray matter/white matter and

gray matter/cerebrospinal fluid) [26].

Statistical Analysis
The data were tested for normality and homogeneity. To do

this, a multivariate analysis of variance was carried out to test the

differences in the quantitative variables (demographic, neuropsy-

chological, and behavioral variables) among the three groups. The

chi-square test of independence was performed to analyze

differences in proportions when appropriate. All statistical analyses

were performed using SPSS v. 18.0 (SPSS Inc., Chicago, IL).

CTh maps were analyzed at the vertex-wise level separately for

each hemisphere, using a general linear model approach as

implemented by the FreeSurfer QDEC application. Before group

analysis comparisons, individual CTh maps were registered to the

standard template and smoothed with a Gaussian kernel of 15 mm

FWHM. We performed t-test comparisons to evaluate CTh

differences due to (1) prematurity itself (non-PVL preterm children

versus full-term group), (2) PVL per se (PVL preterm group versus

non-PVL sample), and (3) PVL plus prematurity (PVL preterm

group versus full-term children). Moreover, we performed a

correlation between the CTh and CBCL main indexes, the

attention subscale, and FIQ. We adjusted CTh for age at scan in

order to remove any variance in CTh associated with the effects of

normal development and thereby avoid false positives and increase

statistical power. Maps were corrected for multiple comparisons

(family-wise error; FWE) using the Monte Carlo Null-Z simulation

with 10,000 permutations. Global mean thickness and regional

thickness values comprised in the clusters that were statistically

significant in the CTh maps were obtained and tested in SPSS

with age at evaluation as a covariate.

Results

Neonatal, Demographic, Cognitive, and Behavioral Data
Neonatal data are detailed in Table 1. The three groups were

comparable for the purpose of independently evaluating the effects

of PVL or preterm birth.

Although general intelligence mean scores were within the

normal range for PVL preterm (92.32614.2), normal preterm

(106.8613.8), and term groups (121.91615.4), there were

differences in FIQ among the three samples (F = 21.01; P,.001).

Behavioral scores (Table 2) showed differences in PVL preterm

children compared to full-term controls only in the attentional

scale.

Cortical Thickness Differences
Analysis of global CTh revealed no statistical differences

between groups (left hemisphere: F = 0.71, P = .50; PVL preterm

children: 2.9160.15 mm; non-PVL preterm children:

2.8760.08 mm; term children: 2.9160.07 mm; and right hemi-

sphere: F = 0.75, P = .50; PVL preterms: 2.8660.15 mm; non-

PVL preterms: 2.8460.80 mm; term children: 2.8860.07 mm).

Prematurity and PVL Effects on Regional Cortical
Thickness

Results from the t-test comparisons between groups are detailed

in Table 3 and Figure 1. When comparing PVL preterm children

to non-PVL preterm children a thicker cortex was observed,

whereas when the same group was compared to their term peers,

both regional thicker and thinner cortices were found bilaterally.

When comparing non-PVL preterm sample to full-term children,

regional decrements in CTh were found in specific areas of the left

hemisphere.

Correlations between CTh, FIQ, and CBCL Scores
Regarding the general intelligence scores, a statistically signif-

icant negative correlation between FIQ and CTh was found only

in the full-term group. Specifically, the maximum coordinates of

the statistically significant clusters were located in the left superior

frontal (cluster size = 1372 mm2, cluster-level p value = 0.0228,

Talairach coordinates; x = 218.8, y = 59.4, z = 6.2) and right

postcentral regions (cluster size = 1458 mm2, cluster-level p value

= 0.020, Talairach coordinates; x = 52.9, y = 212.6, z = 44.2).

However, the correlation did not achieve statistical significance

either in the non-PVL preterm group or in the PVL preterm

group.

For the behavior measures, we found statistically significant

positive correlations only within the PVL preterm group. The

specific regions were associated with the three main indexes of

CBCL – the internalizing, externalizing, and total scores are

shown in Table 4. Figure 2 displays internalizing and externalizing

scores and their respective correlations with regional CTh. No

correlations were found between CTh and CBCL main index

scores for the full-term and non-PVL preterm children. In PVL

preterm children, attentional scores correlated positively with CTh

in right frontal areas (Table 5 and Fig. 3).

Discussion

In this MRI study we documented that school-aged children

with a history of preterm birth, with or without PVL, show

abnormal patterns of CTh when compared with their control

peers. Even though we did not find differences between groups in

global CTh, our findings provide evidence that prematurity per se is

associated with regional cortical thinning, whereas PVL resulted in

specific areas of CTh thickening. Attentional scores were

statistically higher in PVL children and correlated positively with

right frontal thickness. Correlations between CTh and behavioral

indexes were only observed in PVL preterm children. Finally, only

the full-term group showed a significant negative correlation

between FIQ and CTh.

The fact that regionally thicker and thinner cortical regions

were found, is in agreement with previous studies in adolescents

that used comparisons with typically developing brains [20,21].

Martinussen et al. [20] studied a group of adolescents with a

history of very low birth-weight and identified thinner parieto-

temporo-occipital areas, as well as thicker fronto-occipital areas. In

our study, we also found thinner cortex in the non-PVL preterm

group involving extensive frontal and parietal regions and small

areas in the temporal and occipital cortex. The cortical thinning is

more restricted in our sample, probably because we used the

Monte Carlo multiple comparisons correction. A similar preterm

sample was analyzed by Nagy et al. [21], who observed thinner

Cortical Thickness in Preterm Children
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cortices in the parietal and temporal areas but thicker cortices in

the inferior temporal gyrus and left ventrolateral prefrontal

regions. We speculate that these decrements in CTh found in

non-PVL preterm children might translate into a delayed

maturation of some cortical areas, since these regions are supposed

to reach their maximal thickness in childhood.11 The current

preterm sample with no evidence of PVL is a subgroup of a sample

used in a previous gray matter volumetric study [16]. There is a

correspondence between current CTh findings and previous

voxel-based morphometry results, in the sense that parietal and

temporal areas showed both thinning and smaller volumes.

However, there are other areas that showed volumetric reductions

and did not show reductions in CTh. These discrepancies are

probably due to the different neuroimaging approaches used in the

two studies (voxel-based approach vs. vertex-based approach) and

the fact that cerebral volume is a composite brain measure of both

CTh and surface area, which may show reductions in preterm

children.

No previous study has investigated PVL influences on CTh by

including an appropriate control preterm cohort with no focal

white matter abnormalities. Our PVL preterm sample showed

thinner CTh in the temporal lobe, involving the medial and

middle regions, when compared to full-term controls. This

thinning is in keeping with a previous volumetric study using

voxel-based morphometry [19], but some of the regions that

showed volume decrements in that study, such as the postcentral,

inferior parietal, middle frontal, and inferior temporal regions, did

not show CTh reductions. Since gray matter volume depends on

Table 2. CBCL mean scores: Parent reports of behavior.

PVL-Preterm, Mean ± SD Preterm, Mean ± SD Terma, Mean ± SD F-Snedecor Statistic (P)

CBCL Checklist

Withdrawn 2.2362.0 2.4361.7 2.0061.6 0.253 (.778)

Somatic complains 1.7762.1 1.7162.4 1.1062.0 0.626 (.539)

Anxious/depressed 5.1864.8 4.8664.0 4.6762.9 0.092 (.912)

Social problems 3.6862.8 1.8661.8 2.6262.5 2.470 (.094)

Thought problems 1.3661.6 0.5060.8 0.6761.0 2.695 (.077)

Attention problems 7.6865.0 5.3663.2 4.2463.6 3.877 (.027)b

Delinquent behaviour 1.3261.4 1.7161.2 1.1961.2 0.728 (.488)

Aggressive behaviour 8.8265.5 8.3665.7 8.1464.9 0.090 (.914)

Total problems 32.05620.0 27.21616.1 24.62614.6 1.023 (.366)

Internalizing problems 9.0967.1 9.2967.1 7.7664.7 0.331 (.720)

Externalizing problems 10.1466.6 10.0766.5 9.3365.6 0.105 (.901)

aAvailable data for 21 participants of the term group.
bSignificant differences found in term children compared with PVL-preterm.
doi:10.1371/journal.pone.0042148.t002

Table 3. Regional differences in cortical thickness between groups.

Cluster size

Cluster Maxima Talairach
Coordinates P value Side Anatomical brain regions included in a cluster

x y z

PVL-preterm . Non-PVL children

2409.61 233.3 30.5 31.0 0.0023 Left Rostral middlefrontal, caudal middle frontal, superior frontal

1549.51 10.7 290.4 12.9 0.0410 Right Pericalcarine, precuneus, cuneus, lingual

Non-PVL preterm , Term children

2722.10 241.9 16.6 41.6 0.0001 Left Caudal middle frontal, superior frontal, rostral middle frontal, precentral

2260.64 253.9 248.9 24.6 0.0012 Left Supramarginal, inferior parietal, lateral occipital, superior temporal, bankssts

1991.62 245.0 227.2 52.8 0.0037 Left Postcentral, supramarginal, inferior parietal

PVL-preterm vs Term children

1515.50 210.4 293.0 24.6 0.0304 Left . Lateral occipital, pericalcarine, cuneus, lingual

4005.74 55.4 213.3 216.5 0.0001 Right , Middle temporal, inferior temporal, superior temporal, lateral occipital, bankssts,

1567.12 28.5 247.8 22.2 0.0390 Right , Lingual, entorhinal, parahipocampal, fusiform

1549.15 7.5 291.0 14.9 0.0411 Right . Cuneus, pericalcarine, lateral occipital

Regions in bold represent the maximum coordinate encompassed in a given cluster.
Abbreviations: bankssts: banks of the superior temporal sulcus; . means thicker cortex and , thinner cortex.
Talaraich coordinates indicate: x increases from left (2) to right (+); y increases from posterior (2) to anterior (+); and z increases from inferior (2) to superior (+).
doi:10.1371/journal.pone.0042148.t003
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both CTh and surface area as explained above, and based on

previous experimental observations [32], we speculate that PVL

targeting of the neural precursor population at the periventricular

germinal matrix may result in an undermining of the horizontal

expansion of the developing cortex without an impairment of

CTh. It has been proposed that volume is more closely related to

surface area than cortical thickness [33]. On the other hand,

thicker occipital lobe was seen bilaterally. This finding concurs

with that of a study in adolescents, where subjects with and

without PVL were analyzed together [20]. In fact, when we tried

to isolate the effect of PVL by comparing preterms with and

without PVL, we found that the presence of white matter lesions

was associated with increased regional CTh in the pericalcarine

and rostral middle frontal areas. Thicker cortices may reflect an

atypical cerebral development with changes in the normal

development curves. Thicker cortical regions in the same age

Figure 1. Maps of regional CTh comparisons between groups. (A) PVL preterm versus non-PVL preterm (B) Non-PVL preterm and (C) PVL
preterm versus full-term children. Colour bars represent statistically significant (P,.05) thinning (blue) or thickening (yellow). Scatter plots show mean
CTh values for each group and for illustration purposes have not been corrected for covariate effects.
doi:10.1371/journal.pone.0042148.g001
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range is a common finding in some neurodevelopmental disorders,

such as autism [12,13], and in absence epilepsy [34]. CTh is

thought to be dependent on the processes of gray matter dendritic

arborization and pruning [35] and the degree of myelinization at

the gray/white matter interface [36]. Thus, disproportionate

pruning, reduced neuronal/glial complement or immature devel-

opment in specific cortical regions might be present in non-PVL

preterm children, whereas an abnormal or delayed pruning

program might occur in some PVL cortical areas. Further

longitudinal studies with larger samples may help to clarify these

CTh developmental trajectories in PVL preterm samples.

Intelligence scores have been correlated with gray matter

volume in children born preterm without [15,16] or with PVL

[37]. In a recent study, a combination of total white matter volume

together with the cross-sectional area of the corpus callosum

explained most of the FIQ variance in preterm adolescents,

Figure 2. Correlation analysis between regional CTh and (A) internalizing or (B) externalizing indexes in the PVL-preterm group.
The colour bar represents statistically significant (P,.05) thinning (blue) or thickening (yellow). Partial correlation statistics and scatter plots of mean
CT in each area are displayed corrected for covariate effects.
doi:10.1371/journal.pone.0042148.g002

Cortical Thickness in Preterm Children

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e42148



irrespective of the extent of white matter injury [38]. In the present

study, although the FIQ was significantly lower in the two samples

of preterm children, we found a negative correlation only between

FIQ and CTh in the full-term sample. Thus, higher FIQs were

associated with cortical thinning. These findings are in line with

previous reports that have also found this negative correlation in

normal samples of children and adolescents [39,40]. It has been

suggested that cortical thinning reflects the process of synaptic

pruning leading to improved efficiency of cerebral connectivity.

In addition to cognitive deficits, preterm samples also display

behavioral problems compared to their term peers [41]. In our

study, the main indexes for behavior did not differ between

groups, as we and others have previously described [16,42].

However, the attention subscale was found to be altered in PVL

preterm children compared to full-term sample. Attention

problems are a common finding in preterm children [2,43].

Decrements in caudate nucleus volume [44], as well as in

fractional anisotropy in the internal/external capsule and inferi-

or/middle fascicles [45], have been related to attention deficits in

preterm adolescents. Interestingly, we found that PVL preterm

children showed the more pronounced thicker regions of the right

hemisphere that are essential parts of the attentional network [46].

Indeed, frontal cortex and fronto-striatal structural and functional

abnormalities are a common finding in children and adults with

attention deficit hyperactivity disorder [47].

Regarding behavioral problems, we found that CTh in frontal

areas correlated with internalizing and externalizing indexes.

Internalizing problems imply higher scores in withdrawn, somatic

complaints, and anxious/depressed scales, whereas externalizing

problems reflect delinquent and aggressive behavior domains. We

found that the higher the CTh values in the frontal areas, the more

serious were the behavioral problems detected in childhood. In

this respect, it is worth noting that the frontal cortical regions are

involved in: (1) executive abilities (i.e. maintenance and redirection

of attention, mental flexibility, shift in behavioral settings, etc.)

dependent on the dorsolateral prefrontal circuit; (2) production of

appropriate behaviors in response to social demands, which relate

to the orbitofrontal circuit, and (3) generation of motivated

behavior, which is controlled by the anterior cingulate gyrus [48].

In a recent study in healthy children, higher scores on the CBCL

aggressive subscale were related to thinner anterior cingulate

cortex [49]. However, our results showed a positive correlation

between externalizing scores and CTh in cingulate cortex. As

postulated for intelligence scores, the regional cortical thickness

increments found in PVL preterm children, presumably due to

defective synaptic pruning, may account for their worse scores in

behavioral domains.

The main limitation of our study is its small sample size, which

limits the statistical power. However, our study has some specific

strengths. First, we selected appropriate control groups to analyze

the independent impact of prematurity and PVL on CTh at school

age. Second, we considered the characteristic trajectories of CTh

regional growth curves occurring in the normal developing brain.

Most brain regions attain the maximum peak of increment during

childhood, followed by a decrement in adolescence and a

subsequent stability in adulthood [11]. Consequently, all our

analyses of global and regional CTh were controlled by age at

examination. Finally, it is worth highlighting that CBCL is a

parent-report form and might therefore be somewhat subjective.

This study provides evidence of the different patterns of CTh in

childhood between a preterm cohort with no evidence of focal

white matter abnormalities and a preterm cohort with brain injury

such as PVL. In PVL preterm children, behavioral abnormalities

are associated with thicker frontal areas, and attentional deficits
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are associated with increased CTh in several regions of the right

hemisphere. Further research is needed to (1) determine develop-

ing CTh curves in PVL from the neonatal period onwards, (2)

investigate whether the CTh differences observed in childhood

persist into adolescence, and (3) establish whether they have a

long-term impact on the cognitive and behavioral domains.
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