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Glucocorticoid (GC) therapy is the leading cause of secondary osteoporosis and the
therapeutic and preventative drugs for GC-induced osteoporosis are limited. In this
study, we investigated the protective effects of geniposide on dexamethasone (DEX)-
induced osteogenic inhibition in MC3T3-E1 cells. The results showed that there was
no obvious toxicity on MC3T3-E1 cells when geniposide was used at the doses
ranging from 1 to 75 µM. In DEX-treated MC3T3-E1 cells, geniposide promoted
the alkaline phosphatase (ALP) activity and the mineralization. In addition, geniposide
also significantly increased the mRNA and protein expression of osteopontin (OPN),
Runt-related transcription factor 2 (Runx2), and Osterix (Osx) in DEX-treated MC3T3-
E1 cells. Furthermore, geniposide activated ERK pathway in DEX-treated MC3T3-E1
cells. The ERK activation inhibitor U0126 and glucagon-like peptide-1 (GLP-1) receptor
antagonist exendin 9-39 abolished the geniposide-induced activation of ERK and
inhibited the protective effect of geniposide. Taken together, our study revealed that
geniposide alleviated GC-induced osteogenic suppression in MC3T3-E1 cells. The
effect of geniposide was at least partially associated with activating ERK signaling
pathway via GLP-1 receptor. Geniposide might be a potential therapeutic agent for
GC-induced osteoporosis.
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INTRODUCTION

Osteoporosis is a common bone disease characterized by a low bone mineral density and the
deterioration of bone microarchitecture, leading to increased risk of fracture (Kanis et al., 2009).
Glucocorticoid (GC) administration is the leading cause of secondary osteoporosis and 30–50% of
patients with chronic use of GCs have the high risk of fractures (Buehring et al., 2013; Compston,
2018). However, GCs are widely used for treating inflammatory and autoimmune disorders, such
as rheumatoid arthritis and asthma (van der Goes et al., 2014; Guler-Yuksel et al., 2018). Therefore,
it is imperative to develop drugs to treat GC-induced osteoporosis.
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Long-term glucocorticoid treatment results in reduced
mineral density. The effect of GCs on bone is dominated by its
inhibitory effect on bone formation (Bultink et al., 2013). The
GC-induced suppression of osteoblast differentiation is one of
the mechanisms by which GCs reduce bone formation (Hsu and
Nanes, 2017). The ERK signaling pathway has been intensively
investigated in regulating osteoblast differentiation. Studies have
shown that ERK is constantly activated during osteogenic
differentiation, and ERK phosphorylates and activates Runx2,
thereby promoting osteogenic differentiation (Jaiswal et al., 2000;
Lai et al., 2001; Zhang et al., 2012). Thus, ERK signaling pathway
plays a crucial role in the differentiation of osteoblasts.

Geniposide, derived from the dried fruit of Gardenia
jasminoides Ellis, has been reported to have anti-oxidative (Li
et al., 2018; Lu et al., 2018), anti-inflammatory (Deng et al.,
2018; Wang et al., 2018), anti-viral (Zhang et al., 2017), anti-
tumor (Ma and Ding, 2018), and neuroprotective effects (Chen
et al., 2015). It has been found that geniposide ameliorates
trinitrobenzene sulfonic acid (TNBS)-induced experimental rat
colitis and histopathological changes of mesenteric lymph node
in collagen-induced arthritis (CIA) rats (Wang et al., 2017;
Xu et al., 2017). Studies also show that geniposide stimulates
insulin secretion in pancreatic β-cells by regulating glucagon-like
peptide-1 (GLP-1) receptor and promotes β-cell regeneration and
survival (Yao et al., 2015; Zhang et al., 2016; Liu et al., 2017). In
addition, studies have indicated that geniposide protects against
cell injury in post-ischaemic neurovascular and Aβ-induced
damage (Sun et al., 2014; Huang et al., 2017). However, the effects
of geniposide in GC-induced osteogenic suppression remain
unknown. Therefore, the present study investigated the effects
and underlying mechanisms of geniposide on dexamethasone
(DEX)-induced suppression of osteogenesis in MC3T3-E1 cells.

MATERIALS AND METHODS

Reagents and Cell Culture
Geniposide (Purity: >98%, Figure 1) was purchased
from Chengdu Best Reagent Co., Ltd. (Chengdu, China).
Dexamethasone (DEX), U0126 and exendin 9–39 were obtained
from Sigma Chemical Co. (St. Louis, MO, United States).
Cell Counting Kit-8 (CCK-8) was from Dojindo Laboratories
(Japan). MC3T3-E1 cells were obtained from Chinese Academy
of Sciences Cell Bank. Cells were grown in Modified Eagle’s
Medium of Alpha (a-MEM) (Gibco) supplemented with
10% fetal bovine serum (FBS) (Gibco), 100 U/mL penicillin,
and 100 µg/mL streptomycin (Gibco). For the induction of
osteoblastic differentiation, MC3T3-E1 cells were incubated in
osteogenic induction medium (OIM, α-MEM, 10% fetal bovine
serum, 10 mM β-glycerophosphate, and 50 µg/mL ascorbic acid).

Cell Viability Assay
Samples (5 × 103 per well) were subcultured in a 96 flat-bottomed
well plate. After 24 h, cells were treated with geniposide at
different concentrations for 1, 2, 3, and 7 days. The cell viability
was assessed by using the Cell Counting Kit-8 (CCK-8). The
absorbance at 450 nm was measured with a microplate reader.

Alkaline Phosphatase (ALP)
Activity Assay
Cells were washed twice with phosphate buffer saline (PBS)
and then lysed in 0.1% (v/v) Triton X-100 in PBS for 30 min.
The lysates were centrifuged at 12,000 rpm for 10 min at 4◦C,
and the supernatants were harvested. The ALP activity was
detected by using the ALP assay kit (Beyotime, China). The
protein concentration of cell lysates was measured by using the
bicinchoninic acid (BCA) protein assay. The ALP activity was
normalized to the total protein concentration.

ALP Staining
ALP staining was performed by using BCIP/NBT solution
(Sigma). Briefly, the medium was removed, and the cells were
rinsed twice with PBS. The cells were fixed with 70% ethanol for
10 min and equilibrated with ALP buffer (0.15 M NaCl, 0.15 M
Tris–HCl, 1 mM MgCl2, pH 9.5) for 15 min. Then, the cells were
incubated with NBT-BCIP solution (Sigma) at 37◦C in dark for
30 min. The reaction was stopped by deionized water, and the
plates were dried and taken photos.

Mineralization Assay
Cells were washed twice with PBS and fixed with 70% ethanol
for 10 min. Then, cells were incubated with a 0.5% Alizarin
Red S (pH 4.1) for 10 min at room temperature. Orange red
staining indicated the position and intensity of calcium deposits.
To quantify the Alizarin Red S staining, 10% cetylpyridinium
chloride (CPC, Sigma) was added to each well and incubated
for 30 min. The optical density (OD) of the extract was
measured at 550 nm.

RNA Extraction and Real-Time PCR
Total RNA was extracted from the cultured cells with TRIZOL
reagent, and the cDNAs were synthesized by using a Prime
ScriptTM RT reagent Kit with gDNA eraser (TaKaRa, China).
SYBR Premix Ex TaqII Reverse Transcriptase (TaKaRa, China)
was used for quantitative real-time PCR (qRT-PCR), which was
performed by using a 7500 real-time PCR system (Applied
Bio-systems, United States). Amplification conditions were as
follows: 95◦C for 30 s, 40 cycles of 95◦C for 5 s, and 60◦C
for 34 s. Sense and antisense primers of osteopontin (OPN),
Runt-related transcription factor 2 (Runx2), and Osterix (Osx)
were designed by primer 5.0 software and were shown in
Table 1. The relative expression of mRNA was evaluated
by the 2−11Ct method and normalized to the expression
of β-actin.

Western Blotting Analysis
Cells were lysed by the protein extraction reagent (M-PER,
Pierce, Illinois) plus the protease inhibitor cocktail (Halt,
Pierce) for 30 min on ice. Protein concentrations were
determined by using the BCA assay (Beyotime, China).
Equal proteins were fractionated by 10% SDS-polyacrylamide
gel, and then proteins were transferred to polyvinylidene
difluoride (PVDF) membrane (Whatman, United States).
The membrane was blocked with 2% bovine serum albumin
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FIGURE 1 | Chemical structure of geniposide.

(BSA) in Tris-buffered saline-Tween 20 (0.1%) (TBS-T)
for 1 h at room temperature. After that, the membrane
was incubated with anti-Runx2 (Abcam, ab23981, 1:1000),
anti-Osx (Abcam, ab22552, 1:1000), anti-OPN (Abcam,
ab8448, 1:1000), anti-ERK1/2 (Cell Signaling Technology,
#4695, 1:1000), anti-p-ERK1/2 (Cell Signaling Technology,
#4370, 1:1000), or anti-β-actin antibodies (Beyotime, AF0003,
1:1000) overnight at 4◦C. The membrane was washed, and
the bound primary antibodies were detected by incubating
for 2 h with horseradish peroxidase-conjugated goat anti-
rabbit (Abcam, ab6721, 1:5000) or anti-mouse (Abcam,
ab6789, 1:5000) secondary antibody. Finally, the membrane
was washed three times with TBST and developed with
enhanced chemiluminescence (ECL) kit (GE Healthcare, Beijing,
China). The relative quantities of proteins were determined
by scanning densitometry (ChemiDoc XRS1 Systems Bio-Rad,
Hercules, United States).

Statistical Analysis
All data were presented as mean ± SD, and statistical
analysis was performed by using one-way analysis
of variance. A value of p < 0.05 was considered
statistically significant.

TABLE 1 | Primers used for quantitative real-time PCR.

Gene Forward (5′–3′) Reverse (5′–3′)

OPN tccaaagccagcctggaac tgacctcagaagatgaactc

Runx2 gaatgcactacccagccac tggcaggtacgtgtggtag

Osx aggaggcacaaagaagccatac agggaagggtgggtagtcatt

β-actin gccaaccgtgaaaagatgac accagaggcatacagggacag

RESULTS

Effect of Geniposide on Viability of
MC3T3-E1 Cells
To investigate the effect of geniposide on cell viability, the CCK-8
assay was performed. The result showed that geniposide did not
influence the cell viability at the doses range from 1 to 75 µM on
days 1, 2, 3, and 7 (Figure 2).

Geniposide Alleviated the Inhibitory
Effect of DEX on Alkaline Phosphatase
(ALP) Activity
ALP is an early marker of osteogenic differentiation,
so we studied the effect of geniposide on the ALP
activity in DEX-treated MC3T3-E1 cells. We found that
DEX inhibited the ALP activity in MC3T3-E1 cells. In
contrast, geniposide significantly alleviated the inhibitory
effect of DEX on ALP activity (p < 0.01) (Figure 3).
In addition, similar results were observed by ALP
staining (Figure 3).

Geniposide Attenuated the Inhibitory
Effect of DEX on Mineralization
In addition, we examined the effects of DEX and
geniposide on the mineralization of MC3T3-E1
cells. We found that DEX inhibited the calcium
nodule formation compared with OIM. Geniposide
increased calcium deposition compared with
DEX (Figure 4).

Geniposide Increased Expression of
OPN, Runx2, and Osx mRNA in
DEX-Treated MC3T3-E1 Cells
To confirm the effect of geniposide on osteogenesis
in MC3T3-E1 cells, the mRNA expression of key
marker genes OPN, Runx2, and Osx was assessed. The

FIGURE 2 | Effects of geniposide on viability of MC3T3-E1 cells. The cells
were treated with geniposide at different concentrations for 1, 2, 3, and 7
days, and the cell viability was performed by using CCK-8 assay. n = 3.
∗p < 0.05 compared with Control.
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FIGURE 3 | Geniposide alleviated the inhibitory effect of DEX on ALP in MC3T3-E1 cells. (A) ALP staining was performed with BCIP/NBT kit after the MC3T3-E1
cells were treated with different dosages of geniposide and DEX for 5 days. (B) The ALP activity was measured after incubation of cells with different dosages of
geniposide and DEX for 5 days. OIM, osteogenic induction medium; DEX, dexamethasone. n = 3. ∗∗p < 0.01 compared with OIM; ##p < 0.01 compared with DEX.

results showed that DEX significantly downregulated
the expression of OPN, Runx2, and Osx (Figure 5).
However, geniposide significantly increased the
expression of OPN, Runx2, and Osx compared with
DEX (Figure 5).

Geniposide Increased OPN, Runx2, and
Osx Protein Expression in DEX-Treated
MC3T3-E1 Cells
We further studied the effect of geniposide on the protein
expression of OPN, Runx2, and Osx in MC3T3-E1 cells.
The results showed that the protein expression of OPN,
Runx2, and Osx was significantly decreased in DEX
group, and geniposide significantly increased the protein
expression of OPN, Runx2, and Osx compared with
DEX (Figure 6).

Geniposide Activated ERK Signaling
Pathway in DEX-Treated MC3T3-E1 Cells
It has been shown that ERK pathway is important for
osteogenic differentiation. We determined the levels of ERK and
phosphorylated ERK (p-ERK) in DEX-treated MC3T3-E1 cells by
using western blot assay. Western blot analysis showed that DEX
inhibited ERK phosphorylation, and geniposide restored the level
of p-ERK (Figure 7).

U0126 Inhibited the Protective
Effect of Geniposide in DEX-Treated
MC3T3-E1 Cells
To further elucidate the role of ERK in the protective effect of
geniposide, cells were pretreated with 10 µM U0126 (an inhibitor
of ERK activation), and followed by DEX and geniposide
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FIGURE 4 | Geniposide attenuated the inhibitory effect of DEX on mineralization. (A) The mineralized nodules were stained by Alizarin Red S after treatment of
MC3T3-E1 cells with DEX and geniposide in OIM for 14 days. (B) The mineralization was quantified by extraction of Alizarin Red S dye with 10% CPC. OIM,
osteogenic induction medium; DEX, dexamethasone. n = 3. ∗∗p < 0.01 compared with OIM; ##p < 0.01 compared with DEX.

treatment. As shown in Figure 8, U0126 abrogated geniposide-
induced phosphorylation of ERK, suggesting that U0126
abolished the geniposide-induced activation of ERK. In addition,
U0126 inhibited the protective effect of geniposide (Figure 8).

Exendin 9-39 Inhibited the Protective
Effect of Geniposide in DEX-Treated
MC3T3-E1 Cells
To investigate further the mechanism of geniposide, we
determined the effect of GLP-1 receptor antagonist exendin
9–39 on protective effect of geniposide on GC-induced
suppression of osteogenic differentiation. We found geniposide
increased the ALP activity in DEX-treated MC3T3-E1 cells and
exendin 9–39 inhibited the effect of geniposide. Furthermore,

exendin 9–39 abolished the geniposide-induced activation of
ERK (Figure 9).

DISCUSSION

In the present study, for the first time, we studied the effects
of geniposide on DEX-induced osteogenic suppression. First, we
investigated the effects of geniposide on viability of MC3T3-E1
cells. We found that different doses of geniposide ranging from 1
to 75 µM did not affect the viability of MC3T3-E1 cells, indicating
that geniposide was not cytotoxic to MC3T3-E1 cells in a wide
range of concentrations.

Next, we evaluated the effect of geniposide on the ALP
activity in DEX-treated MC3T3-E1 cells. Our results indicated
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FIGURE 5 | Geniposide increased the expression of OPN, Runx2, and Osx mRNA in MC3T3-E1 cells. MC3T3-E1 cells were treated with DEX and geniposide in OIM
for 3 days, and then the gene expression of Runx2 (A), Osx (B), and OPN (C) was detected by qRT-PCR. OIM: osteogenic induction medium. DEX,
dexamethasone. n = 3. ∗p < 0.05, ∗∗p < 0.01 compared with OIM; #p < 0.05, ##p < 0.01 compared with DEX.

FIGURE 6 | Geniposide increased OPN, Runx2, and Osx protein expression in MC3T3-E1 cells. (A) The total proteins were separated by 10% SDS-PAGE and
detected with the indicated antibodies of OPN, Runx2, and Osx after MC3T3-E1 cells were treated with DEX and geniposide in OIM for 3 days. β-actin was used as
the loading control. (B) The bar charts showed the quantification of OPN, Runx2, and Osx. OIM: osteogenic induction medium. DEX, dexamethasone. n = 3.
∗∗p < 0.01 compared with OIM; #p < 0.05 compared with DEX.

that DEX inhibited the activity of ALP in MC3T3-E1 cells.
In contrast, geniposide significantly increased the activity
of ALP in DEX-treated MC3T3-E1 cells. In addition, we
found that DEX inhibited the calcified nodule formation
in MC3T3-E1 cells. Geniposide significantly promoted the
formation of calcified nodule in DEX-treated MC3T3-E1 cells.
These results showed that geniposide alleviated the suppressive

effects of DEX on osteogenic differentiation in MC3T3-
E1 cells.

Runx2 is a major transcription factor and essential for
osteoblast differentiation (Ducy et al., 1997; Komori et al., 1997).
Osx is another transcription factor and plays a major role in
bone formation (Nakashima et al., 2002; Kim et al., 2006). Osx
acts as a downstream factor of Runx2 (Miraoui et al., 2009).
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FIGURE 7 | Geniposide activated ERK pathway in DEX-treated MC3T3-E1 cells. (A) The expression of p-ERK was detected by western blotting after MC3T3-E1
cells were treated with DEX and geniposide in OIM for 1 day. β-actin was used as an internal reference. (B) The bar charts showed the quantification of the ratio of
p-ERK/ERK. OIM, osteogenic induction medium; DEX, dexamethasone. n = 3. ∗∗p < 0.01 compared with OIM; #p < 0.05 compared with DEX.

FIGURE 8 | U0126 inhibited the protective effect of geniposide. (A) The expression of p-ERK was detected by western blotting after the MC3T3-E1 cells were
pretreated with 10 µM U0126 for 1 h, and followed by DEX and geniposide treatment for 1 day. β-actin was used as an internal reference. (B) The bar charts
showed the quantification of the ratio of p-ERK/ERK. (C) ALP staining was performed with BCIP/NBT kit after the MC3T3-E1 cells were pretreated with 10 µM
U0126 for 1 h, and followed by DEX and geniposide treatment for 5 days. (D) The ALP activity was measured after the MC3T3-E1cells were pretreated with 10 µM
U0126 for 1 h, and followed by DEX and geniposide treatment for 5 days. OIM, osteogenic induction medium; DEX, dexamethasone. n = 3. ∗p < 0.05, ∗∗p < 0.01.
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FIGURE 9 | Exendin 9–39 inhibited the protective effect of geniposide in DEX-Treated MC3T3-E1 cells. (A) ALP staining was performed with BCIP/NBT kit after the
MC3T3-E1 cells were pretreated with 200 nM exendin 9–39 for 1 h, and followed by DEX and geniposide treatment for 5 days. (B) The ALP activity was measured
after the cells were pretreated with 200 nM exendin 9–39 for 1 h, and followed by DEX and geniposide treatment for 5 days. (C) The expression of p-ERK was
detected by western blotting after the MC3T3-E1 cells were pretreated with 200 nM exendin 9–39 for 1 h, and followed by DEX and geniposide treatment for 1 day.
β-actin was used as an internal reference. (D) The bar charts showed the quantification of the ratio of p-ERK/ERK. OIM, osteogenic induction medium; DEX,
dexamethasone. n = 3. ∗∗p < 0.01.
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OPN is a prominent bone matrix protein and a typical marker
of osteoblast (Yao et al., 1994; Tu et al., 2006). Both Runx2
and Osx bind to the promoter of OPN and upregulate its
expression (Ducy et al., 1997). In this study, we found that
DEX downregulated the expression levels of OPN, Runx2,
and Osx. However, geniposide significantly upregulated the
expression levels of OPN, Runx2, and Osx in Dex-treated
MC3T3-E1 cells. The results suggested that geniposide attenuated
the suppressive effects of DEX through mediating transcription
factors including Runx2 and Osx.

Recent reports have shown that GLP-1 plays a vital role in
bone formation, and GLP-1 receptor agonist increases osteoblast
activity (Meng et al., 2016; Wu et al., 2017). The GLP-1 receptor
is expressed in MC3T3-E1 cells (Aoyama et al., 2014; Wu
et al., 2017). Studies showed that geniposide was a GLP-1
receptor agonist (Gong et al., 2014; Zhang et al., 2016). Our
results showed that geniposide attenuated inhibitory effect of
osteogenic differentiation induced by DEX, and the effect of
geniposide against inhibitory effect of osteogenic differentiation
was decreased with GLP-1 receptor antagonist exendin 9–39,
suggesting that GLP-1 receptor was involved in the protection of
geniposide against inhibitory effect of osteogenic differentiation.

Studies have shown that ERK signaling pathway plays
a crucial role in the differentiation of osteoblasts (Jaiswal
et al., 2000; Lai et al., 2001). GCs are known to regulate
the activation of ERK (Poulsen et al., 2011; Frenkel et al.,
2015). We also found that GCs inhibited the activity of ERK.
In addition, Kou et al. showed that geniposide increased
the expression and phosphorylation of ERK in primary
hepatocytes (Kuo et al., 2005). A study by Huang et al. showed
that geniposide activated ERK pathway in a rat model of
experimental stroke (Huang et al., 2017). However, studies
showed that geniposide inhibited ERK signaling pathway in
ischemia/reperfusion-induced renal injury and oxygen/glucose
deprivation-induced brain microvascular endothelial cells (Li
et al., 2016; Ye et al., 2016). These studies suggest that geniposide
has different effects on ERK pathway in different cell types.
Thus, we explored the roles of geniposide on ERK pathway
in DEX-treated MC3T3-E1 cells. We found that geniposide

significantly increased the ERK phosphorylation. The ERK
activation inhibitor and GLP-1 receptor antagonist abolished
the geniposide-induced activation of ERK and inhibited the
protective effect of geniposide. These data indicated that ERK
pathway was involved in the biological effects of geniposide.
Furthermore, ERK mediates Runx2 phosphorylation and the
transcriptional activity in bone (Ge et al., 2007, 2009). Thus,
the effects of geniposide on Runx2 and Osx expression
might be mediated by activating ERK signaling pathway
via GLP-1 receptor.

CONCLUSION

In summary, we demonstrated that geniposide alleviated GC-
induced osteogenic suppression in MC3T3-E1 cells. The effects
of geniposide were at least partially associated with activating
ERK signaling pathway via GLP-1 receptor. Geniposide might
be a potential therapeutic agent for protection against GC-
induced osteoporosis.
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