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Abstract

Motivation: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) sequencing

technologies can produce long-reads up to tens of kilobases, but with high error rates. In order to

reduce sequencing error, Rolling Circle Amplification (RCA) has been used to improve library prep-

aration by amplifying circularized template molecules. Linear products of the RCA contain multiple

tandem copies of the template molecule. By integrating additional in silico processing steps, these

tandem sequences can be collapsed into a consensus sequence with a higher accuracy than the

original raw reads. Existing pipelines using alignment-based methods to discover the tandem re-

peat patterns from the long-reads are either inefficient or lack sensitivity.

Results: We present a novel tandem repeat detection and consensus calling tool, TideHunter, to efficient-

ly discover tandem repeat patterns and generate high-quality consensus sequences from amplified tan-

demly repeated long-read sequencing data. TideHunter works with noisy long-reads (PacBio and ONT) at

error rates of up to 20% and does not have any limitation of the maximal repeat pattern size. We bench-

marked TideHunter using simulated and real datasets with varying error rates and repeat pattern sizes.

TideHunter is tens of times faster than state-of-the-art methods and has a higher sensitivity and accuracy.

Availability and implementation: TideHunter is written in C, it is open source and is available at

https://github.com/yangao07/TideHunter

Contact: bo.liu@hit.edu.cn or ydwang@hit.edu.cn or XINGYI@email.chop.edu

1 Introduction

While Pacific Biosciences (PacBio) and Oxford Nanopore

Technologies (ONT) long-read sequencing technologies are capable

of providing improved reference genomes, comprehensive structural

variant identification, as well as a more complete view of transcrip-

tomes, the relatively high error rates prevent their widespread adop-

tion (Goodwin et al., 2016).

Several error correction methods have been developed to reduce

the sequencing error in the long-reads. Such approaches can be classi-

fied into two types: hybrid correction using short-reads (Koren et al.,

2012; Zimin et al., 2013; Salmela and Rivals, 2014; Goodwin et al.,

2015) and self or non-hybrid correction using only long-reads (Chin

et al., 2013, 2016; Salmela et al., 2017). Despite these methods pro-

viding better base-pair accuracy than the raw data, each method has

drawbacks. Hybrid correction approaches could introduce systematic

errors from the short-reads into the long-reads while the performance

of non-hybrid correction relies heavily on the sequencing depth.

PacBio platforms generate high-accuracy circular consensus

(CCS) reads from raw subreads through in silico processing

(Weirather et al., 2017), with an error rate as low as 1%. However,

the yield of CCS reads is much lower than subreads. ONT uses a

similar strategy to call a relatively accurate consensus sequence, i.e.

2D or 1D2 reads, from the template and complement of 1D reads,

but at the cost of lower throughput (de Lannoy et al., 2017).

In recent studies (Li et al., 2016; Volden et al., 2018; Calus et al.,

2018), Rolling Circle Amplification (RCA) was used to amplify cir-

cularized template molecules in order to generate linear products

containing multiple tandem copies of the templates. After long-read

sequencing with PacBio or ONT, the resulting sequences can be

used to generate accurate consensus sequences through additional
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computational processing steps, which can be considered as high-

quality reconstructed reads of the templates.

Along with the RCA workflow, computational pipelines for ampli-

fied tandemly repeated sequences have been developed. INC-seq (Li

et al., 2016) extracts subsequences from the raw long-reads using non-

overlapping sliding windows. These subsequences serve as anchors

which are then aligned back to the read. Anchors with the higher num-

ber of alignments are used to partition the reads into multiple seg-

ments, which are then used to construct a consensus sequence with

pbdagcon (Chin et al., 2013). C3POa (Volden et al., 2018) uses a simi-

lar alignment-based strategy. Instead of extracting subsequences,

C3POa uses a known splint sequence to determine a start point, then

performs a self-to-self alignment to discover the tandem repeat signal

embedded in the raw reads. For INC-seq, the choice of anchor length

is non-trivial and has a significant impact on the result. For C3POa,

self-to-self alignment may confuse the determination of repeat sizes, es-

pecially on data with a high error rate. Moreover, as exhaustive

alignment-based methods, both methods are time consuming.

Tandem repeat detection in DNA sequences is a classical bio-

informatics problem that motivated the development of numerous

tools over the past 20 years (Lim et al., 2013). However, most of

these tools are not suitable for processing RCA-based long-read

data, as they only focus on short tandem repeats whose period size

is generally less than 100 bp. Tandem Repeats Finder (TRF) (Benson

et al., 1999) is one of the most widely used and robust tandem re-

peat detection tools. It calculates the possible repeat pattern size by

short k-mer matches at adjacent locations on the sequence and uses

statistically based recognition criteria to find candidate tandem

repeats. TRF allows for the detection of imperfect repeats, which

makes it suitable for noisy long-read data. The most significant issue

for TRF is that it limits the maximal period size as 2000 bp. For

whole genome or transcriptome studies, the length of the template

molecule could easily exceed this limitation. With the increasing use

of long-read sequencing technologies, we expect the new RCA-

based protocol to be widely adopted. Thus, it is crucial to develop

an efficient and sensitive tandem repeat detection and consensus

calling tool to take full advantage of this type of data.

In this article, we present a novel tandem repeat detection and con-

sensus calling tool, TideHunter, which is specifically designed for

RCA-based long-read data. TideHunter uses a fast seed-and-chain al-

gorithm to efficiently recognize the underlying repeat pattern size, and

then partition the original long-read into multiple repeat units. High-

quality consensus sequences are generated using a Single Instruction

Multiple Data (SIMD) accelerated Partial Order Alignment (POA)

(Lee et al., 2002) on the partitioned segments. TideHunter does not

have any limitation of the maximal repeat pattern size and is able to

tolerate high error rates. We benchmarked TideHunter using simu-

lated and real datasets with varying error rates and repeat pattern

lengths. TideHunter is tens of times faster than state-of-the-art meth-

ods and has a higher sensitivity and accuracy.

2 Materials and Methods

2.1 Overview
The reconstruction of template sequences from RCA-based long-

reads has two main steps: tandem repeat detection and consensus

calling. During the tandem repeat detection, both the repeat unit

length and the copy number need to be determined in an ab initio

manner. Furthermore, all the tandem copies could be divergent from

each other due to the high error rate of long-reads, making it more

difficult to discover the repeat signal. After tandem repeat detection,

every detected repeat unit is expected to represent one copy of the

template sequence. Consensus calling can be accomplished based on

the multiple sequence alignment of all detected repeat units. The

generated consensus sequence is considered a reconstructed template

sequence with a lower error rate than the original long-read.

Moreover, for some specific sequencing libraries, additional adapter

information is available and can be utilized to convert the consensus

to a full-length template sequence (Volden et al., 2018).

TideHunter is inspired by several existing tandem repeat detec-

tion tools (Benson et al., 1999; Pellegrini et al., 2010) and noisy

long-read alignment approaches (Liu et al., 2017; Li, 2018). It

adopts a specifically designed seed-and-chain algorithm to efficiently

recognize the underlying repeat pattern size and implements a SIMD

accelerated POA to generate high-quality consensus sequences.

TideHunter collects seeds of long-reads which consist of hash values

and locations of short substrings (k-mers). Collected seeds are sorted

by both the hash value and the location, then stored in a linear table.

Tandem repeat hit is identified for each pair of seeds that have iden-

tical hash values and are adjacent to each other in the sorted table.

The hit distance, i.e. the location distance of two seeds having a tan-

dem repeat hit, is usually close to the true repeat pattern size or its

multiples. TideHunter considers all such hits as anchors and

attempts to find an optimal chain of colinear anchors using dynamic

programming. The optimal chain is expected to consist of anchors

that have a hit distance close to the repeat pattern size. TideHunter

partitions the original long-read into multiple segments based on the

optimal chain. A SIMD accelerated POA of these segments is then

applied to generate an accurate consensus sequence.

2.2 Collecting seeds
TideHunter takes a two-tuple (v, c) as a seed to represent every k-

mer of a read, where v is the hash value and c is the coordinate of

the last base for each k-mer. Seeds are collected based on two

parameters: k and s, where k is the k-mer length and s is the collect-

ing step size. By default, we have k ¼ 8 and s ¼ 1, meaning we ex-

haustively collect all the short substrings of 8 bp from the read. A

hash value is assigned to each k-mer with a simple hash function:

hða1a2 . . . akÞ ¼ hða1Þ � 4k�1 þ hða2Þ � 4k�2 þ � � � þ hðakÞ

where hðAÞ ¼ 0; hðCÞ ¼ 1; hðGÞ ¼ 2;hðTÞ ¼ 3. This hash function

enables TideHunter to avoid collision as distinct k-mers always have

different hash values. After collecting all the seeds, TideHunter sorts

them by both the hash value and the coordinate using radix sorting.

Sorted seeds are then stored in a linear table for further use.

2.3 Identifying tandem repeat anchors
A tandem repeat hit is a match of two identical k-mers which are ad-

jacent to each other in the seeds linear table. In general, n identical

k-mers will result in n � 1 tandem repeat hits.

TideHunter takes another set of two-tuples (e, d) as anchors to

represent all the tandem repeat hits, where e is the ending position,

which is the coordinate of the last base in the following k-mer; and

d is the hit distance, which is the coordinate distance between the

two identical k-mers. All the tandem repeat anchors are sorted by

the ending position e using radix sorting again.

It is worth noting that only tandem repeat hits within a specific

range of hit distance (default: 30–100 000) will be collected by

TideHunter. Specifically, for each seed TideHunter attempts to find

its first valid hit in a loop starting with the nearest identical k-mer.

By doing this, TideHunter avoids meaningless hits which are unlike-

ly to have a distance close to the true repeat pattern size.
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2.4 Chaining of tandem repeat anchors
2.4.1 Chaining

Among all tandem repeat anchors with different hit distances,

TideHunter attempts to find an optimal chain of anchors all having

a hit distance close to the true repeat pattern size (Fig. 1).

Given a list of anchors sorted by the hit ending position,

TideHunter identifies the optimal chain by performing dynamic pro-

gramming with a specifically designed scoring function.

Here, we use S(i) to denote the maximal chaining score up to the ith

anchor in the list. The recurrence equation of the scoring function is:

SðiÞ ¼ maxfmax
i>j>0
fSðjÞ þMi;j � Ci;jg;kþminfdi;kgg

where Mi;j ¼ minfei � ej; kg þminfsi � sj; kg is the number of add-

itional matching bases when anchor i and j are chained together.

Here, si ¼ ei � di; sj ¼ ej � dj. Ci;j is the chaining cost for any two

anchors:

Ci;j ¼
1

2
� Dd2

i;j þ
1

2
� log2ðDei;j þ Dsi;jÞ; if si > sj

þ1; if si � sj

(

here, Ddi;j ¼ di � dj;Dei;j ¼ ei � ej;Dsi;j ¼ si � sj. Moreover, an initial

score, i.e. the number of bases in the k-mers: SðiÞ ¼ kþminfdi;kg, is

directly assigned to the anchor that does not have any precursors.

By assigning positive infinity to the chaining cost, TideHunter avoids

chaining any two non-collinear anchors, i.e. si � sj and ei > ej. The op-

timal precursor of each anchor is chosen based on the maximal chain-

ing score during the calculation of chaining scores.

The cost function consists of two parts: the square of two

anchors’ hit distance difference and the logarithm of the distance be-

tween two anchors’ endpoints. By using this cost function,

TideHunter tends to chain together two anchors that have a similar

hit distance and are close to each other as their chaining cost is low

(Fig. 1). As such, all the anchors coming from any two consecutive

copies in the long-read are likely to be chained together to form the

optimal chain. The quadratic and logarithmic functions are chosen

to make sure the hit distance difference weighs more than the anchor

distance during the precursor determination. Theoretically, other

functions could also be applied. However, on our simulated and real

datasets, the quadratic and logarithmic functions achieve the best

performance in practice.

2.4.2 Backtracking

To obtain an optimal chain, TideHunter starts with the anchor hav-

ing the maximal chaining score, and then recursively performs

backtracking to find the best precursor for each anchor. The best

precursor is determined based on the chaining score during the

dynamic programming. All tandem repeat anchors in the optimal

chain are expected to have a hit distance that is close to the true

repeat pattern size.

In most cases, the optimal chain will cover almost the whole

read. However, as long-read sequencing may go through abnormal

molecular ligation and template switching (Li et al., 2016), chimeric

tandem repeats can potentially exist. To solve this issue, TideHunter

performs additional backtracking beginning with the remaining

maximal score anchor, which has not been included in any existing

chains. The backtracking stops whenever the precursor has already

been tracked to ensure every anchor only shows up in one chain.

For a set of obtained chains, TideHunter discards a chain when

it overlaps with any other higher score chains by at least 50%. Thus,

TideHunter is able to collect a set of local optimal chains for all the

chimeric regions of the read.

2.5 Partitioning read
2.5.1 Selecting a medoid anchor

Given a chain of tandem repeat anchors, Ai ¼ ðei;diÞ; i ¼ 1 . . .n,

TideHunter selects a medoid anchor M by calculating the summa-

tion of the distance between one anchor and all other anchors. Here,

the anchor distance is defined as:

Di;j ¼
1

2
� ðdi � djÞ2

The medoid anchor is selected by:

M ¼ arg min
i

X
1�j�n

Di;j

If multiple optimal medoids exist, TideHunter arbitrarily chooses

the anchor with the smallest coordinate.

2.5.2 Determining repeat unit boundary

TideHunter uses the selected medoid anchor as a starting point to re-

peatedly determine the boundaries for all repeat units. Figure 2 pro-

vides an example of searching for the next repeat unit boundary on

the right side.

For each tandem repeat anchor, let the starting position s and

ending position e be the two coordinates of the last base in two k-

mers (Fig. 2). Given a pair of current repeat unit boundaries s and e,

TideHunter first searches for two anchors A1ðs1; e1Þ and A2ðs2; e2Þ
around e, where s1 and s2 are the closest to e and s1 < e � s2.

Specifically, when s2 is equal to e, the next repeat unit boundary is

directly set to e2. In most cases, where s1 < e < s2, TideHunter per-

forms an end-to-end global sequence alignment between the two

subsequences of the read, ½s1 : s2� and ½e1 : e2�. Based on the align-

ment result, the putative next boundary e0 within e1 and e2 can be

calculated. In more detail, we first locate the corresponding base of

e in the subsequence ½s1 : s2�. Then, based on the global sequence

alignment of ½s1 : s2� and ½e1 : e2�, the matched base of e in ½e1 : e2�
can be derived using the alignment CIGAR. We further calculate the

coordinate of the matched base and consider it as the putative next

boundary e0 (Fig. 2).

As such, TideHunter collects a set of repeat unit boundaries,

then uses them to partition the original long-read into multiple

segments.

To avoid extending the tandem repeat to a very high error rate or

chimeric region, TideHunter stops searching for the boundaries when

Fig. 1. Chaining of tandem repeat anchors. Three arrows represent three cop-

ies of a template sequence. Vertical line represents seed for each k-mer. The

same height between seeds indicates identical k-mers. Horizontal line repre-

sents tandem repeat hit of identical k-mers. Solid and dashed lines indicate

their hit distances are likely and unlikely, respectively, to be the true repeat

pattern size. After the dynamic programming, the optimal chain is expected

to consist of anchors that have hit distances close to the repeat pattern size
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the ratio of identical nucleotides based on the global alignment is lower

than a threshold of 0.75 by default.

2.6 Generating consensus sequence
TideHunter performs a POA (Lee et al., 2002) on the partitioned

multiple segments and calls the consensus sequence using the

heaviest-bundling algorithm described in Lee (2003). The POA is

accelerated by using a SIMD implementation (Vaser et al., 2017).

In more detail, POA performs multiple sequence alignment by it-

eratively aligning a query sequence to a target directed acyclic graph

(DAG) and adding the query to the DAG based on the alignment re-

sult (Lee et al., 2002). For the DAG, the node represents individual

sequence base and the edge represents two consecutive bases in the

sequence (Fig. 3). Same as the traditional sequence-to-sequence

alignment, a dynamic programming matrix needs to be filled out for

the sequence-to-graph alignment, where each row represents one

node of the DAG and each column represents one base of the query.

To fill out the matrix, three operations need to be considered for

each cell of the matrix: match (diagonal), deletion (vertical) and

insertion (horizontal) (Fig. 3). The first two operations, match and

deletion, only rely on the information of cells in the previous rows,

thus multiple cells can be processed simultaneously by using a SIMD

vector. However, parallelization cannot be accomplished for the

insertion operation as it depends on the left cell, which is in the

same row. Thus, with the SIMD parallelization, the overall

time complexity is decreased from Oðð2np þ 1ÞnjVjÞ to roughly

Oðð2np=kþ 1ÞnjVjÞ, where np is the average number of precursors,

jVj is the number of nodes in the DAG, n is the length of the query

sequence and k is the number of variables that fit in a SIMD vector,

which is generally 16 or 8.

After the iterative sequence-to-graph alignment, the final DAG is

used to generate a consensus sequence with the heaviest-bundling

algorithm (Lee, 2003). Then, TideHunter takes the consensus

sequence as the query to perform an extension alignment on each

side of the repeat region in order to incorporate the non-full copies

of the repeat into the final result.

3 Result

TideHunter is implemented in the C programming language. It takes

long-read sequencing data as input and outputs consensus sequences

of tandem repeats in FASTA format by default. TideHunter supports

multi-threading to achieve faster running speed on multi-core

computers.

To demonstrate the efficiency and sensitivity of TideHunter, we

evaluated it on both simulated and real datasets, along with TRF

(version 4.09), INC-seq (git commit #0ab4ac81) and C3POa (git

commit #fe370036).

As INC-seq and C3POa only output one consensus sequence for

each read, to ensure the consistency of the evaluation, we only

retained the repeat covering the longest read sequence for

TideHunter and TRF when multiple repeats were found.

3.1 Simulation study
To simulate tandemly repeated reads, we first randomly extracted a

sequence from GRCh37 human reference genome and directly copy

the sequence multiple times. A 100 bp random flanking sequence

was appended to each side. We then used PBSIM (Ono et al., 2013)

to generate a simulated read from the tandemly repeated sequence.

In total, five error rates with different substitution: insertion: dele-

tion ratios (13%, 41:23:36, 15%-a, 37:42:21, 15%-b, 11:60:29,

16%, 28:24:48 and 20%, 48:15:37), five repeat pattern sizes (100,

500, 1000, 2000 and 3000) and five copy numbers (2, 3, 5, 10 and

20) were used to generate 15 simulated datasets (Tables 1–3). The

five error rates and error distributions come from five public real

datasets (PacBio: 15%-a, 15%-b and ONT: 13%, 16%, 20%)

(Weirather et al., 2017; Harris et al., 2018). For each simulated

dataset, 1000 reads were generated.

On all datasets, TideHunter was run with default settings:

kmer_length ¼ 8, step_size ¼ 1, min_copy ¼ 2, min_period ¼ 30,

max_period ¼ 100 000, max_diverg ¼ 0.25. For TRF, recom-

mended parameters were used: match ¼ 2, mismatch ¼ 7, indel ¼ 7,

match_frac ¼ 80, indel_frac ¼ 10, min_score ¼ 100, max_period ¼
2000. INC-seq was run with default settings except:

minReadLength¼1000, anchor_seg_step ¼ 50, anchor_length ¼
50, copy_num_thre ¼ 2. C3POa was excluded from the simulation

study because it requires additional splint sequence information as

input.

We consider a detected tandem repeat as correct only if the con-

sensus length and the true repeat pattern size have a difference less

than 20%, i.e.:

true size� 1:2 � consensus length � true size� 0:8

The accuracy is defined as the number of correct consensus

sequences/the total number of reads. The copy number for each

called tandem repeat was directly extracted from each tool’s result.

We aligned each consensus sequence with the ground truth repeat

Fig. 2. Searching for repeat unit boundary based on the global alignment. s

and e are the current repeat boundaries. Two anchors A1ðs1; e1Þ and

A2ðs2; e2Þ are selected as their starting positions are the closest to e. Two sub-

sequences starting from s1 to s2 and from e1 to e2 are extracted to perform an

end-to-end global alignment. The next repeat unit boundary e0 can be calcu-

lated based on the alignment result. In this example, the base G of e is

matched with the G in subsequence ½e1 : e2�, whose coordinate is then consid-

ered as the putative next boundary e0

Fig. 3. Dynamic programming matrix of sequence-to-graph alignment and

three types of operations. SIMD parallelization is applicable for the match and

deletion operations as they only rely on the previous rows. Insertion oper-

ation must be processed linearly as it depends on the left cell, which is in the

same row
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Table 1. Performance on datasets with five error rates and distributions (1000 reads for each error rate and distribution, repeat pattern size

is 1000 bp, copy number is 10)

Error rate (sub.:ins.:del.) Tool Accuracy (%) Ave. copy number Ave. identical base Run time (CPU min)

TideHunter 99.9 9.6 983.1 0.8

13% (41:23:36) INC-seq 99.7 8.7 969.6 95.7

TRF 71.4 9.6 960.6 3.7

TideHunter 100.0 9.5 988.2 0.8

15%-a (37:42:21) INC-seq 99.9 7.9 975.2 96.3

TRF 58.1 7.4 925.9 3.5

TideHunter 99.9 9.2 988.0 0.9

15%-b (11:60:29) INC-seq 96.4 5.1 958.0 85.0

TRF 88.8 9.1 970.1 2.7

TideHunter 99.9 9.6 963.0 0.8

16% (28:24:48) INC-seq 83.5 4.0 887.0 72.0

TRF 39.2 6.2 886.0 3.7

TideHunter 99.8 7.6 965.8 0.9

20% (48:15:37) INC-seq 99.1 5.8 939.0 92.2

TRF 0.0 0.0 0.0 0.5

Note: The best performance regarding each specific feature on each dataset.

Table 2. Performance on datasets with five repeat pattern sizes (1000 reads for each repeat pattern size, error rate is 15%, error distribution

is 37:42:21, copy number is 10)

Repeat pattern size Tool Accuracy (%) Ave. copy number Ave. identical base Run time (CPU min)

TideHunter 73.4 9.5 95.9 0.03

100 bp INC-seq 37.7 2.6 36.5 12.3

TRF 70.2 8.4 67.3 0.2

TideHunter 100.0 9.5 494.0 0.3

500 bp INC-seq 87.4 4.2 453.8 50.8

TRF 71.9 7.6 463.0 1.8

TideHunter 100.0 9.5 988.5 0.9

1000 bp INC-seq 100.0 7.9 974.0 96.4

TRF 61.5 7.4 928.7 3.2

TideHunter 100.0 9.4 1976.6 4.3

2000 bp INC-seq 99.8 9.0 1955.5 163.4

TRF 30.0 5.4 1819.0 1.5

TideHunter 100.0 9.4 2965.1 11.6

3000 bp INC-seq 98.8 9.0 2934.2 300.4

TRF 0.0 0.0 0.0 0.8

Note: The best performance regarding each specific feature on each dataset.

Table 3. Performance on datasets with five repeat copy numbers (1000 reads for each copy number, error rate is 15%, error distribution is

37:42:21, repeat pattern size is 1000 bp)

Copy number Tool Accuracy (%) Ave. copy number Ave. identical base Run time (CPU min)

TideHunter 0.2 2.0 814.5 0.02

2 INC-seq 0.0 0.0 0.0 18.0

TRF 0.1 1.9 902.0 0.05

TideHunter 89.3 2.9 887.9 0.1

3 INC-seq 97.3 2.0 876.7 26.5

TRF 7.6 2.3 908.6 0.2

TideHunter 100.0 4.8 952.5 0.3

5 INC-seq 99.2 3.8 934.1 47.1

TRF 31.1 3.8 916.2 0.8

TideHunter 99.9 9.5 988.2 0.9

10 INC-seq 100.0 7.8 971.6 91.0

TRF 60.1 6.8 921.1 3.6

TideHunter 100.0 18.4 996.0 2.9

20 INC-seq 100.0 16.9 988.3 181.5

TRF 84.6 14.6 934.0 10.3

Note: The best performance regarding each specific feature on each dataset.
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unit sequence and calculated the number of identical bases (the num-

ber of equal operations, i.e. ‘¼’, in the alignment CIGAR) using the

alignment result. Average copy number and identical bases of each

dataset were calculated using only correct consensus sequences.

3.1.1 Running speed

TideHunter is approximately 100 times faster than INC-seq on all

datasets (Table 1-3), which benefits from the fast repeat unit recog-

nition algorithm and the SIMD acceleration of POA. As an

alignment-based method, INC-seq identifies tandem repeat patterns

through exhaustive segment alignment, which is expected to be very

slow. TRF shows comparable running speed but has clearly lower

sensitivity than TideHunter, especially on datasets with higher error

rates and longer repeat pattern sizes.

3.1.2 Performance under varying error rates and distributions

TideHunter shows a higher sensitivity and accuracy than INC-seq and

TRF across five datasets with different error rates and error distribu-

tions (Table 1). Given a long enough repeat pattern (1000 bp) and a

large enough copy number (10), TideHunter and INC-seq are able to

detect almost all (>99%) of the tandem repeats regardless of the error

rate. TideHunter has the overall highest average copy number and

number of identical bases. The strategy of seeding and chaining of short

k-mers enables TideHunter to discover the tandem repeat signal

embedded in the long-read, even at a very high error rate.

INC-seq shows a slightly lower sensitivity and accuracy than

TideHunter, while TRF only detected approximately 70% or fewer

of the repeats from the 13%, 15%-a and 16% error rate datasets,

and 0 from the 20% dataset. TRF is not expected to be able to pro-

cess datasets with very high error rates, as it uses a preset error prob-

ability model requiring the matching fraction of two adjacent

repeats to be at least 80%.

On the 20% error rate dataset, though TideHunter successfully

detected tandem repeats from most of the reads, the copy number

and number of identical bases dropped substantially as compared to

other datasets. This is due to the low sequence identity resulting in

more terminations during the tandem repeat searching.

TideHunter shows a higher robustness than TRF and INC-seq

across three different error distributions on the 15%-a, 15%-b and

16% error rate datasets. Among the three tools, the error distribu-

tion influences TRF’s performance the most in respect to both the

total number of correct consensus sequences and the average copy

number. TRF favors the dataset with more insertion errors (15%-b,

11:60:29) and identifies the least number of tandem repeats when

more deletion errors are in the reads (16%, 28:24:48). The perform-

ance of INC-seq also dropped substantially with a high number of

deletion errors (16%, 28:24:48).

Unbalanced error distributions lead to additional (insertion > dele-

tion) or missing (insertion < deletion) nucleotides in the sequencing

reads compared to the original template sequences. In such cases, al-

though the hit distances between two identical k-mers of consecutive

copies differ from the true repeat pattern size, TideHunter will still

chain these anchors together, as their distances are similar to each

other, thus leading to a small chaining cost. As such, the optimal chain

will still reflect the true underlying repeat pattern size in an approxi-

mate manner. This again illustrates the advantage of TideHunter’s

seed-and-chain strategy over other approaches.

3.1.3 Performance under varying repeat pattern sizes

TideHunter identified all the repeats on 500, 1000, 2000 and

3000 bp repeat pattern size datasets (Table 2). On the 100 bp

dataset, TideHunter detected tandem repeats from 734 reads, while

TRF and INC-seq detected tandem repeats from 702 and 377 reads,

respectively. When the repeat pattern is short and the error rate is

high, it is more likely that TideHunter will collect a tandem repeat

hit having a distance multiple folds larger than the true repeat pat-

tern size, which leads to a false optimal chain.

INC-seq is less sensitive on datasets with repeat pattern sizes of

500 bp or shorter. TRF shows lower performance when the repeat

pattern size increases and does not function with repeat pattern size

of 2000 bp or longer.

3.1.4 Performance under varying copy numbers

All three tools failed with the 2 copy number dataset as the repeat

signal is insufficient to be detected (Table 3). For the 3 copy number

dataset, INC-seq identified a higher number of repeats than

TideHunter. For datasets with the copy number larger than 5,

TideHunter and INC-seq both correctly identified almost all repeats.

TRF still failed with approximately 15% of the reads even on the 20

copy number dataset.

Given a higher copy number of the repeats, all three tools are

able to generate a more accurate consensus sequence. TideHunter al-

ways provides more identical bases than INC-seq and TRF, as more

copies of repeats are collapsed to call the consensus sequence.

3.2 Real data evaluation
In the real data evaluation, we first evaluated TideHunter along

with TRF, INC-seq and C3POa on a synthetic Spike-In RNA

Variant (SIRV) E2 dataset (Volden et al., 2018). In total, 603 906

Nanopore 1D reads having at least one splint sequence were used to

perform the evaluation. These reads were selected from 828 684

raw reads using the C3POa preprocessing script.

Another three synthetic 16S ribosomal RNA (rRNA) datasets

(Li et al., 2016) were used to evaluate the first three tools excluding

C3POa, as it requires additional splint sequence information as in-

put. The first 16S rRNA dataset is a simple synthetic community

with only three bacteria, while the other two datasets include two

independent replicates having ten bacteria. For all three datasets,

only Nanopore 2D reads were used.

Three of the tools were run with default or recommended

settings on all the real datasets. INC-seq was run on the SIRV E2

dataset with the same settings as in the simulation study, as the

SIRV E2 dataset has template sequences shorter than 500 bp, which

is the default anchor length for INC-seq.

To focus on high-quality consensus results, we filtered out tan-

dem repeats with less than six copies. The threshold six was chosen

based on the default setting of INC-seq.

Moreover, for the SIRV E2 dataset, all consensus sequences were

trimmed to full-length transcript reads using the C3POa post-processing

script. Full-length reads and consensus sequences were mapped to the

artificial SIRVome sequences (Volden et al., 2018) and a customized

16S rRNA reference database (Li et al., 2016), respectively, using mini-

map2 (Li, 2018).

3.2.1 Performance on the SIRV E2 dataset

On the SIRV E2 dataset, TideHunter is approximately 40 times and

120 times faster than C3POa and INC-seq respectively, and 2.6

times faster than TRF (Table 4). It is more sensitive in terms of gen-

erating consensus sequences and full-length transcripts. Over 25%

of the reads were detected to have six or more copies of tandem

repeats. C3POa has the highest mappable ratio, but overall,
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TideHunter provided the most mappable full-length consensus

sequences.

To evaluate the accuracy of the consensus sequences, we calculated

the error rate based on the minimap2 alignments. Consensus sequences

generated by TideHunter are more accurate than INC-seq and TRF,

but are 0.9% less accurate than C3POa. This is likely due to the sophis-

ticated consensus calling strategy that C3POa adopts. Unlike

TideHunter, which directly generates the final consensus sequence

through POA, C3POa considers the POA output as a preliminary con-

sensus sequence. It then aligns all the partitioned segments back to the

preliminary consensus sequence. These alignments are used as input to

further error-correct the consensus sequence by racon (Vaser et al.,

2017). Racon splits the consensus sequence and partitioned segments

into several chunks using non-overlapping windows, then independent-

ly performs another round of POA within each window. We may im-

plement a similar strategy in TideHunter in the future in order to

further improve the consensus accuracy.

3.2.2 Performance on synthetic 16S rRNA datasets

On three 16S rRNA datasets, TideHunter is over 25 times faster

than INC-seq and three times faster than TRF (Table 5). It also has

the most identified tandem repeats and mappable consensus sequen-

ces. TRF shows a slightly higher sensitivity than INC-seq, which is

likely due to Nanopore 2D reads having a relatively higher sequenc-

ing accuracy.

95.4% and 97.4% of TRF and INC-seq’s mappable consensus

sequences are detected by TideHunter, while the overlapping ratio is

90.7% for TRF and INC-seq. For all three tools, over 99.6% of the

consensus sequences are mappable, and they all have a length of

500–1000 bp, consistent with the size of 16S rRNA.

We calculated the error rate using the primary alignment record

for each consensus sequence. All three tools are able to produce a

high-quality (error rate <5%) consensus sequence given six or more

copies of the tandem repeat. Again, TideHunter slightly outperforms

the other two tools.

4 Discussion

The recently proposed RCA-based long-read sequencing workflow

provides a new strategy for producing high-accuracy long-read data.

With additional computational processing steps, the error rate of the

resulting consensus sequences can be lower than 5%, which is much

lower than the raw error rate [over 13% (Weirather et al., 2017)].

TideHunter is an efficient and sensitive tandem repeat detection

and consensus calling tool specifically designed for RCA-based long-

read data. It works with noisy long-reads (PacBio and ONT) at error

rates of up to 20% and does not have any limitation of the maximal

repeat pattern size as for traditional tandem repeat detection tools

(Benson et al., 1999). TideHunter is 20 to 100 times faster than

existing alignment-based methods (Li et al., 2016; Volden et al.,

2018) and shows a higher sensitivity on all evaluation datasets.

The high efficiency and sensitivity of TideHunter come from its

specifically designed seed-and-chain-based repeat unit recognition

algorithm and the SIMD acceleration of POA. The seed-and-chain

algorithm enables TideHunter to make full use of the identical k-

mers between tandem copies, then efficiently identify the repeat

pattern size through the search for the optimal chain. The proper

chaining score and cost functions used during the chaining step en-

hance the robustness of TideHunter across datasets with different

error rates and unbalanced error distributions. To the best of our

knowledge, TideHunter is the first tandem repeat detection tool that

adopts the seed-and-chain strategy. Moreover, the overall speed is

further accelerated by the SIMD-based implementation of POA.

The configuration of the k-mer length and step size (k and s) is

crucial for the performance of TideHunter. Larger k-mer length may

reduce the number of tandem repeat hits as the probability of

sequencing error showing up in the k-mer becomes higher. On the

other hand, if the k-mer is too short, the chance of two random k-

mers being identical increases greatly, which likely leads to a false

optimal chain. For the step size, exhaustively collecting all k-mers

will ensure TideHunter does not miss any useful information in the

determination of the repeat pattern size. Our evaluation suggests

Table 4. Performance on the SIRV E2 dataset (603 906 Nanopore 1D reads with at least one splint sequence were used for evaluation)

Tool # consensus # full-length reads # mappable reads (mappable ratio %) Error rate (%) Run time (CPU hour)

TideHunter 155 261 148 126 142 208 (96.0) 5.1 5.2

C3POa 136 243 119 503 119 267 (99.8) 4.2 204.5

INC-seq 115 963 110 645 107 159 (96.8) 6.5 630.6

TRF 118 040 110 079 105 145 (95.5) 6.7 13.8

Table 5. Performance on synthetic 16S rRNA datasets (only Nanopore 2D reads were used for evaluation)

Dataset (# reads) Tool # consensus # mappable reads (mappable ratio %) Error rate (%) Run time (CPU min)

TideHunter 3860 3853 (99.8) 4.4 4.7

Simplea (14 580) INC-seq 2178 2174 (99.8) 4.8 119.0

TRF 2542 2540 (99.9) 4.5 14.5

TideHunter 1596 1590 (99.6) 3.1 1.5

Rep.1b (7 444) INC-seq 1076 1074 (99.8) 4.7 50.4

TRF 1360 1356 (99.7) 3.5 5.5

TideHunter 1564 1558 (99.6) 3.0 1.5

Rep.2c (2 904) INC-seq 1183 1178 (99.6) 4.3 43.9

TRF 1330 1326 (99.7) 3.4 4.8

aSimple: simple community dataset with 3 bacteria.
bRep.1: replicate 1 of 10 bacteria community.
cRep.2: replicate 2 of 10 bacteria community.
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that the default setting of k¼8 and s¼1 enables TideHunter to tol-

erate sequencing errors and achieve the highest sensitivity.

Instead of using a larger step size, other long-read aligners utilize

MinHash (Berlin et al., 2015) or minimizer (Li, 2016) to sample

sequences in a reduced representation. Although we have implemented

minimizer seeding in TideHunter, it is not recommended to enable this

function as the speed improvement is insignificant (1.2 times faster

with parameter window-size ¼ 5), but the sensitivity is slightly lower.

TideHunter is not designed to detect satellite repeats [repeat pat-

tern size: 5–170 bp (Tyler-Smith and Brown, 1987)] from long-read

data without RCA. Although alpha satellites having a pattern size of

170 bp can be detected in our simulation, TideHunter shows a poor

sensitivity on other very short repeat pattern (<100 bp) datasets

(simulated data not shown). Satellite repeat discovery is the main

intended usage of TRF. However, its performance is significantly

reduced by the high sequencing error rate. We anticipate that new

tools need to be developed for discovering satellite repeats from

noisy long-read data.

Unlike TRF which allows up to three overlapping repeats to be

reported, TideHunter only selects one optimal period size in each

read region. Thus, in some rare cases where the template itself is a

tandem repeat, TideHunter is likely to generate a consensus se-

quence containing a single repeat unit of the template. This is be-

cause chains with a shorter hit distance always tend to have more

anchors and higher chaining scores. However, this issue can be

addressed if adaptor sequences are added during the library prepar-

ation. Chains of single repeat units will be separated by the adaptor

sequence and thus, the true optimal chain will still have the highest

score.

A potential future goal is to further improve the consensus qual-

ity, as the error rates of the called consensus sequences are still rela-

tively high. Currently, TideHunter simply takes the consensus

sequence generated by POA as the final result. A possible solution is

to incorporate base quality scores into the consensus calling algo-

rithm, i.e. bases with higher quality have higher weights in the

graph. This can be a feasible solution as base quality scores have

been used to produce high-quality consensus sequences in other

applications, such as genome assembly, read re-alignment and vari-

ant calling.
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