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Although machine- learning (ML) approaches have been extensively 
utilized in neurodegenerative conditions, they can be challenging to 
implement in motor neuron diseases (MNDs) due to disease- specific 
characteristics. The potential of ML algorithms has been explored by 
academic amyotrophic lateral sclerosis (ALS) studies, but they have 
not been developed into viable clinical applications to date. ALS 
studies traditionally conduct "group- level" analyses to describe phe-
notype-  or genotype- associated clinical traits, survival characteris-
tics, progression rates, biomarker profiles, and imaging signatures 
[1– 4]. These, although academically interesting, have limited utility 
for the interpretation of data from single individuals. The appeal of 
ML frameworks in a condition with considerable clinical heterogene-
ity, such as ALS, is the opportunity to categorize individual patients 
into clinically relevant subgroups. The long- awaited transition from 
"group- level" descriptive analyses to precision, "individual- subject" 
data interpretation has been fueled by the emergence of large train-
ing datasets, in the form of purpose- designed data repositories, na-
tional registries, or leftover data from clinical trials. Harnessing the 
availability of such data sources, a multitude of promising ML stud-
ies have been published demonstrating the prospect of accurately 
classifying a single individual into relevant diagnostic or prognostic 
subgroups [5].

There are important lessons to consider from early ML initia-
tives in ALS. Irrespective of the specific ML model implemented, 
cohort size for model training is crucial, which is one of the biggest 
challenges in ALS in contrast to more common neurodegenerative 
conditions. A considerable shortcoming of single- centre ML studies 
is the lack of external validation, which coupled with small training 

datasets, increases the risk of model overfitting to local data. Binary 
classification studies merely categorizing individuals into "ALS" ver-
sus "healthy control" groups have limited practical appeal, as the 
diagnostic dilemma in the clinical setting is not whether an indi-
vidual is healthy, but rather whether the constellation of findings 
represents incipient ALS or an alternative neurodegenerative or 
neuromuscular condition. Multiclass classification studies mirror 
real- life clinical scenarios better, especially if multiple MND pheno-
types are represented. The accurate categorization of an early stage 
upper motor neuron- predominant case into "ALS" versus "probable 
PLS," for example, is hugely important due to the survival ramifica-
tions of the correct diagnosis [6, 7]. Another stereotyped caveat of 
ML studies in ALS is model validation on cohorts with long symp-
tom duration. The categorization of patients with long symptom du-
ration with considerable disability and marked biomarker changes 
is not ideal to test model accuracy. A more compelling validation 
of a model is whether early stage patients or asymptomatic gene- 
carriers are accurately categorized into prospective diagnostic and 
prognostic groups based on peridiagnostic or presymptomatic bio-
marker profiles [8].

The critical appraisal of published ML studies in MND helps to 
outline desirable future study designs. Models should ideally be 
validated on external datasets; the choice of ML model should be 
determined by inherent data characteristics (missing data, number 
of features, etc.); multiclass classification models should be imple-
mented preferably with disease- mimics, disease- controls, and sev-
eral MND phenotypes; categorization beyond diagnostic groups 
into prognostic categories has additional clinical utility; and the 
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implementation of several ML models on the same dataset may help 
to juxtapose the comparative efficiency of proposed models. The 
interrogation of quantitative biomarker panels (serum, cerebrospi-
nal fluid [CSF], imaging) may support clinical decision- making in-
dependently [9, 10]. An alternative strategy is the interpretation of 
demographic and clinical variables in ML models [11], which has a 
number of practical advantages compared to relying on instrumental 
metrics (magnetic resonance, positron emission tomography, CSF); 
data collection is easily harmonized across multiple sites, data acqui-
sition is relatively cheap, data transfer is logistically simple, et cet-
era. Core clinical variables are typically already recorded, so with the 
appropriate approvals in place, extant data may potentially be used 
retrospectively for model training.

In this issue of European Journal of Neurology, Gromicho et al. 
from the University of Lisbon, Portugal present a particularly in-
novative ML study [12]. The authors implement dynamic Bayesian 
networks (DBNs) to evaluate the influence of the most commonly re-
corded clinical variables on disease progression in ALS. DBNs model 
variable dependencies that evolve over time and are trained upon 
multi- time point observations. The five key determinants of disease 
progression according to the authors are symptom duration at first 
consultation, body mass index at diagnosis, subscores 1 (speech) and 
9 (stairs) of the revised Amyotrophic Lateral Sclerosis Functional 
Rating Scale, and maximum expiratory pressure. The pragmatic rel-
evance of identifying key determinants of progression rate is that 
patients entering clinical trials may be informedly stratified so that 
ensuing "slow progression" is not intuitively attributed to a putative 
drug effect, and that "fast progression" is not automatically regarded 
as failure to respond to therapy.

Despite its practical pitfalls, ML is one of the most exciting 
frontiers of ALS research, and it is gaining considerable momentum 
thanks to the increased availability of large datasets, multicentre data 
harmonization efforts, and dedicated international consortia. These 
developments offer unparalleled opportunities for model optimiza-
tion and validation, paving the way for viable clinical applications.
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