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Abstract

Recent resting-state fMRI studies have shown that brain activity exhibits temporal variations 

in functional connectivity by using various approaches including sliding window correlation, co­

activation patterns, independent component analysis, quasi-periodic patterns, and hidden Markov 

models. These methods often model the brain activity as a discretized hopping among several 

brain states that are defined by the spatial configurations of network activity. However, the 

discretized states are merely a simplification of what is likely to be a continuous process, 

where each network evolves over time following its unique path. To model these characteristic 

spatiotemporal trajectories, we trained a variational autoencoder using rs-fMRI data and evaluated 

the spatiotemporal features of the latent variables obtained from the trained networks. Our 

results suggest that there are a relatively small number of approximately orthogonal whole-brain 

spatiotemporal patterns that capture the most prominent features of rs-fMRI data, which can 

serve as the building blocks to construct all possible spatiotemporal dynamics in resting state 

fMRI. These spatiotemporal patterns provide insight into how activity flows across the brain in 

concordance with known network structures and functional connectivity gradients.
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1. Introduction

In resting state fMRI (rs-fMRI), the blood oxygenation level-dependent (BOLD) signal is 

acquired in the absence of an explicit task or stimulation (Biswal et al., 1995; Ogawa et 

al., 1992). Networks of spatially distributed brain regions whose time courses are correlated, 

referred to as “resting state networks” (RSN) (Cordes et al., 2000; Damoiseaux et al., 2006; 

Fox et al., 2006; Fox and Raichle, 2007; Ghahremani et al., 2016; Greicius et al., 2003; 

Hampson et al., 2002; Power et al., 2011; Smith et al., 2009), can be reliably observed 

under numerous conditions and serve as the foundation of our knowledge of the brain’s 

functional architecture. Recent studies have revealed that these large-scale patterns of brain 

activity exhibit temporal variations at relatively fast time-scales (seconds-minutes) (Allen et 

al., 2014; Chang and Glover, 2010; Handwerker et al., 2012; Jones et al., 2012a; Keilholz 

et al., 2013; Kiviniemi et al., 2011; Majeed et al., 2011; Sakoğlu et al., 2010), and that 

these dynamics are sensitive to changes related to behavior, cognition (Albert et al., 2009; 

Bassett et al., 2011; Esposito et al., 2006; Fornito et al., 2012; Thompson et al., 2013), and 

pathology (Damaraju et al., 2014; Hamilton et al., 2011; Jones et al., 2012a). A number of 

techniques have been used to characterize the time-varying patterns of activity, including 

sliding window correlation (SWC) (Allen et al., 2014; Chang and Glover, 2010; Handwerker 

et al., 2012; Jones et al., 2012a; Keilholz et al., 2013; Kiviniemi et al., 2011), co-activation 

patterns (CAPs) (Liu and Duyn, 2013; Tagliazucchi et al., 2012), Independent component 

analysis (ICA) (Allen et al., 2014; Damaraju et al., 2014; Kiviniemi et al., 2011) and hidden 

Markov models (HMM) (Vidaurre et al., 2017). However, most of these methods consider 

spatial and temporal information separately, when in reality the temporal and spatial aspects 

of brain activity are intricately related. Brain activity has often been modeled as a discretized 

hopping among several brain states that are defined by the spatial configurations of network 

activity. However, the discretized states are merely a simplification of what is likely to be 

a continuous process, where each network evolves over time following its unique path. In 

this case, the presence of stereotyped pathways of evolution between states that manifest as 

characteristic spatiotemporal trajectories in the rs-fMRI data would provide new insight into 

the systems-level coordination of brain function.

At least one characteristic spatiotemporal trajectory has already been observed using 

a recursive algorithm. The resulting quasi-periodic patterns (QPPs) revealed highly 

reproducible spatiotemporal trajectories showing sinusoidal patterns of activation and 

deactivation in the default mode network (DMN) and task positive network (TPN) with 

opposite phases (Abbas et al., 2019; Yousefi et al., 2018), along with propagation along the 

cortex. Despite these successes, the primary QPP only explains 25–50% of the variance in 

the BOLD signal (Hutchison et al., 2013), suggesting that there is still a large portion of the 

signal not accounted for, and there are potentially other spatiotemporal trajectories not yet 

identified. An effort has been made to identify these secondary components by performing 

QPP analysis again after regressing out the primary QPP component (Yousefi and Keilholz, 

2021). The primary QPP (QPP1) is calculated, and convolved with the QPP1’s correlation 

time course to form the regressor. With the contribution of QPP1 regressed out using 

GLM (general linear model) method, subsequent QPP2 can be obtained from the residual 

time course by applying the same QPP algorithm again. This process can be performed 
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repeatedly, yielding multiple QPPs. These secondary QPPs (QPP2, QPP3 and so on) have 

demonstrated distinct spatiotemporal patterns that are different from the primary ones, and 

typically explain progressively less variance (it was reported in (Yousefi and Keilholz, 2021) 

that QPP1 explains ~37% of the original functional connectivity, QPPs 1–2 explain ~53%, 

and QPPs 1–3 explain ~63%). However, the number of additional components identified 

was typically limited to three. To date there has not been an exhaustive search for all 

possible characteristic spatiotemporal trajectories, potentially due to difficulties from the 

computational complexities, as well as the reduced robustness and interpretability after the 

repeated calculation of regression and convolution.

Deep learning methods could potentially solve this problem because they are inherently 

designed to extract key information or characteristic patterns from very complicated systems 

in a data-driven way. Convolutional neural networks (CNN), in particular, have proven 

very successful at extracting spatial features from images, e.g. AlexNet (Krizhevsky et al., 

2017) and GoogLeNet (Szegedy et al., 2015), and there are also studies using convolutional 

neural networks to extract temporal features from time series, e.g. applications in natural 

language processing (Gehring et al., 2017; Kalchbrenner et al., 2014; Kim, 2014) where the 

convolutional kernel was shown to be capable of extracting the features from the ordering 

of words in a sentence. In a more generic setting, (Bai et al., 2018) has shown that the 

CNN is capable of learning the temporal structures of time series in various tasks. Therefore, 

supposing there is a specific spatiotemporal property attributable to intrinsic brain dynamics, 

presumably it would be captured by a CNN as well.

As of today there are relative few studies in resting state fMRI that use deep learning 

methods, most of which focus on classification problems, e.g., classification of Alzheimer’s 

disease (Sarraf and Tofighi, 2017), mild cognitive impairment (MCI) (Meszlényi et al., 

2017; Suk et al., 2016), bipolar disorder (Smucny et al., 2021) and ADHD (Mao et al., 

2019). A few studies attempt to extract features in the fMRI data. For example, Li and 

Fan (2018) used a RNN to detect anomaly, which is used to identify state changes between 

different task/fixation blocks in the HCP data. Zhang et al. (2019) used a Deep Belief 

Network to obtain brain networks by combining functional data from fMRI and structural 

data from DTI. Huang et al. (2018) used a convolutional autoencoder to extract temporal 

features from task-fMRI data, which describes variations in the hemodynamic response 

function (HRF). Hu et al. (2018) trained a restricted Boltzmann machine using task-fMRI 

data, which was claimed to outperform ICA in terms of higher temporal correlation with 

task paradigms, and greater spatial overlap with the general linear model. Despite deep 

learning’s great potential, none of the existing studies is designed to detect characteristic 

spatiotemporal brain trajectories.

Every model provides unique insight into the systems-level neural activity detected with 

rs-fMRI. Spatial ICA identifies spatially distributed networks of coherent activity over 

the course of the scan. In contrast, coactivation patterns identify repeated instantaneous 

occurrences of common spatial patterns over the course of the scan, which may involve 

multiple networks. Thus, ICA encourages us to think of the brain as a set of discrete 

networks whose activities change over time, while coactivation patterns motivate us to find 

time points of strong signal fluctuation driven by internal or external stimuli that account 
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for the activity across the brain. QPPs and the spatiotemporal latent variables we found in 

this study imply that we should think of the entire brain as a single complex system, with 

persistent features and stereotyped patterns of evolution, much like the climate of the earth.

Given our goal of finding spatiotemporal patterns that can serve as “building blocks” 

for rs-fMRI, we proposed a deep learning method to extract characteristic spatiotemporal 

trajectories from rs-fMRI time courses. Specifically, a variational autoencoder (VAE) was 

trained to identify a relatively small number of approximately orthogonal whole-brain 

spatiotemporal patterns that capture the most prominent features of rs-fMRI data. Among all 

available deep learning / machine learning models, we chose VAE for the following reasons: 

1) the goal is to learn the characteristic spatiotemporal patterns from the unlabeled rs-fMRI 

data in an unsupervised manner (specifically learning latent representations) 2) Among all 

the machine learning / deep learning methods for creating latent representations, VAE has an 

advantageous combination of nonlinear mapping that enables learning of more complicated 

features and its orthogonality in the latent space that improves the interpretability compared 

to a plain autoencoder (Kingma and Welling, 2019, 2014). The resulting latent variables 

show that characteristic brain trajectories (beyond the QPP) exist and provide insight into 

how activity flows across the brain in concordance with known network structures and 

functional connectivity gradients.

2. Methods

2.1. fMRI data preprocessing

The minimally processed rs-fMRI data from the 412 subjects with “study completion: 

full 3T imaging protocol completed” label was downloaded from the Human Connectome 

Project (HCP) S500 release (Glasser et al., 2013). The resting-state fMRI data were 

acquired using Gradient-echo EPI with the following parameters: TR/TE = 720 ms/33.1 

ms, resolution = 2.0 mm isotropic, matrix size = 104 × 90, number of slice = 72, number 

of TR = 1200. Further preprocessing included the following procedures: The first 5 frames 

were removed to minimize the transient effects before reaching equilibrium. Gray matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF) signal were averaged within their 

masks provided by HCP. Then GM, WM, and CSF signals, along with 12 motion parameters 

(provided by HCP), linear and quadratic trends were regressed out altogether at the voxel 

level. The regressed BOLD signals were then bandpass filtered using a 0.01–0.1 Hz 6-order 

Butterworth filter. Finally the BOLD signals were parcellated using the Brainnetome atlas 

(Fan et al., 2016) and each parcel was z-scored. The final parcellated BOLD signal has 412 

subjects by 1195 time points by 246 parcels. For better visualization, the 246 parcels were 

then sorted into 7 functional networks using Yeo’s 7-network model (Thomas Yeo et al., 

2011) provided by the Brainnetome website, namely default mode (DMN), visual (VIS), 

somatomotor (SM), dorsal attention (DA), ventral attention (VA), frontalparietal (FP) and 

limbic (LIM) networks, with the remaining parcels all classified as subcortical regions (SC).

2.2. Variational autoencoder

An autoencoder is a type of neural network used to learn efficient data representation in 

an unsupervised manner. It typically consists of an encoder network that gradually reduces 
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dimensions, and a symmetric decoder network that recovers the dimensions. In this case, 

the output of the encoder has the lowest dimensionality in the entire network, and thus 

is a bottleneck of the information, which forces the network to extract features that most 

represent the data structure, since any reconstruction error is penalized.

To improve generalizability, a variant of the autoencoder architecture called a variational 

autoencoder (VAE) includes a random sampling process (Kingma and Welling, 2014). The 

model learns the distributions of the latent variables (by learning means and variances), 

instead of learning a deterministic mapping. A random sample is drawn from the 

distributions for every data point passing through the latent layer. The calculation of the 

loss function involved in this process and how it is back propagated to update the parameters 

in the networks was described in the original VAE paper (Kingma and Welling, 2014). To 

summarize, the loss function that corresponds to the randomization process is the Kullback­

Leibler (KL) divergence, which has a closed form when the prior distribution is assumed to 

be Gaussian. Thus, by minimizing the sum of the reconstruction loss and the KL divergence, 

the latent variable not only learns the most representative features in the dataset, but also 

becomes as close to a multidimensional standard Gaussian distribution (all components are 

independent, zero-mean, unit-variance) as possible. This tendency to approach Gaussian 

distribution serves as a regularization effect, which leads to a smoother latent distribution 

compared to the plain autoencoder, and thus improves the generalizability of the model. 

The VAE model essentially assumes that if the network is deep enough (having enough 

expressive power), then any complicated system can be mapped to a series of disentangled 

Gaussian-distributed variables.

2.3. Convolutional variational autoencoder design

With the goal of extracting common spatiotemporal trajectories in brain activities, we chose 

to feed the neural network with short rs-fMRI segments instead of single frames. Each 

rs-fMRI scan (1195 TR) was divided into 36 segments that are 33-TR long (23.76 s), with 

50% overlap. The 33-TR segment length was chosen based on prior work identifying a 

strong spatiotemporal pattern with a duration of ~20 s (Majeed et al., 2011). Based on the 

assumption that the rules governing the network dynamics are shift-invariant across time, 

convolutional layers were used in the first few layers instead of fully connected layers. As 

suggested by (Lecun et al., 1998), the parameter sharing in the convolutional layer greatly 

reduces the number of parameters in the model when compared with a fully-connected 

layer, thus improves the generalizability of the trained neural networks. Instead of using 

the common 2D convolutional kernel, here we used a 1D convolutional kernel that applies 

only to the temporal dimension, because the fMRI signal in the parcellated space is not 

shift-invariant across different parcels in the spatial domain.

This neural network architecture is shown in Fig. 1. The network consists of a symmetric 

encoder and decoder pair, either of which has 3 convolutional layers and 2 fully-connected 

layers. Each convolutional/fully-connected layer consists of a weight layer and a Rectified 

Linear Unit (ReLU) activation layer. Please note that the convolutional layers are multi­

channel convolutional layers, where each feature map (channel) encodes a unique temporal 

feature that combines all channels from its input. The multiple channels encode the spatial 
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information of the brain activity. For the first layer, the 246 spatial parcels directly form 

the 246 channels, which were encoded into 128 channels. For the subsequent layers, the 

channels encode higher-level spatiotemporal features whose receptive field still covers the 

whole brain (246 parcels). Details regarding the network architectures including number of 

trainable parameters can be found in the supplemental materials, Table S.1. The performance 

of four other alternative network designs with different numbers of layers or different 

numbers of hidden units was evaluated using holdout validation (the network architectures 

and results are shown in supplemental materials section S.1) and the architecture shown in 

Fig. 1 showed the best performance. The encoder encodes the input rs-fMRI segments of 

size 246 parcels by 33 time points into a 32×1 latent representation that roughly follows 

a multidimensional Gaussian distribution. The distributions of the latent variables were 

represented in means and variances that are estimated by the networks. Then during training, 

a sample was randomly drawn from this distribution whenever a data point arrives at the 

latent layer. This random process is a key feature in variational autoencoder, which improves 

its robustness and generalizability. Then the decoder performs a series of reverse operations 

(dilated convolution being the reverse operation of convolution) to reconstruct rs-fMRI 

segments from the 32×1 latent representation.

2.4. Training and testing of the model

The 412 subjects were randomly split into a training set (n = 248), a validation set (n = 82) 

and a testing set (n = 82). Then the segments were shuffled, resulting a training set with 

size of [248×36,246,33], a validation set and a testing set both with size of [82×36,246,33]. 

To make the model more regularized, we used a variant of VAE called beta-VAE (Higgins 

et al., 2017), whose loss function is the sum of reconstruction loss (root mean square error 

between input and output) and the K-L divergence loss weighted by a factor beta (beta=4). 

Large beta values increase the penalty for KL-divergence and therefore the model is more 

regularized (variables become closer to orthogonal). As proposed in the original beta-VAE 

paper, as well as confirmed in our experiments (shown in supplemental materials section 

S.2), beta = 4 gives a reasonable result that appear to be more robust and regularized than 

a regular VAE (a special case where beta = 1). The networks were implemented using 

Pytorch (Paszke et al., 2017) and were trained on a Nvidia GTX2080Ti GPU using Adam 

optimizer (Kingma and Ba, 2015) with a learning rate of 0.001 for 90 epochs. To verify the 

model, we used the rs-fMRI segments from the testing set as the input and compared the 

rs-fMRI segments reconstructed by the networks with the input. The reconstruction provides 

a qualitative assessment of how much information is preserved by the latent representation.

2.5. Feature visualization of the latent variables

Neural networks are often described as “black boxes” and it is not uncommon to see 

difficulties in interpreting why they perform well over a particular task. There are a few 

methods for visualizing features learned by the networks that can help interpret the results, 

including saliency maps and class visualization (Simonyan et al., 2014), although these 

methods are typically used for classifiers. Thanks to its Gaussian-distributed latent variables 

and its symmetric encoder-decoder design, there is one visualization method exclusive to 

variational autoencoder. The latent variables are disentangled, because penalizing the KL 

divergence leads to a multidimensional Gaussian distribution where all components are 
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independent from each other. This means that the effect of each latent variable is isolated, 

thus can be visualized by propagating a perturbation of such latent variable though the 

decoder. In addition, because of the symmetric design and the fact that reconstruction 

loss encourages identity mapping, given a certain perturbation in a latent variable, the 

manifested spatiotemporal pattern in the reconstruction when passing such perturbation 

through the decoder, should ideally be the same spatiotemporal pattern that would result in 

such perturbation in the latent variable when passing through the encoder. In other words, 

the VAE learns a two-way mapping between the perturbation in the latent variable and the 

spatiotemporal pattern in the fMRI segments. By isolating the effect of each latent variable 

through perturbation in such a controlled manner, we can visualize the spatiotemporal 

pattern to which each latent variable corresponds. Using this method, we vary each of the 

32 latent variables from −3 to +3 (since 99.7% of the data lies in the ±3 sigma range of 

a Gaussian distribution) with 500 increment steps, and observe how the rs-fMRI segments 

reconstructed by the decoder vary. This process returns a 4D vector (500 increments, 246 

parcels, 33 time points, 32 latent variables), which can be visualized if one dimension 

is fixed. By fixing the perturbation at its maximum amplitude, we obtained a set of 32 

spatiotemporal patterns or trajectories of brain activities that can activate their corresponding 

latent variables, which is shown in Fig. 2. All of the additional processing and visualization 

steps after the training the VAE were implemented in MATLAB R2020a (MathWorks, 

Natick, MA). The code for training VAE and analysis results is available in our lab’s 

Github page https://github.com/GT-EmoryMINDlab/Variational_Autoencoder_for_Resting­

state_FMRI.

2.6. Grouping of the latent variables based on their spatial similarity

These 32 spatiotemporal patterns exhibit a few common spatial configurations which show 

synchronized fluctuations. Thus the 32 latent dimensions can be further organized into 

several groups based on their similarity in the spatial domain. To do that, first the time 

points when the fMRI time course reaches maximum variance across spatial dimensions 

were extracted (shown with black cursors in Fig. 2). The reason why the time points with 

maximum variance were chosen is that the signal power (variance) reaches its highest value 

at these points, which maximizes the signal-to-noise ratio. This makes the estimation of 

spatial profile more robust to noise. The spatial profiles (as a function of latent variable) at 

the max-variance time points of the 32 latent variables were compared with each other and 

reorganized into several groups using K-means clustering (with spatial similarity calculated 

with Pearson correlation being the clustering criteria, and k empirically chosen as 6). To 

ensure the robustness of K-means clustering, we repeated the clustering algorithm with 200 

random initializations, and chose the one that has the best separation of clusters.

Then clusters were sorted in descending order by the variance explained by each latent 

variable (calculated as the variance across time domain, which was then summed over 246 

parcels). The variance of individual latent variables within a cluster is also in descending 

order for better visualization. Aside from the spatial profiles, the functional connectivity 

of each latent variable’s spatiotemporal pattern was calculated. The weighted average 

(weighted by the variance of the latent variable) functional connectivity within each cluster 
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was shown to provide an alternative representation of the spatial configurations among 

major functional networks of the 6 clusters.

2.7. Comparison with the primary QPP

The latent variables of the trained networks capture spatiotemporal trajectories of the brain, 

in a manner similar to the QPPs. Thus the features of latent variable 1, whose variance is 

the highest, was compared with the primary QPP. The primary QPP was calculated from the 

same testing set (n = 82) with the Brainnetome parcellation, using the existing Matlab code 

for calculating QPPs published in (Yousefi et al., 2018).

3. Results

3.1. The convolutional VAE decomposes rs-fMRI segments into a weighted combination 
of spatiotemporal patterns

The trained convolutional VAE learns to represent any rs-fMRI segments using the 32 latent 

variables. To visualize the latent variables, we used the method described in Section 2.5. 

Fig. 2 shows a set of 32 spatiotemporal trajectories of brain activity that can activate their 

corresponding latent variables. This set of spatiotemporal patterns were learnt to be the 

most representative features existing in short rs-fMRI segments, and any given rs-fMRI 

segment can be expressed by a weighted sum of these orthogonal spatiotemporal patterns, 

with the weights being the values of latent variables for that particular rs-fMRI segment. 

Note that each cluster of the spatiotemporal trajectories shares a common spatial network 

configuration (which can also be seen in the clusters in Fig. 3), while each individual latent 

variable within a given cluster describes a unique evolution of activity for that particular 

network configuration. These latent variables are organized into 6 groups based on their 

spatial configurations using the method described in Section 2.6. It can be seen that each 

cluster shares a common spatial organization of connectivity. For example, all 6 of the latent 

variables in the first cluster exhibit the anticorrelated DMN-TPN network configuration. All 

32 spatiotemporal patterns share the same display scale, thus higher contrast suggests higher 

variance explained and presumably greater importance of the latent variable.

3.2. The 32 latent dimensions can be further clustered based on their spatial similarity

To better illustrate the common spatial configurations shared by the latent variables, here 

we leave out the temporal dimension by focusing on the time point when the fMRI time 

course reaches maximum variance across spatial dimensions, as described in Section 2.6. 

The spatial configurations at this timepoint are shown for each variable in each cluster in 

Fig. 2, accompanied by a matrix of the spatial similarity (Pearson correlation) between the 

spatial configurations that clearly shows the division into six distinct groups. The weighted 

averaged functional connectivity for each group is also shown to provide an alternative 

representation of the spatial configurations, and the variance explained for each latent 

variable is given.

It can be seen in Fig. 3 panel A that, with in the primary cluster, whose mean variance is 

the highest, the spatial profile of every latent dimension at the max-variance time has the 

DM, FP and LIM network on one end, and VIS, SM, DA and VA networks on the opposite 
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end. Although this max-variance time only gives a snapshot of this opposing relationship, 

such contrast can be seen throughout the course of the trajectories (both shown in the 

time courses in Fig. 2, and the functional connectivity in Fig. 3 panel C). This finding is 

in agreement with many previous studies, including the DMN/TPN anticorrelation found 

in (Fox et al., 2005), quasiperiodic patterns (Majeed et al., 2011) and principal functional 

connectivity gradients (Margulies et al., 2016). The latent variables in the primary cluster 

all show that the DMN and TPN have a few components (with very high variance) with 

opposite phase at almost every instantaneous moment, suggesting this is the most prominent 

feature existing in resting state fMRI, which is likely the reason why we can see a consistent 

anti-correlation between the two networks.

The secondary cluster, which has the second highest variance, also has an interesting 

feature that further separates different networks within the task positive network. At the 

max-variance time, it can be seen from Fig. 3 panel A that, every latent variable in cluster 

2 has the negative end corresponding to the activation of VIS and DA networks, and 

the positive end corresponding to the activation of SM and VA networks. These together 

with the primary cluster, exhibit a remarkable resemblance to the principal gradients. 

The principal gradients are obtained using a method called diffusion embedding, which 

maps brain regions into an embedded space, where strongly connected points are closely 

spaced while loosely connected points are far apart. It was reported that in principle 

gradient 1, the transmodal DMN regions are anchored at one end and the unimodal visual, 

somatosensory/motor regions are at the other end, whereas in principle gradient 2, the visual 

networks are at one end and the somatosensory/motor regions are on the opposite end. This 

close resemblance between latent variables and principal gradients provides evidence that 

the network configurations based on the connectivity geometry revealed by the principal 

gradients closely reflects the instantaneous network activity demonstrated by the VAE.

3.3. The primary latent dimension shows a spatial-temporal pattern very similar to the 
QPP

It can be seen from Fig. 2 that the first latent dimension (which has the highest variance) 

encodes a spatiotemporal pattern that shows one cycle of anti-correlated activities between 

DMN and TPN over a 24 s time window. This spatiotemporal feature is very similar to the 

primary QPP except having opposite phase (the phase in Fig. 4 is already reversed for better 

comparison with QPP). The network is trained with randomly initialized weights, which 

leads to random polarity of latent variables for every training trial. Thus, the polarity can 

be ignored and the latent variable 1 and the primary QPP essentially extracted very similar 

information. This similarity makes sense because QPP averages the time points that have the 

most prominent correlation with the template, thus reinforcing itself over multiple iterations, 

and extracting the most prominent, reoccurring spatial temporal features. It is not surprising 

that such spatial temporal features have the most variance and thus were picked up by the 

variational autoencoder as the first latent dimension.

Aside from the first latent dimension, there are also 5 other latent dimensions in the 

primary cluster that share very similar spatial distributions, but differ in frequency and 

phase. To better visualize these differences among the timings of the latent variables, the 
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latent features from a region of interest (ROI) in the SM was shown as a function of both 

the value of latent variable and time in Fig. 5. Specifically, these latent variables with 

smaller variance tend to have higher frequencies. These spatiotemporal trajectories have not 

been previously reported, probably because their variance is relatively small compared to 

the primary component. On top of this, the VAE also identifies 5 other clusters of latent 

variables that have different spatial configurations. In the traditional QPP calculations, these 

features may have been canceled out with each other during the averaging process.

3.4. Reconstruction of rs-fMRI segments in the testing set

Fig. 6 shows the reconstruction of the rs-fMRI segments and the corresponding weights 

of latent variables. This reconstruction provides a qualitative assessment of how much 

information is lost during the encoding-decoding process. Although it is not a perfect match, 

most of the timing and the amplitude information is captured, especially for fluctuations 

with high amplitudes. It is worth mentioning that each rs-fMRI segment has 246 parcels 

and 33 time points, while the encoded representation only has 32 variables, which is 

around 1/250 of the original size. This fairly good quality of reconstruction despite such 

a high compression rate suggests that the original parcellated rs-fMRI data is actually quite 

redundant, which is potentially due to the fact that many parcels coactivate with each other, 

while others may show anticorrelations. This interlinked relationship among different brain 

regions greatly reduces the degree of freedom in the system. Thus, the proposed VAE 

extracts a set of orthogonal bases that accounts for most of the degree of freedom (that have 

the highest variances), which creates a parsimonious representation of brain activity that 

reveals such relationships among brain regions.

4. Discussions

4.1. Innovativeness of the method

We demonstrated a new method to study the intrinsic features in resting-state fMRI using 

a convolutional variational autoencoder. This particular architecture has never been used to 

characterize rs-fMRI, although there have been a few applications in other fields that have 

similar convolutional VAE architectures. For example, (Kulkarni et al., 2015) used a 2-D 

convolutional variational autoencoder to learn intrinsic spatial patterns from images. The 

features of the network architecture that we developed (namely the autoencoder design, the 

variational approach and the 1-D convolutional layers) have many advantages for studying 

rs-fMRI temporal dynamics.

Firstly, the proposed method provides a parsimonious representation of brain activity 

by condensing it into a few highly representative components, without losing too much 

information. Each “brain state”, which is the collection of activity across the entire brain at 

any given time, can be represented as a point in a hyperplane. This brain state representation 

tends to be very high-dimensional. For example, the 2 mm volumetric HCP data has 91 × 

109 × 91 = 902,629 voxels, and even the greatly downsampled data examined here after 

parcellation with the BN atlas has 246 parcels. Extremely high-dimensional data is very 

sparse and hard to generalize, which is also known as the “curse of dimensionality” Bellman 

(1952). Thus, this high-dimensional definition of brain states, is overly complicated and 
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redundant, because the many resting state networks are spatially organized, and the temporal 

dynamics involved may also be governed by certain rules. The “true” brain state vector 

may live in a much lower dimension space, which is what the VAE is designed to capture. 

The parsimonious representation of brain activity (using a 32-component vector to represent 

the brain state dynamics contained in a 246 parcels by 33 time points matrix) captures the 

most distinctive and prominent common trajectories that can serve as the building blocks to 

construct all possible spatiotemporal dynamics in resting state fMRI. This provides insight 

into both the spatial organization of the networks, and the characteristic dynamics for those 

networks. The variational approach (which includes random sampling and penalizing KL 

divergence) has forced the latent components to be nearly orthogonal to each other, which 

have helped to create a robust and unique decomposition of the brain activity and make the 

latent variables easier to interpret since they are disentangled.

Secondly, the use of 1-D convolutional layers has taken the structure along temporal 

dimension into consideration, which enables the method to simultaneously extract not only 

spatial patterns, but also their temporal dynamics. As discussed later, most analysis methods 

consider spatial information and temporal information independently. The learned latent 

representations were grouped into a few clusters that show similar spatial configurations that 

are in agreement with the anticorrelated DMN-TPN and principal gradients. Moreover, the 

temporal dynamics within these spatial configurations were also provided in the form of a 

few orthogonal components, where the one with the highest variance closely resembles the 

primary QPP, while the others show temporal structures that were previously extensively 

reported in the past.

Thirdly, as a deep learning method, this method makes minimal assumptions about rs­

fMRI. The use of 1-D convolutional kernel implies that the rule governing the temporal 

dynamics is shift-invariant along time and is applicable to all subjects, which is a reasonable 

assumption to make if the goal is to find common spatiotemporal features that exist across 

subjects. Other than that, the neural network itself does not make any other assumptions 

about rs-fMRI. However it is worthwhile to point out that although the neural networks 

themselves make minimal assumptions about the brain dynamics in rs-fMRI, the standard 

rs-fMRI data preprocessing steps do make assumptions regarding frequency bands, window 

length, parcellations and global signal regressions.

4.2. Comparison with existing methods

While there is no existing method that strictly focuses on the same goal as the proposed 

method, many other methods are conceptually related, and the spatial configurations 

obtained by the proposed method can be compared with existing methods. In this section we 

compare the results from our VAE approach to other existing methods for rs-fMRI analysis, 

including principal component analysis (PCA), principal gradients, QPP, SWC, ICA, CAP 

and HMM.

4.2.1. Relation to principal component analysis (PCA)—PCA and the VAE used 

for this study share some similarities. Both methods identify orthogonal bases for the 

original data and can achieve dimensionality reduction by selecting a few components 
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that explain the most variance. In fact, a two-layer VAE with a linear activation function 

produces almost identical results to PCA, because both methods aim to create a linear 

projection of the data to an orthogonal space Plaut (2018). In our VAE, there are 10 layers 

in total, making the VAE capable of creating a much more nonlinear mapping that might 

capture features that would not be found in a linear mapping. On top of that, the proposed 

VAE has three 1-D convolutional layers to extract characteristic temporal dynamics, which 

are not captured by PCA. Thus the latent variables in our model captures spatiotemporal 

dynamics, whereas the traditional PCA often gives eigenvectors in the spatial domain, e.g. 

(Leonardi et al., 2013).

4.2.2. Relation to diffusion embedding (principal functional connectivity 
gradients)—Principal functional connectivity gradients were described using a method 

called diffusion embedding, which nonlinearly maps brain region into an embedded 

hyperplane, where strongly connected points are close whereas loosely connected points 

are far apart (Margulies et al., 2016). The “gradients” that define the hyperplane reveal 

connectivity patterns over space. Like PCA, diffusion embedding provides information 

about connectivity geometry, but loses temporal information, whereas the proposed VAE 

provides a set of spatiotemporal patterns that demonstrate clusters of spatial organization 

while also providing information about characteristic temporal dynamics.

Because diffusion embedding and the VAE method emphasize different features of the 

rs-fMRI data, they are complementary to each other. The principal gradient is able to 

differentiate several networks along the gradient (e.g. DMN-FP-DA-VIS) whereas the 

variational autoencoder can only provide coarse locations (DMN and FP on one end, and 

DA, VA, VIS, SM on the other end). The VAE however, is also capable of showing temporal 

features and considers both the dynamics involved in brain activity and the interactions 

among brain regions, which the principle gradient lacks. Thus, they bring insights into 

different aspects of the same complicated brain system. The fact that the first two clusters 

of latent variables in VAE and the first two principal gradients show a consistent DMN 

versus TPN along the primary axis, and VIS versus SM, as well as DA versus VA along the 

secondary axis, is a reassuring indication of the consistency of the two approaches.

4.2.3. Relation to QPP regression—The spatiotemporal feature that would activate 

latent variable 1 is very similar to the spatiotemporal patterns found in the primary QPP, 

specifically a sinusoidal wave-like fluctuation showing anti-correlation between the DMN 

and TPN, as shown in Fig. 4. The QPP picks up the most prominent feature in rs-fMRI 

because it iteratively averages the time points that have the highest correlation with the 

template to update the template, so it makes sense for such a feature to capture the largest 

portion of the variance. Aside from the primary QPP, a set of secondary QPPs have been 

obtained from mouse (Belloy et al., 2018) and human (Yousefi and Keilholz, 2021) resting­

state fMRI data, by recursively regressing out QPP components. QPP regression is similar 

to the VAE method in that they both extract components that are independent to each 

other, and they both capture reoccurring spatiotemporal patterns. However, QPP regression 

was often done only for the first few components, without an exhaustive search for all 

possible components, perhaps because of the decreased robustness involved in the recursive 
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convolution and regression, as well as the increased computational cost. The VAE method, 

however, gives an overview of all spatiotemporal patterns at the same time.

4.2.4. Relation to sliding window correlation (SWC)—The proposed VAE was 

trained with short rs-fMRI segments of approximately 24 s in length. Although during 

training the rs-fMRI segments were shuffled, during testing (shown in Fig. 6) there 

was no shuffling, and the rs-fMRI time course was essentially transformed into latent 

representations using a 24-second, 50%-overlapping sliding windows, in a manner similar 

to the sliding window correlation method. However, for the VAE approach, the windows 

are used to train 32 latent variables which capture the spatiotemporal dynamics, while 

for sliding window correlation, dynamics are represented by the time varying correlation 

values. K-means clustering is applied for both approaches. For the VAE, clustering is 

used to group latent variables by their spatial similarity. For SWC, however, clustering 

the time-varying correlation is the basis for “brain states” that can be defined for each 

time window in the scan. Since the VAE requires components to be nearly independent of 

each other, the resulting clusters are more unique and clearly defined, whereas in SWC, 

the clusters seem to have more ambiguities because different components can mix and 

the long window (typically around 1–2 min) used for correlation can obscure short-term 

dynamics. For example, in (Allen et al., 2014) it was shown that the brain exhibits 7 states 

with connectivity patterns using a SWC method, among which states 2–7 all show notable 

anticorrelation between default-mode regions and sensory systems, with some variations 

(e.g.,. state 5 and 6 separates posterior DM nodes (precuneus and PCC) from anterior 

and lateral parietal regions; state 6 and 7 shows positive correlation between DM and SM 

area, and negative correlation between SM and VIS regions). These effects manifest as a 

slight deviation from the average functional connectivity, whereas in our VAE method, such 

separations are much more clearly defined, e.g. SM versus VIS in cluster 2, and posterior 

DM regions versus anterior and lateral parietal DM regions in cluster 2 and cluster 4.

4.2.5. Relation to independent component analysis (ICA)—The proposed method 

also has some similarities to ICA, another popular method for dimensionality reduction. 

Though both methods try to decompose the rs-fMRI signal into independent components, 

the approaches they take are different. ICA can be used to discover either spatially 

or temporally independent components. Most rs-fMRI studies use a spatial ICA (sICA) 

approach to find spatial components that are maximally independent in space (Calhoun et 

al., 2009). It is typically applied as one step in the preprocessing to create a “functional 

parcellation”, which is also known as intrinsic connectivity networks (ICNs), and is often 

applied in conjunction with further analysis methods like SWC, e.g. (Allen et al., 2014). 

ICA seeks to create a matrix decomposition of the entire rs-fMRI dataset, where one matrix 

represents spatially independent networks and the other represent the time courses of the 

signals from different sources. Although the time course of each spatial component can be 

obtained, these time courses remain in the same length as the original unprocessed time 

course, with no characterization of the temporal building blocks. The proposed VAE, on 

the other hand, is trying to extract characteristic, repeatable features that are independent 

from each other, on a much shorter time scale. It identifies instantaneous brain trajectories 

within a short time window (~20 s) that are very characteristic, so that all the dynamics 

Zhang et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in rs-fMRI can be explained by the same set of common trajectories. The counter-part of 

ICA’s role of creating parcellation in this study was achieved by using the Brainnetome atlas 

246-region parcellation (an anatomical parcellation), which was then organized using Yeo’s 

7network7-network model.

4.2.6. Relation to HMM and CAP—HMM and CAP methods are explicitly designed to 

characterize changes in the rs-fMRI signal over time and emphasize individual time frames 

in the rs-fMRI time series. The VAE, on the other hand, focuses on the dynamic patterns 

within rs-fMRI segments, linking spatial patterns with temporal variation. Nevertheless, the 

spatial patterns obtained with the three methods can be compared. For the HMM method 

it was reported that every fMRI frame can be classified into one of the 12 brain states, 

which are organized into 2 metastates (Vidaurre et al., 2017). The first metastate (state 

1–4), is composed of sensory (somatic, visual, and auditory) and motor regions, and the 

second metastate (state 6–12) covers higher order cognitive regions that include the DMN, 

language, and prefrontal areas. Individual states may show specific network patterns, e.g. 

state 4 (visual), state 6 (DMN), state 9 (Language). In the CAP method, the few frames with 

posterior cingulate cortex (PCC) activation (whose correlation map resembles DMN) can be 

decomposed into 8 different spatial patterns (Liu and Duyn, 2013). In the first 4 components, 

CAP1 and CAP2 more closely resemble DMN than CAP3 and CAP4, with CAP1 extending 

more dorsally and CAP2 more ventrally. CAP3 highlights the middle frontal gyrus (MFG, 

lies in FP network in Yeo’s parcellation), whereas CAP4 highlights the superior frontal 

gyrus (SFG, DM network) and the parahippocampus gyrus (PHG, LIM network). There are 

also another 4 CAPs with less resemblance to DMN that have lower within-group similarity. 

These variations of spatial patterns observed in the individual time frames, could emerge 

from the superposition of the orthogonal components found in the proposed VAE model. 

For example, positive components in latent cluster 1 (DMN activation) superimposed with 

positive components in latent cluster 2 (DM and LIM activation) could give rise to a spatial 

pattern similar to CAP4, whereas positive components in latent cluster 1 superimposed 

with negative components in latent cluster 2 (FP activation) could result in something more 

similar to CAP3.

4.3. New findings from the VAE

Although fundamentally different from existing methods, the trained VAE returns results 

in line with many previous studies. In particular, the DMN-TPN contrast seen here was 

also reported in DMN-TPN anticorrelation, QPPs, metastates (Vidaurre et al., 2017) and 

principal gradients. In addition to recapitulating previous findings, the VAE method also 

reveals some spatiotemporal trajectories that were not previously discovered or extensively 

discussed. For example, there are spatiotemporal trajectories that generally follow the DMN­

TPN spatial configuration, but have much faster frequencies when compared to the QPP 

(e.g. latent variable 2, 4, 5 in the primary latent variable cluster). A second example is given 

by the spatiotemporal trajectories in the secondary cluster, which show temporal dynamics 

along a spatial distribution similar to principal gradient 2 (VIS, DA on one side and SM, 

VA on the other). These additional spatiotemporal dynamics are worth investigating in the 

future, including but not limited to their reproducibility and whether they would change 

under different cognitive states.
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Another interesting feature to notice is that there seem to be two modes of activity revealed 

by the spatiotemporal trajectories. One mode has distinct on and off blocks showing two 

networks having exactly opposite phase (e.g. latent variable 1). Another mode shows a 

gradual change of phase/peak time along the spatial dimension, which behaves more like 

a wave propagating through different networks, which could also be related the findings 

in (Gu et al., 2020) and (Yousefi and Keilholz, 2021). This propagation/time lag, and 

how it interacts with the first mode (the well-known DMN-TPN anticorrelation) is worth 

investigating in the future.

4.4. Potential applications

The proposed VAE has found a set of characteristic spatiotemporal brain trajectories that can 

explain most of the dynamics involved in rs-fMRI. This new perspective provides insights 

into the brain’s spatiotemporal dynamics that cannot be accessed from traditional methods 

such as functional connectivity. Future work should explore how these characteristic 

trajectories change when the cognitive state is changed (e.g. task performance, sleeping vs 

resting state) or with the presence of a neurological or psychiatric disorder (e.g. Alzheimer’s 

disease, major depression disorder or ADHD) as these alterations may change the fMRI 

characteristics and instantaneous dynamics. For example, in (Jones et al., 2012b) it was 

reported that the differences in static connectivity observed in Alzheimer’s disease can be 

explained by differences in dwell time in DMN sub-network configurations, which suggests 

the dynamics of brain activity, and presumably the characteristic spatiotemporal brain 

trajectories are also altered by Alzheimer’s disease. Potential additional approaches include 

training multiple VAEs on patient and control groups to see if the characteristic trajectories 

identified are different, using the characteristic trajectories from healthy resting-state data as 

a benchmark to identify statistical differences among groups, or training a classifier to utilize 

trajectories to identify the cognitive state or neurological disorder. It is also interesting to see 

if the family structure in HCP dataset and the variations in ages would cause any noticeable 

changes in the spatiotemporal patterns.

4.5. Technical limitations

Although the proposed method has opened up a new perspective for viewing rs-fMRI 

dynamics, it does have some technical limitations. First many of the hyperparameters are 

empirically chosen, which is almost always not the most “optimal” solution of the problem. 

While it is possible to perform an exhaustive grid search for optimal parameters in some 

circumstances, the computational cost quickly become infeasible when the number and the 

range of parameters being tuned is large (Wu et al., 2019). That said, we did consider 

many factors when designing the neural network so that the parameters involved are within 

a reasonable range. For example, the number of layers cannot be too small, or the model 

will lack expressive power and cannot capture complicated features; on the other hand, the 

number of layers cannot be too large or the gradient will not backpropagate easily, resulting 

in diffculties in training. We also performed a holdout validation to examine the effect of 

the hyperparameters like the number of latent variables and number of layers (the results 

were shown in supplementary materials section S.1). While the choices we made are not 

necessarily the best, they certainly are not the worst.
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Secondly the network was trained with a built-in “sliding window”. We chose to divide 

the dataset into 50% overlapping, 33-TR (24 s) long time window. This is likely to limit 

the lowest frequency component the model can identify, which is around 1/24 = 0.042 Hz. 

Fluctuations that occur at lower frequencies are likely to be ignored by the model. Using a 

longer window may help capture components with lower frequencies, but doing such also 

requires an increase number of latent variables to encode the additional information in the 

elongated window, thus making the model more complex and harder to train. Eventually 

there will be a soft limit of how long the window can be feasibly implemented, which puts a 

lower bound to the frequencies that can be properly identified.

Thirdly the proposed method is tailored for parcellated rs-fMRI data. For nonparcellated 

rs-fMRI data, it would make more sense to use multidimensional convolutional layers 

instead of the 1-D convolutional layers we used in our work, since volumetric rs-fMRI 

data may preserve the property of shift-invariance not only in the time domain, but also 

in the spatial domain as well. However, volumetric rs-fMRI data are orders of magnitude 

larger than parcellated rs-fMRI data in size, whose modeling demands a neural network 

with more complex structure and greater expressive power. This increased model size makes 

the network harder to train. Whether it is possible to train such a model for nonparcellated 

rs-fMRI data, and if so how the latent variable would differ from those obtained from a 

model trained with parcellated rs-fMRI data, still remains unknown at the moment.

5. Conclusion

In this article we proposed a novel convolutional variational autoencoder to extract intrinsic 

spatiotemporal patterns from short segments of resting-state fMRI data. The extracted latent 

dimensions show clear clusters in the spatial domain that are in agreement with previous 

findings, but also provide temporal information about the evolution of brain activity as 

well. Some spatiotemporal features were similar to previously-described QPPs, but there 

are others with smaller variances that were not previously discovered, which is worth 

investigating in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The architecture of the networks.
The networks consist of a symmetric encoder and decoder, both having 3 convolutional or 

dilated convolutional layers, and 2 fully connected layers. The size is shown on the top of 

each layer. For CONV layers, the size is expressed as number of channels x number of 

time points. For FC layers, the size is expressed as number of features. Please note that 

the CONV layers are multi-channel convolutional layers, where each feature map (channel) 

encodes a unique temporal feature that combines all channels from its input. The encoder 

encodes rs-fMRI segments of size 246 × 33 into 32 × 1 latent variables that follow Gaussian 

distributions, whose mean and variance were estimated by the network. Then a sample 

is randomly drawn from the distribution, which is then propagated through the decoder 

to reconstruct back to rs-fMRI segments. CONV, convolutional layer; DECONV, dilated 

convolutional layer;FC, fully-connected layer.
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Fig. 2. Spatiotemporal patterns extracted by latent variables.
Using methods described in Section 2.5, the effect of each latent variable can be isolated 

and visualized through controlled perturbation in the latent space. Each subplot is obtained 

by perturbing only one latent variable at a time while fixing the rest of the latent variables 

at zero. The amount of perturbation was set to +3 (corresponding to +3σ for a standard 

Gaussian distribution, which is roughly 99.7 percentile) The x-axis is time in seconds. The 

y-axis is the 246 parcels. The patterns have arbitrary units, but all subplots share the same 

display scale so that higher variance results in higher contrast. The 32 latent variables are 

already organized in 6 clusters (see their spatial configurations in Fig. 3). The black cursor 

indicates the time of maximum spatial variance across parcels, which was used to extract 

spatial profiles and perform clustering.
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Fig. 3. The latent dimensions can be organized into 6 clusters (shown in rows) based on their 
spatial similarities.
Panel A shows the spatial profile represented by each latent variable, obtained through the 

controlled perturbation that was previously described. The spatial profiles were acquired 

at the max-variance time (in Fig. 2), which was shown as a function of the perturbation 

of the corresponding latent variable. The x-axis is the latent variable sliding from −3 to 

3, which roughly covers the entire range of the standard Gaussian distribution. The y-axis 

is the 246 parcels. Panel B shows the spatial similarities among latent variables at the 

max-variance time, measured by Pearson correlation between the spatial profiles. The latent 

variables were then clustered using K-means clustering using the spatial similarity as the 

clustering criteria (K = 6). The cluster label index and the variance explained are also shown. 

Panel C shows the weighted mean functional connectivity of each cluster of latent variables. 

The functional connectivity for each latent variable was calculated over the 33-TR window 

shown in the spatiotemporal patterns in Fig. 2. Then a weighted average was calculated, with 

the weight of each FC matrix being their corresponding variance in panel B. They offer an 
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alternative representation of the spatial configuration of brain activities, and the information 

they represent is more or less the same as the spatial profiles shown in panel A.
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Fig. 4. Spatial temporal features represented by latent variable 1 (panel A), the primary QPP 
(panel B) and their difference.
Both the latent feature and the QPP were divided by their 98th percentile to normalize. 

It can be seen that the spatial temporal features represented by latent variable 1 are very 

similar to the primary QPP (Pearson correlation coefficient = 0.759), but there are also some 

differences, most notably in the strength of frontoparietal involvement and near transitions 

between positive and negative activation in the somatomotor network.
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Fig. 5. Temporal patterns extracted by latent dimensions.
The temporal pattern as a function of the value of the corresponding latent variable can be 

visualized by selecting a specific region of interest to fix the spatial axis. In this particular 

figure we choose 5 parcels in the somatomotor (SM) network (96th parcel to 100th parcel, 

all in the Postcentral Gyrus). The x-axis is time in seconds. The y-axis is the value of the 

latent variable, sliding from −3 to +3.
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Fig. 6. A fMRI segment can be encoded as a 32-dimensional code.
Panel A shows 20 concatenated original rs-fMRI segments. Panel B shows the reconstructed 

rs-fMRI segments. It can be seen that the reconstruction matches fairly well with the original 

signal although there are some abrupt changes at the edge of each segment (that were 

concatenated together). Panel C and D show the values of latent variables in cluster1 and 

cluster 2, respectively. The remaining 4 clusters were not shown for display purposes.
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