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Abstract: The thousand grain weight is an index of size, fullness and quality in crop seed detection
and is an important basis for field yield prediction. To detect the thousand grain weight of rice
requires the accurate counting of rice. We collected a total of 5670 images of three different types of rice
seeds with different qualities to construct a model. Considering the different shapes of different types
of rice, this study used an adaptive Gaussian kernel to convolve with the rice coordinate function to
obtain a more accurate density map, which was used as an important basis for determining the results
of subsequent experiments. A Multi-Column Convolutional Neural Network was used to extract
the features of different sizes of rice, and the features were fused by the fusion network to learn the
mapping relationship from the original map features to the density map features. An advanced prior
step was added to the original algorithm to estimate the density level of the image, which weakened
the effect of the rice adhesion condition on the counting results. Extensive comparison experiments
show that the proposed method is more accurate than the original MCNN algorithm.

Keywords: rice; thousand grain weight; density map; multi-column convolutional neural network;
advanced priori

1. Introduction

China’s annual rice exports and imports are among the highest in the world. From
2019 to 2020, among the world rice importers, China ranked first in rice imports but fourth
in rice exports [1], and the reason for this is the low yield of high-quality rice in China.
With the continuous improvement of people’s quality of life, people’s requirements for rice
quality have become increasingly stringent [2], and how to accurately estimate rice quality
is a key research topic for scholars. Studies have shown that the quality of different types
of rice varies according to their shapes [3]. Therefore, it is difficult to accurately determine
the quality of rice from its shape. In addition to the appearance factor, thousand grain
weight is also one of the indicators to judge the quality of the crop [4]. Thousand grain
weight is measured in grams and represents the weight of 1000 g of the crop. Thousand
grain weight is the main criterion for predicting grain production capacity, and it is also an
important index for judging the size, fullness, and quality of crop seeds, so the thousand
grain weight of rice reflects its quality to some extent [5]. However, to detect the thousand
grain weight of rice, it is necessary to count the rice accurately.

Previously, the counting stage in the process of measuring thousand seed weight was
based on manual counting, which was not only time-consuming and labor-intensive, but
also had a high degree of error. Based on this, a series of instrumental devices for direct
seed counting were developed, which, unlike purely algorithmic studies, have a very high
counting accuracy with the help of hardware devices. Researchers have designed a fast
detection method that applies machine learning to maize counting, solving the problem
of laborious and time-consuming errors [6]. With the passage of time and with scientific
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and technological developments, various well-established image processing software has
emerged to meet the needs of various disciplines. As early as 2002, image processing
systems were used to accurately calculate the number of colonies [7].

Traditional counting methods utilize Machine Learning (ML), which generates sliding
windows for target detection [8]. However, the concept of deep learning introduced
by Geoffrey Hinton at the beginning of the 21st century revolutionized the traditional
approach to machine learning [9]. Deep Learning (DL), a newly introduced area of machine
learning, is hoped to be able to move closer to Artificial Intelligence (AI) and solve complex
pattern recognition problems by imitating human visual and auditory senses as well as
thinking processes [10].

Deep learning methods are more often applied in the field of Computer Vision (CV)
than traditional computer learning methods [11]. Computer vision has been demonstrated
vastly and is playing an active role in various fields. Some researchers have used image
processing methods to solve the problems in manual counting. Early tumor detection in
red blood cells using the digital image processing method solved the problems of expensive
instrumental methods and time-consuming manual detection methods, and its recognition
rate could reach 95.0–97.0% [12]. JAR Dan et al. automatically detected and identified
greenhouse pests by building a cascade-based deep learning classification method, and
the final accuracy rate reached 90–92% [13]. Tetila et al. evaluated convolutional neural
networks with three different training strategies in order to achieve fast and accurate auto-
matic identification and detection counts for soybean pests and achieved good results [14].
Some researchers have also designed a two-column convolutional neural network of POD
images to count soybean seeds with a high recognition rate [15]. Internationally, there are
also studies on quality detection using counting methods. Huang et al. counted rice by
image processing and solved the problem of unsatisfactory overlapping segmentation of
rice images [16].

The counting method is not only used in crop quality detection, but also can count
other objects by a density map. In order to obtain an accurate density map, many scholars
have studied it. In the 2017 paper entitled “Generating [a] high-quality crowd density
map”, using top international conference ICCV’s CNNs through a context pyramid, the
author fully considers the global density and local density information of the crowd in
an image and strengthens the constraints on the density map by extracting the global
and local semantic information of the image, so that the network can adaptively learn the
characteristics of the corresponding density level for any image [17]. In the article “Iterative
crowd counting”, included in the ECCV in 2018, the author creates a low-resolution density
map, optimizes it to obtain a high-resolution density map, and inputs it into the network
structure with two CNN branches for feature extraction [18].

The main contributions of this paper are as follows: we (1) produced a rice count
dataset, (2) designed an adaptive Gaussian kernel function to transform the density map
for different shapes of rice to enhance the migration ability of the model, (3) fused the
high-level prior as an auxiliary training into the MCNN network to increase the accuracy
of the results, and (4) used a 1 × 1 convolutional kernel at the end of the network to solve
the problem of varying input image sizes.

This paper is structured as follows: Section 2 reviews the related methods. Section 3
details the algorithms and models used in this paper, and proposes to fuse the high-level
prior to the MCNN network to improve the accuracy of counting overlapping sticky rice.
Section 4 focuses on the experimental part, including a representation of the dataset, a
comparison of model performance, and an analysis of the experimental results of the three
rice species. In the last section, the paper is summarized, and future directions of work
are proposed.
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2. Related Work
2.1. Adaptive Gaussian Kernel

The adaptive Gaussian kernel used in this paper is used to estimate the size of rice in
an image and to convert the original image into a density map. The Gaussian function that
is often used for image processing is a two-dimensional Gaussian function with a normal
distribution of the form:

G(x, y) =
1

2πσ2 e
−(x2+y2)

2σ2 . (1)

The function usually has fixed parameters when acquiring the density map, and since the
image with a circular box blurred for the convolution will have a more accurate out-of-focus
imaging effect, the closer the experimental object is to the circle, the better [19]. However,
the size of the rice used in this experiment varies, and the shape of the rice is also far
from circular. Based on the above problems, the adaptive Gaussian kernel will be used to
make the density map in this paper. An adaptive Gaussian kernel is a fusion of the kernel
adaptive filtering algorithm and the Gaussian kernel function, which can change the value
of the Gaussian function adaptively according to the actual shape of the object. In 2004,
Engel and other researchers were the first to apply the kernel method to an adaptive filter
to create a kernel adaptive RLS filter [20]. The kernel adaptive filter (KAF) uses a linear
adaptive filter to process nonlinear signals by fixing a mapping that takes a linear data
input and maps it to a higher dimensional feature space. Using the inner product of the
input data represents the most common iterative update process of the linear adaptive
lateral filter weight vector. Subsequently, using a nonlinear mapping, the inner product
can be mapped into a repeatable Hilbert space that holds a kernel called Mercer, which
has excellent continuous, positive, and changeable properties. Based on these properties,
the output of the filter after mapping to the RKHS space can be obtained directly without
computing the update of the weight vector, and the kernel function mapped to the high-
dimensional space can be extended to the form of eigenvalues and eigenvectors by the
Mercer kernel, thus enabling the combination of the kernel method with adaptive filtering.

2.2. Spatial Pyramid Pooling (SPP)

In the commonly used Convolutional Neural Network architecture, a fully connected
(FC) layer is added at the end of the last convolutional layer. Since the input features of
the fully connected layer are decided at the beginning, a fixed-input operation is usually
performed on the input image, and the input size is decided (fixed-size). However, this
usually increases the workload, and if the fixed-size operation is performed on the original
image, it will cause the aspect ratio of the image to change, which will cause the image
pixels to change, resulting in distortion of the source image and a loss of feature information.
However, SPP (Spatial Pyramid Pooling) can solve the above problems [21].

As shown in Figure 1, the Spatial Pyramid Pooling (SPP) layer structure is capable
of directly accepting raw images of arbitrary size and generating fixed size outputs based
on these arbitrary size images. The Spatial Pyramid layer takes the final output of the
convolutional layer, a random-sized feature dimensional map, and divides it into blocks of
1, 4, and 16 sizes [22,23]. Max pooling is performed on these blocks so that a fixed number
of features can be obtained after pooling, and all these features are stitched together to
obtain a fixed dimensional output to satisfy the condition of fixed input dimensionality
required by the fully connected layer.

2.3. Advanced Priori

There are three states of experience: transcendental, a priori, and a posteriori [24]. A
posteriori is what we know about a thing after it is experienced. The transcendental is
something beyond experience, something that ordinary people cannot experience together
and thus cannot form a universal experience. A priori is known before experience, as
in logic or common sense after experience. A priori is also possible in computers. The
advanced prior, also called the high-level prior, in this paper is first divided into different
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labeled groups based on the amount of rice in the graph. Using labels, the high-level prior
can roughly estimate the amount of rice in the entire photo independent of scale variation,
thus allowing the network to learn more discriminative global features.

Figure 1. SPSS’s basic structure.

3. Methods and Materials
3.1. Experimental Dataset and Processing

In order to ensure the authenticity and validity of the experiments, the counting
algorithm and its improvement algorithm in this paper use all the datasets we collected
from rice photos. In the basic experiment stage, 5670 labeled photos of three types of rice
were collected, and the complete rice centers in the photos were labeled with coordinates
for the training set to learn density map features. The dataset was divided into three
parts according to the species, and the specific shapes of the three types of rice are shown
in Figure 2.

(a) (b) (c)

Figure 2. The appearance of the three types of rice. (a) shows indica rice; the shape is elongated,
the color is creamy white, it has a transparent texture, and some of the rice will also show a white
opaque texture. In (b,c), some of the rice is japonica rice; in (b), the rice is yellowish, has a shorter
and broader shape, and is inclined toward a short oval shape; in (c), the rice is creamy white and has
a long oval shape, a shape between (a,b).

When collecting the dataset, in order to make this experimental algorithm practical,
the diversity of the data and the robustness of the training model were increased. The
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photos were not taken from a single angle. There were three angles: a far top view, a near
top view, and an oblique top view. In addition, the entire dataset was enhanced by dividing
photos into 10 smaller photos, each of which is one-fourth of the original image size, to
enrich the data to enhance the robustness of the model.

3.2. Density Map Generation

Since the MCNN needs to be trained to estimate the rice density map from the input
image, the quality of the density map given in the training data largely determines the
performance of this method. We take the following approach to convert the real image
of labeled rice into a rice density map. We can suppose rice exists at the photo pixel xi,
which is represented in this paper as a function δ (x− xi) about δ, where x represents the
coordinates, and xi represents the actual coordinates labeled in this paper. Thus, a labeled
image possessing N grains of rice can be expressed as the following discrete function:

H(x) = ∑N
i=1 δ(x− xi). (2)

The density function is a continuous function, so it is necessary to convert Equation (2) to
a continuous function. In this paper, the Gaussian kernel Gσ is used to convolve the rice
discrete function [23]. It is expressed as follows:

F(x) = H(x) ∗ Gσ(x) (3)

However, such a density function is valid only if the rice in the image plane are mutually
independent samples, that is, no occlusion and no overlap. However, such a prerequisite
hardly exists in realistic situations. Due to the different camera angles of the dataset,
it is likely to produce perspective deformation, especially under the oblique top view.
Additionally, rice itself has different shapes and sizes and occupies different areas, so the
density map generated by using a fixed Gaussian kernel is not accurate. Therefore, to
accurately estimate the density of rice, it is necessary to consider the effects of perspective
deformation and the different shapes of rice. It has been found that, in scenes with high
density, the object size is related to the distance from the center of the object [25]. In this
paper, for scenes with a high rice density, the Gaussian kernel parameters are determined
adaptively based on the average distance of each rice grain from its neighbors.

For each rice grain in a given image, the distances of its k rice nearest neighbors are
denoted as di

1, di
2, . . . , di

m in this paper. Thus, the expression of the average distance d́1 is
as follows:

d́1 =
1
m ∑m

i=1 di
j, (4)

where i is the selected rice, and m is the amount of its neighboring rice. In order to estimate
the density of rice around pixel xi, in this paper, the rice dispersion function δ (x − xi)
and the distance-dependent Gaussian kernel function are convolved. More precisely, the
density F should be expressed as follows:

F(x) = ∑N
i=1δ(x− xi) ∗ Gσ1(x), σi = βd́l (5)

When d́1 is a certain σi, it is determined by the β parameter, which determines the
Gaussian kernel function. Equations (3) and (4) represent the adaptive Gaussian kernel that
has adapted to the labeled data points around the labeled data points. In this experiment,
the best density map result is found when β is 0.3, as shown in Figure 3.
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(a) Original image (b) Density map

Figure 3. Comparison of the original image and the density map generated from the original image.

3.3. Multi-Column Convolutional Neural Network

The Multi-Column Convolutional Neural Network (MCNN) is a convolutional neural
network model proposed on the basis of Multi-Column Deep Neural Networks (MDNNs),
and we will use it to learn the target density map [26]. Due to the different shapes and sizes
of the experimental rice itself and the image perspective distortion, the images contain
rice of different sizes, so it is difficult for filters with receptive fields of the same size to
capture the rice density features at different scales. It is more natural to use filters with
local receivers of different sizes to learn the mapping from the original pixels to the density
map. In the MCNN used in this paper, for each column, filters of different sizes are used to
model the density maps corresponding to different scales of rice. For example, filters with
larger receptive fields are more useful for modeling density maps corresponding to larger
rice. The MCNN structure used in this paper is shown in Figure 4.

Figure 4. MCNN base structure, containing three parallel CNNs with filters with different sizes of
local receptive fields.

To reduce the computation time, we use the same Conv-Pooling-Conv-Pooling struc-
ture for all columns, which contains four convolutional processes, but the size and number
of filters vary. The three side-by-side CNNs extract large, medium, and small features from
top to bottom, which are called the L, M, and S rows, respectively. The first Convolution
Layer in Row L uses a 9 × 9 filter with 16 channels; the second Convolution Layer is
7 × 7 with 32 channels; the third Convolution Layer is also 7 × 7 with 16 channels, and
the last Convolution Layer is also 7 × 7. The first Convolution Layer in Row M uses a
7 × 7 filter with 20 channels. The first Convolution Layer in Row S uses a 5 × 5 filter
with a channel of 24. The last three revolution layers use 3 × 3 filter with channels of
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48, 24 and 12 respectively. All three CNNs use maximum pooling in the pooling process
and use 2 × 2 size regions with rectified linear units (ReLUs) as the activation function
because of its good performance for CNNs. To reduce the computational complexity (the
number of parameters to be optimized), a smaller number of filters is used in this paper for
CNNs with larger filters [27]. Experimentally, the feature maps of all convolutional neural
network outputs are overlapped and mapped onto the density map. To map the feature
maps to the density map, a filter of size 1 × 1 is used in this paper. It is important to note
that traditional CNNs usually perform a step of image preprocessing, that is, images of
different sizes are planned to the same size by stretching or cropping [28]. In this paper, the
original size of the input image is chosen because resizing the image to the same size would
introduce, in the density map, additional distortion [29]. In addition to the fact that the
filters in the CNNs in this paper have different sizes, the remaining difference between the
MCNN used in this paper and the normal MDNN is that the MCNN weights the outputs
of the CNNs with different columns with the network learnable weights. By contrast, in
the previously proposed MDNNs, the outputs are simply averaged.

3.4. Improved Algorithm

Although the rice counting algorithm based on the MCNN and density map can
successfully count rice, its generated density map has a low resolution and tends to lose
more detailed features due to the presence of the maximum pooling layer. Considering
these problems, this paper will add advanced prior steps to the original algorithm MCNN
and density map. In the improved algorithm, MCNN estimates the density and uses a
single column of convolutional neural network to extract a high-level prior on the whole
photo, and the prior part accepts the previously obtained feature map as an input. This
part covers four Convolution Layers, and after each Convolution Layer is over, PReLU is
used to perform activation operations on the neurons. At the beginning of the network,
two Convolution Layers end with a Max Pooling operation of step size 2. At the end of the
network, it is appropriate to use three fully connected layers, using the same activation
function as before. In this paper, in order to enable the preprocessing operation to be
performed even for images of different sizes, a spatial pyramid pooling structure is used,
allowing this structure to chunk the feature maps generated by the convolution layers,
producing a determined number of outputs that can be provided to the fully connected
layers. Cross Entropy Loss is used as the loss function for the high-level prior part, and the
approximate number of objects in the image can be estimated. The high-level prior enables
the network to learn globally relevant discriminative features, which is beneficial for image
object density estimation with highly variable appearance.

The advanced priori and density map estimation are two side-by-side subtasks in
the improved algorithm, and the network structure of the improved algorithm is shown
in Figure 5.

Figure 5. Network structure of the improved algorithm.

The upper part of the improved algorithm network structure is the network structure
of the high-level prior, and the lower part also uses the MCNN to learn the feature mapping
relationship from the original graph to the density graph. Unlike the original algorithm,
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when learning the feature mapping relationship from the original map to the density map,
the first part of the high-level prior will incorporate the learned results into the mapping
relationship learning, that is, the subsequent MCNN training of the improved algorithm
will use the results as the benchmark. At the same time, using small-step convolutional
layers, the output of the previous layer will employ up-sampling, so that the low-resolution
problem caused by the maximum pooling layer can be compensated.

In the improved algorithm, a classifier is learned, and it is used to classify the amount
of rice in each graph, determine the range of the amount of rice in each graph, and improve
the accuracy, while the classifier also performs the task of merging high-level priors into the
network. The MCNN network that generates the density maps is still composed of three
side-by-side CNNs, including four Convolution Layers, each of which ends with a PReLU
as the activation function. The initial two CNNs end with a Max Pooling layer with a step
size of 2. The first Convolution Layer is 7 × 7 with 20 channels, the second is 5 × 5 with
40 channels, the third is 5 × 5 with 20 channels, and the fourth is 5 × 5 with 10 channels.
The output of this network is combined with the output of the high-level prior through two
Convolution Layers and two small-step convolutional layers. The first two Convolution
Layers are 3 × 3, 24 channels and 32 channels, and the small-step convolution layers are
16 channels and 18 channels. These small-step convolution layers, in addition to integrating
the prior, can also boost the feature map to the original input size, thereby recovering the
detail previously lost in the maximum pooling layers to recover the details lost in the
previous maximum pooling layer. The use of these layers increases the upsampling rate
of the MCNN output by a factor of 4, allowing us to regress on the full-resolution density
map. Standard Euclidean loss is used as a loss layer.

The cross-entropy loss function for the advanced prior part is shown below:

Lc =
−1
N ∑N

i=1 ∑M
j=1[(y

i = j)Fc(Xi, θ)], (6)

where N denotes the number of training examples, θ is again a set of MCNN deriving
network parameters, Xi is the i-th training example and denotes the output classification,
Fc(Xi, θ) is the truth classification, and yi and M is the number of categories. The density
estimation loss function is shown as follows:

Ld =
1
N ∑N

i=1 ||Fd(Xi, Ci, θ)− Di||2, (7)

where Fd is the estimated density map, Di is the true density map, and Ci is the feature
map derived from the last convolution layer of the advanced prior stage. The total loss
function is shown as follows:

L = λL2 + Ld. (8)

This loss function differs from traditional multitask learning because the loss term in the
last stage depends only on the output of the previous stage.

4. Results and Discussion

In order to verify the effectiveness of the improved model in this paper, we first
experimented the model on rice data coming from three different categories and selected the
prediction results as a comparison. We used ACC, MSE, and MAE as the main evaluation
indexes. The ACC is the accuracy rate, which reflects the proportion of the number of
correct predicted rice categories to the total. MAE and MSE denote the absolute mean error
and mean squared error of the best models of rice in the training phase for Categories A, B,
and C, respectively. They are calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (9)
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where TP represents the number of correctly classified rice grains, TN represents the number
of accurately classified non-rice grains, and FP represents the number of misclassified rice
grains, that is, the fraction that is not rice itself but is misclassified as rice. FN represents the
number of misclassified non-rice, that is, the fraction that is rice itself but is misclassified
as non-rice.

MAE(y, ŷ) =
1
n
(

i=1

∑
n
|y− ŷ|) (10)

MSE(y, ŷ) =
1
n
(

i=1

∑
n
(yi − ŷ)2), (11)

where y denotes the true value, ŷ denotes the predicted value, and N denotes the total
number of samples.

The comparison of experimental results includes a comparison of the counting results
of rice in the original and improved algorithms for Categories A, B, and C, respectively,
the 1000 g counting results of rice in Categories A, B, and C, and the 1000 g counting
results of glutinous rice as a test model. The judging criteria were mean difference MAE,
mean squared error MSE, and accuracy rate. After several experiments, it was found that,
although the convergence of the improved algorithm was not fast, it was not more volatile
and had better training results. The best model in training was used in the test set to obtain
the mean MAE, and mean MSE. 1000 rice grains of three types of varieties and a new
variety (glutinous rice) not in the training dataset were counted and tested simultaneously
in this paper to analyze the results.

4.1. Performance of Class A Rice on the Original and Improved Algorithms

MAE and MSE denote the absolute mean error and mean squared error of the three
types of the best model for A, B and C, in the training phase, respectively. The tests MAE
and MSE represent the absolute mean error and mean squared error of the best model for
A, B and C in the training phase, respectively, and smaller MAE and MSE are better. For
example, the training MAE in the table is 0.4 in Class A rice, which means the absolute
mean error in training for Class A rice is 0.4. The MAE and MSE of Class A rice on the two
algorithms are shown in Figure 6.

Figure 6. MAE and MSE of Class A rice on two algorithms, the blue curve represents the improved
algorithm and the orange curve represents the original algorithm.
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The comparison of the training errors of the two algorithms is shown in Figure 7,
which indicates the error between the prediction results of the training set in the model
and the real results.

Figure 7. Training loss.

The specific results of Class A rice on the original and improved algorithms are shown
in Table 1.

Table 1. Training and testing results of Class A rice on the original and improved algorithms.

Method Original Current Work

Train MAE 0.4 0.5
Train MSE 0.7 0.8
Test MAE 2.68 1.79
Test MSE 3.56 2.90

ACC 95.53% 97.02%

From the images, the performance of Class A rice in the original algorithm is initially
better than the improved algorithm, but at around 470 epochs, the improved algorithm
starts to perform comparably to the original algorithm. Although the MAE and MSE of the
improved algorithm are only 0.1 lower than those of the original algorithm, as observed
from the training results. The performance of the model of the improved algorithm on
the test set is 1.49% better than that of the original algorithm, and the loss function of
the improved algorithm is much smaller than that of the original algorithm, as seen from
the train loss function, indicating that the improved algorithm is better than the original
algorithm. The results of the two types of algorithms are shown in Figure 8.

Figure 8. Original image and two kinds of algorithm detection results.

For the generated density map, the density map of the improved algorithm is more
accurate, especially as shown in Figure 1. When the original image of rice is connected
tightly, the original algorithm cannot confirm whether it is the same rice or different rice
and may generate some unnecessary density shadows, but this situation does not exist
in the improved algorithm. In fact, for the improved algorithm, the whole density map
generation is very clear, and there is almost no blurred density map generation. In this
case, the density map is accurately generated to obtain more accurate coordinates, and the
recognition rate of the improved algorithm is higher than the original algorithm.
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4.2. Performance of Class B Rice on the Original and Improved Algorithms

The MSE and MAE of Class B rice on both algorithms are shown in Figure 9.

Figure 9. MSE of Class B rice on two algorithms.

A comparison of the train loss of the two algorithms is shown in Figure 10.

Figure 10. Train loss.

The specific results of Class B rice on the original and improved algorithms are shown
in Table 2.

Table 2. Training and testing results of Class A rice on the original and improved algorithms.

Method Original Current Work

Train MAE 0.3 0.3
Train MSE 0.4 0.4
Test MAE 4.70 2.97
Test MSE 8.44 4.34
Accuracy 94.78% 96.70%

Class B rice does not perform well in the improved algorithm at first, and the origi-
nal algorithm converges quickly. After 480 epochs, the improved algorithm reaches the
convergence level of the original algorithm and then remains in a mutually equal state.
The performance of the improved algorithm on the test counts of Class B rice is greatly
improved, with MAE reduced by 1.73 and MSE directly reduced by about half. To analyze
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the specific reasons, Figure 11 shows some of the original plots with the effect density plots
of the two algorithms.

(a) (b) (c)

Figure 11. Class B rice labeling and comparison of density maps of two algorithms. (a) Original
graph. (b) Density graph of the original algorithm. (c) Density graph of the improved algorithm.

In this part of the original figure, there are four grains of rice. Observing the original
figure, it is found that, because there is a more obvious and very regular split line in the
middle of the B class rice, the color of the rice on both sides of the split line has a more
obvious color difference. For this kind of adhesion, the original algorithm learns the feature
that the rice with two characteristics is actually two grains of rice, so in the generation
of the density map, the original algorithm generates two point coordinates for the same
grain of rice. Therefore, in the density map generation, the original algorithm generates
two point coordinates for the same grain of rice and considers it as “two grains of rice”. In
the improved algorithm, because the amount of rice is estimated in advance, the overall
amount of rice is found to be the same rice, and only one density coordinate is given in the
generated density map.

Further experiments were conducted to investigate the counting effect of the original
algorithm and the improved algorithm in relation to sticky rice. Images with a large amount
of sticky rice were prepared for the experiments. Table 3 shows the counting performance
of the original algorithm and the improved algorithm for this case of sticky rice. The table
headings are the accuracy of counting sticky rice for the corresponding algorithm used,
and the accuracy of counting rice for the image as a whole, respectively.

Table 3. Comparison of the counting performance of the original and improved algorithms on adhesion.

Method Counting Accuracy of Conglutinated Rice Counting Accuracy of All Rice

Original 76.76% 94.82%
Current Work 86.67% 98.30%

As can be seen from Table 3, the improved algorithm improves the accuracy of
counting sticky rice by nearly 10% compared to the original algorithm. When the improved
algorithm counts all rice, it can obtain an accuracy of more than 98%.

4.3. Performance of Class C Rice on the Original and Improved Algorithms

The MAE and MSE of Class C rice on both algorithms are shown in Figure 12.



Entropy 2021, 23, 721 13 of 17

Figure 12. Comparison of MAE and MSE of Class C rice on two algorithms.

A comparison of the training loss of the two algorithms is shown in Figure 13.

Figure 13. Training loss .

The training and testing results of Class C rice on the original and improved algorithms
are shown in Table 4

Table 4. Training and testing results of Class A rice on the original and improved algorithms.

Method Original Current Work

Train MAE 0.3 0.3
Train MSE 0.5 0.5
Test MAE 3.36 1.79
Test MSE 4.09 2.30
Accuracy 93.28% 96.42%

In Class C rice, it is obvious that the accuracy of the improved algorithm is 3.14%
higher than that of the original algorithm, the train loss of the improved algorithm is much
smaller than that of the original algorithm, and the convergence speed is quite fast. The
accuracy of the improved algorithm for Class C rice improved by 3.14% compared with
the original algorithm, and Figure 14 shows the comparison of the density maps generated
by the original and improved algorithms for a test image of Class C rice.
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(a) (b) (c)

Figure 14. Comparison of density maps generated by Class C rice in the original algorithm and
the improved algorithm. (a) Original marker map. (b) Original algorithm density detection map.
(c) Improved algorithm density detection map.

On the whole, the density map generated by the improved algorithm is clearer, and
the improved algorithm is more “sure” of the exact location of the rice at 1 in the figure,
while the original algorithm is unable to be “sure” of the rice with an incomplete and full
shape, or the rice has overly small intervals when generating the density map. The density
map generated is blurred or even shaded, which seriously affects the counting effect.

4.4. Rice Grains Test
4.4.1. 1000 g Test on A, B, and C Rice

In this section, three types of rice, A, B and C, were prepared to test the feasibility of
the counting method in this paper. Table 5 shows the test performance of 1000 g of the A,
B, and C rice species in their best respective training models.

Table 5. Accuracy of the 1000 g test results for Categories A, B, and C.

Classification of Rice Original Current Work

A 94.15% 97.52%
B 93.50% 99.52%
C 92.01% 99.13%

Table 5 shows that the improved algorithm models for Species B and C have very
good performance when the amount of rice increases. Figure 15 represents the original and
improved algorithm’s generated density plots for each of the three rice types, A, B, and C,
with 1000 g.

Figure 15. Generated density maps for each of the three types of improved rice algorithms. From left
to right are the original input images of A, B, and C and the corresponding generated density maps.
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4.4.2. Test Results of 1000 g of the New Variety (Glutinous Rice)

Table 6 shows the test results of the best model of Gnome in the three types of
algorithms for A, B, and C.

Table 6. Performance of 1000 g of glutinous rice.

Classification of Rice Original Current Work

Model A 93.08% 96.21%
Model B 93.01% 97.67%
Model C 93.08% 98.74%

For new varieties of glutinous rice that do not appear in the prepared dataset, the
best-performing rice models of Class A in the test set performed average here. On the
contrary, Tables 4–6 simultaneously show that the models of Rice Categories B and C had
a very good counting ability when the amount of rice increased, and the generalization
ability of these two types of models was stronger than that of Rice Category A.

4.5. Overall Analysis of Results

Based on the test set results and train loss, all three types of rice outperformed the
original algorithm in the improved algorithm. Class A rice has the best performance on
the test set, although its training model is not the best among the three categories in both
the original and improved algorithms. Class A rice has a long bar shape, and the previous
experiments showed that the counting algorithm based on the MCNN, the counting
algorithm based on the MCNN and the density map, and its improvement algorithm were
found to be the best for counting long-striped rice.

However, when the amount of rice increased, the counting ability of the Class A model
was obviously insufficient. On the contrary, although the performance of the Class B and
C models was poor on the test set, they had a very good counting effect on large-scale
rice, and the generalization ability of the B and C models was also found to be very strong
through the test on 1000 glutinous rice grains, which has excellent practical applicability.

5. Conclusions and Outlook
Conclusions

As an important indicator for judging the quality of crop seeds, counting crop seeds
is necessary to measure the thousand seed weight, so it is important to study the count-
ing methods for crop seeds for measuring the thousand seed weight and crop quality.
This paper firstly introduces the current research status and application fields of count-
ing algorithms at home and abroad, and shows the importance of research on counting
algorithms for rice in the context of current crop cultivation and needs. In this paper, two
deep learning-based counting algorithms are used for rice, which are MCNN-based and
density map-based counting algorithms, and an improved algorithm with advanced prior
based on the original algorithm. After experiments, it was proved that both algorithms
can count rice well. The effect of rice shape on the counting results was also investigated,
and it was found that the long-striped indica rice have the best counting results. The two
algorithms proposed in this paper have better migration. The main highlights of this paper
are as follows:

1. The adaptive Gaussian kernel function used in generating the density map in this
paper reduced the error when convolving rice of different shapes.

2. The improved MCNN network was based on the original network with the addition of
advanced a priori training assistance, and the convergence and accuracy of the network
were greatly improved compared to the original network.

3. The MCNN used was a combination of three independent and concurrent CNNs,
which solved the problem that the filter extracts features of a certain size.
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4. Since the last layer of the network structure of this paper uses a 1 × 1 size filter, the
size of the input image was not required.

5. The dataset was collected and produced entirely by our researchers and is not reproducible.

In this paper, counting experiments were conducted on rice with good results. After
the counting experiments for the three categories of rice, A, B, and C, some extension
experiments were conducted, mainly the following:

1. The performance of the original algorithm and the improved algorithm was studied in
relation to rice with too much sticking.

2. Cases of 1000 g of rice in Categories A, B, and C were tested, and the performance of
the improved algorithm in cases where the amount of rice increases was verified.

3. Glutinous rice was used to study the generalization of the model in this paper.

In summary, in terms of innovation and experimentation, much effort was made in
this study to demonstrate that the improved network has improved accuracy and in an
improved migration ability. However, the algorithm proposed in this paper still has some
shortcomings. Firstly, there is still much room for improving the accuracy of some species;
secondly, the training time of the improved algorithm is quite long. At the same time,
since the dataset was collected and produced by our team, there may be individual point
labeling errors. The experimental object of this paper is rice, so cases of complete overlap
are rare, but such a situation is not excluded from the realm of possibility. However, for
seeds of the same species, characteristics are generally similar, so it is important to develop
a model with a stronger generalization ability. Meanwhile, the counting algorithm in this
paper can theoretically count other objects. It is equally important to extend the algorithm
to count other objects. If the counting algorithm theory of this paper is transferred to other
experimental objects, it is necessary to consider the use of a three-dimensional modeling
approach to solve the problem of occlusion and overlap between objects. This is one of the
most important directions for future development, and we will continue to conduct related
research focusing on such problems.
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