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Abstract

Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder

(BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks.

Cardio-metabolic disorders (CMD) are common comorbidities in SMI and negatively

impact brain health. We validated a linear quantile regression index (QRI) approach

against the machine learning “BrainAge” index in an independent SSD cohort (N = 206).

We tested the direct and additive effects of SMI and CMD effects on accelerated brain

aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI

and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Sub-

jects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI

+/CMD� (N = 964), SMI�/CMD+ (N = 3,765), SMI�/CMD� (N = 8,083). SMI

(F= 40.47, p= 2.06� 10�10) and CMD (F= 24.69, p= 6.82� 10�7) significantly, inde-

pendently impacted whole-brain QRI in SMI+. SSD had the largest effect (Cohen’s
d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect

on SMI+ (d = 0.19) and SMI� (d = 0.14). SMI effects were direct, independent of MD,

and remained significant after correcting for effects of antipsychotic medications.

Whole-brain QRI was significantly (p < 10�16) associated with the volume of white mat-

ter hyperintensities (WMH). However, WMH did not show significant association with

SMI and was driven by CMD, chiefly hypertension (p < 10�16). We used a simple and

robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain

aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio-

metabolic illness. Our findings suggest that subjects with SMI should be among the tar-

gets for interventions to protect against age-related cognitive decline.
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1 | INTRODUCTION

Patients afflicted with severe mental illness (SMI)—including major

depressive disorder (MDD; Kaufmann et al., 2019; Van Camp, van den

Ameele, Sabbe, & Oldenburg, 2018), bipolar disorder (BD; Kaufmann

et al., 2019; Wolkowitz, Reus, & Mellon, 2011), and schizophrenia

spectrum disorder (SSD) (Cetin-Karayumak et al., 2019; Kaufmann

et al., 2019; Kirkpatrick, Messias, Harvey, Fernandez-Egea, &

Bowie, 2008; Kochunov et al., 2016) may experience unfavorable,

accelerated aging that elevates the risk for dementia. Previous find-

ings in SSD have reported faster aging-related decline in the white

matter (Cetin-Karayumak et al., 2019; Kaufmann et al., 2019; Kelly

et al., 2018; Kochunov, Ganjgahi, et al., 2016), gray matter subcortical

volume (van Erp et al., 2016), and cortical thickness (van Erp

et al., 2018) compared to controls. Patients with BD are also at risk

for accelerated age-related decline in white matter (Kaufmann

et al., 2019) and the gray matter volumes of the cerebellum (Hallahan

et al., 2011), hippocampus (Cao et al., 2016), and prefrontal cortex

(Almeida et al., 2009). Furthermore, patients with SSD (Kochunov

et al., 2016; Kochunov et al., 2017; Ribe, Laursen, & Charles, 2017)

and BD (Gildengers et al., 2007) typically exhibit cognitive deficits,

particularly in processing speed and working memory—two domains

most commonly affected in dementia. Consequently, this may explain

why some SSD (Kochunov et al., 2017; Kochunov, Rowland,

et al., 2016; Ribe et al., 2017) and BD (Gildengers et al., 2007) patients

are at higher risk for dementia, and have a shorter lifespan even after

accounting for premature death due to suicide (Brown, 1997;

Tsuang & Woolson, 1978). Findings of accelerated brain aging in

MDD have suggested more subtle effects than in SSD and BD (Han

et al., 2020; Kaufmann et al., 2019; Schmaal et al., 2017; Wolkowitz

et al., 2011). Here, we used a large and representative sample col-

lected by the UK Biobank to evaluate the effects of SMI on individual

brain aging trends and to test the hypothesis that accelerated aging in

SMI is caused by a combination of SMI and CMD that may be exacer-

bated by psychiatric medication and alcohol, and/or tobacco use.

There is evidence for a direct link between SMI and accelerated

brain aging. Our group, and others, have argued that genetic and envi-

ronmental risk factors for SMI alter the lifetime cerebral trajectory by

causing (a) an earlier than normal age-of-peak in brain integrity,

(b) lower integrity at the age of peak, and/or (c) an accelerated rate of

decline past the age of peak (Kaufmann et al., 2019; Kochunov

et al., 2012; Kochunov & Hong, 2014). These risk factors specifically

interfere with the developmental trajectories of the frontal, parietal,

and temporal areas that continue to develop into the third and fourth

decades of life (Kochunov et al., 2011; Kochunov, Ganjgahi,

et al., 2016), leading to an earlier onset of cognitive deficits and an

elevated (2- to 5-fold) risk for dementia (Ribe et al., 2017). Impor-

tantly, accelerated brain aging is not solely due to medication side

effects (Han et al., 2020; Van Gestel et al., 2019), and the rate of

decline varies across brain tissue types (Han et al., 2020; Wright

et al., 2014). Thereby, we hypothesized that accelerated brain aging in

SMI may have a cumulative effect, such that SMI and CMD each inde-

pendently and additively contribute to the accelerated brain aging.

The causes of accelerated brain aging in SMI are unclear, but age-

related cardio-metabolic disorders (CMD), smoking, alcohol, and

socio-economic factors have been proposed as potential drivers

(Brown, 1997; Hennekens, Hennekens, Hollar, & Casey, 2005;

Kirkpatrick et al., 2008; Tsuang & Woolson, 1978). Common CMD

such as hypertension, diabetes, and high cholesterol, are universal risk

factors for unfavorable brain aging and are associated with higher

risks of dementia and mortality (Alfaro et al., 2016; Brown, 1997;

Hennekens et al., 2005; Kirkpatrick et al., 2008; Tsuang &

Woolson, 1978). Aging studies have long associated CMD with the

widening of sulci, reduced cortical thickness, enlargement of the lat-

eral ventricles, increased white matter hyperintensity (WMH) burden,

and lower hippocampal volumes (Kochunov et al., 2005). Chronic

hypertension affects cerebral integrity (Alfaro et al., 2016; Kochunov

et al., 2010, 2011, 2012), and is genetically linked with white matter

atrophy (Kochunov, Glahn, Lancaster, Winkler, et al., 2010, 2011); it is

also associated with the formation of hyperintensive white matter

lesions (Kochunov et al., 2009; Kochunov, Glahn, Lancaster, Winkler,

et al., 2010). High cholesterol levels are associated with reduced cere-

bral integrity and density of cerebral arterioles, and lower gray and

white matter volumes (Haltia et al., 2007; Walther, Birdsill, Glisky, &

Ryan, 2010). Diabetes is likewise a significant risk factor for acceler-

ated brain aging (Biessels, van der Heide, Kamal, Bleys, &

Gispen, 2002) and cognitive impairment (Monette, Baird, &

Jackson, 2014). Higher prevalence of CMD in SMI may be caused by

dietary factors (Dipasquale et al., 2013) and sedentary lifestyle

(Daumit et al., 2005). Finally, higher rates of smoking and alcohol con-

sumption in patients with SMI may contribute to accelerated brain

aging via direct and cerebrovascular mechanisms (Gons et al., 2011;

Kochunov et al., 2013; Zhang, Stein, & Hong, 2011).

Previous studies in accelerated aging in psychiatric illnesses com-

pared patient-control differences on the aging slopes and evaluated the

significance of the diagnosis-by-age interaction (Kochunov, Ganjgahi,

et al., 2016; Kochunov, Glahn, Rowland, et al., 2012). However, these

approaches are focused on group differences and do not provide an

index of individual aging assessments. Alternatively, Brain Age

approaches predict individual ages from neuroimaging data using

machine-learning approaches trained to draw an association between

regional brain measures and chronological age. The Brain Age methods

have several shortcomings, including the computational complexity and

the lack of stability and translatability of findings across multiple

datasets (Smith, Vidaurre, Alfaro-Almagro, Nichols, & Miller, 2019). We

used a new metric, the Quantile Regression Index (QRI), to quantify the

impact of SMI on brain aging (J. Lv et al., 2020). QRI is a simple, yet

robust modeling approach that can be used to study accelerated aging

across multiple diagnostic categories by determining an individual’s posi-
tion within the expected aging trajectory. Unlike Brain Age, the QRI

modeling is linear and requires no training dataset (J. Lv et al., 2020). A

positive QRI measure corresponds to accelerated aging, while a negative

QRI suggests a delayed aging process (Section 2). We first validated QRI

using an established, machine-learning index called Brain Age, in an

independent sample of SSD patients and controls (Jingtao Wang

et al., 2020). Then, we used a sample provided by the UK Biobank, to
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measure direct, additive, and interactive effects on cerebral aging as

indexed by QRI. We hypothesized that the direct effects of SMI and

CMD on the whole-brain will correspond to a significant increase in

QRI, and that the additive effects of SMI and CMD will show the most

severe elevation in subjects with combined SMI and CMD diagnoses.

Furthermore, we investigated gray matter, subcortical, and white matter

tissue specificity and whether the additive effects are restricted to SSD,

BD, and/or MDD.

2 | METHODS

2.1 | UK Biobank sample

Neuroimaging (Miller et al., 2016) and clinical data were available for a

subset of N = 13,467 participants (6,323 M/7,144 F, average

age = 64.31 ± 7.38 years). Data were collected between 2006 and

2010 and participants were recruited from the United Kingdom, as

part of a large-scale epidemiological study. All participants provided

written informed consent. The full demographic information is avail-

able in Table 1. Full medication details are available in Table S1.

2.1.1 | Defining patients and controls in the UKBB

We used the UKBB parser software (https://github.com/USC-IGC/

ukbb_parser) to identify 1,619 (604 M/1,014 F, age = 63.53

± 7.38 years) participants with ICD codes corresponding to self-

reported SSD (N = 5; 3 M/2 F, age = 63.20 ± 9.15 years), MDD

(N = 1,590; 591 M/999 F, age = 63.55 ± 7.40 years), and BD

(N = 47; 19 M/28 F, age = 62.93 ± 6.37 years) diagnoses that were

free from neurological disorders and any other psychiatric illnesses.

We identified 11,849 subjects (5,719 M/6,130 F, age = 64.42 ± 7.38)

as non-SMI controls, who were free from any self-reported psychiatric

illnesses and neurological conditions.

Similarly, we used the UKBB parser software to identify subjects

with ICD codes corresponding to three major CMD: hypertension, diabe-

tes, and hyperlipidemia (Table 1). Of the subjects with SMI, N = 492

reported a diagnosis of hypertension, N = 94 with diabetes, and

N = 325 with hyperlipidemia. Non-SMI controls had N = 2,841 with

hypertension, N = 78 with diabetes, and N = 1,790 with hyperlipidemia.

Self-reported life-time tobacco smoking (N = 361/249 for SMI

+/SMI�) and alcohol use were also extracted (N = 1,541/11,428 for

SMI+/SMI�). All N = 5 subjects with SSD were medicated; four were

taking antipsychotic medications; one subject also took an antidepres-

sant, and another subject took a mood stabilizer (Table S1). Of the

1,590 MDD patients, 26 were on antipsychotics, 4 on lithium, 495 on

antidepressants, and 28 on mood stabilizers. For 47 BD patients,

18 were on antidepressants, 10 were on mood stabilizers, 15 were on

lithium, and 14 were on antipsychotics.

2.1.2 | Defining subgroups for omnibus testing

For omnibus testing purposes, we subdivided the UKBB sample into

four groups based on CMD and SMI diagnostic status: (a) subjects

with SMI but free of CMD (SMI+/CMD�; N = 964); (b) subjects with

SMI and CMD (SMI+/CMD+; N = 655); (c) subjects without SMI but

with CMD (SMI�/CMD+; N = 3,765); and (d) subjects without SMI

and CMD (SMI�/CMD�; N = 8,083).

2.2 | Imaging protocol and processing

This study analyzed cortical regional gray matter thickness, gray mat-

ter volume in the subcortical structures, and tract-wise measurements

of FA values of the white matter provided by the UKBB. These phe-

notypes were extracted from neuroimaging data collected with a Sie-

mens Skyra 3 T scanner using a standard 32-channel RF head coil.

The imaging protocol collected high-resolution T1-weighted

(resolution = 1 � 1 � 1 mm, FOV = 208 � 256 � 256,

duration = 5 min, 3D MPRAGE, sagittal, in-plane acceleration

iPAT = 2, prescan-normalize) and T2 FLAIR images of the brain

(resolution = 1.05 � 1 � 1 mm, FOV = 192 � 256 � 256,

duration = 6 min, 3D SPACE, sagittal, in-plane GRAPPA partial phase

imaging acceleration factor 2 and partial 7/8 Fourier sampling).

TABLE 1 Demographic information for the UKBB sample analyzed in this study

Demographic

SMI+

SMI�BD MDD SSD

Total number of subjects (M/F) 47 (19/28) 1,590 (591/999) 5 (3/2) 11,849 (5,719/6,130)

Average age ± SD (years) 62.93 ± 6.37 63.55 ± 7.40 63.20 ± 9.15 64.42 ± 7.38

Cardio-metabolic disorders

% Hypertensive subjects (Total/M/F) 30.4% (492/235/257) 24.0% (2,841/1,639/1,202)

% Diabetic subjects (Total/M/F) 5.8% (94/55/39) 0.7% (78/56/22)

% Hyperlipidemic subjects (Total/M/F) 20.1% (325/172/153) 15.1% (1,790/1,116/674)

Note: SMI patients were defined as those participants who self-reported a diagnosis of bipolar disorder (BD), major depressive disorder (MDD), or

schizophrenia spectrum disorder (SSD), but were free from any other neuropsychiatric illnesses. Non-SMI controls reported no psychiatric or neurological

illnesses.
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Diffusion data were collected with a resolution = 2 � 2 � 2 mm and

two diffusion shells of b = 1,000 and 2,000 s/mm2 with 50 diffusion-

weighted gradient directions per shell, 5 b = 0 images,

FOV = 104 � 104 � 72, and a duration of 7 min. Imaging data were

processed using the UKBB workflow that is based on ENIGMA struc-

tural and DTI pipelines. Details of the image preprocessing and analy-

sis are provided by UKBB (Alfaro-Almagro et al., 2018) and available

online at biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

Briefly, 35 measurements of regional cortical GM thickness, 7 mea-

surements of regional gray matter volume, and 24 regional white mat-

ter tract FA values per hemisphere were analyzed (Table S2).

2.3 | Total volume of WMH

Hyperintensive white matter regions observed on T2 weighted FLAIR

images reflect accumulation of interstitial fluid and are associated with

areas of localized demyelination and white matter damage. We used

the WMH data from the UKBB (Field ID 25781), which were auto-

matically estimated with T1 and T2 FLAIR data using the Brain Inten-

sity Abnormality Classification Algorithm in FSL (Griffanti et al., 2016).

2.4 | Validation sample, imaging, and machine-
learning

A validation sample included 206 healthy controls (137 M/69F, average

age = 37.63 years) free of Axis I psychiatric disorders that were age and

sex frequency-matched with N = 214 patients with schizophrenia

(145 M/69 F, average age = 37.11 years). Full sample demographic

information is available elsewhere (Jingtao Wang et al., 2020). All partici-

pants gave written informed consent, and the study was approved by

the University of Maryland, Baltimore Institutional Review Board. The

study focused on DTI data using the average FA values for 26 major

white matter tracts extracted by the ENIGMA DTI analysis pipeline

(https://www.nitrc.org/projects/enigma_dti; Jahanshad et al., 2013). A

BrainAge model was trained using healthy controls and using random

forest regression (Breiman, 2001), gradient boosting regression

(Friedman, 2001), and LASSO (Least Absolute Shrinkage and Selection

Operator; Friedman, Hastie, & Tibshirani, 2010). The BrainAge index

was calculated for each participant using the regional DTI data. A mea-

sure of Δage (delta age)—sometimes called the “brain age gap”—was cal-

culated as the difference between BrainAge and true chronological age

and can be used as a proxy measure of the individual aging process. The

full methods for computing the BrainAge are detailed elsewhere

(Jingtao Wang et al., 2020). The individual BrainAge estimates of this

sample were then used to validate our novel QRI index.

2.5 | Statistics

All statistical analyses were performed in RStudio (R Core

Team, 2020a, 2020b) version 1.2.5033.

2.5.1 | Quantile regression analysis—Calculation

Individual assessment of brain aging was performed using quantile

regression analysis and deriving a quantile regression index (QRI)

score for the regional brain measures (Lv et al., 2020). This functional-

ity is provided in the “QRIpkg” for R (Kochunov, Gao, & Ryan, 2020)

available for download at https://CRAN.R-project.org/package=

QRIpkg. Briefly, the normative modeling technique provides a map of

individual deviations from the expected aging trends. The QRI function

uses a quantile regression analysis with age serving as a predictor for

cortical regional gray matter thickness, subcortical gray matter struc-

ture volumes, and white matter fractional anisotropy values to fit

three separate models for the 5th, 50th, and 95th percentiles

(Figure 1). Then, values for each individual subject are compared to

the expected aging trajectory and each regional measure is assigned a

score: values >95% of the expected age data were assigned a value of

“�1”, indicating an individual’s actual brain age is significantly youn-

ger than what is expected for that age; values <5% received a value of

“1”, indicating an individual’s actual brain age is significantly older

than what is expected for that age; all others were assigned “0”.
Regional scores were averaged for cortical thickness, subcortical vol-

ume, and white matter to create tissue-specific QRIs. A whole-brain

QRI was derived by averaging the three tissue-specific QRIs.

By design, QRI is uncorrelated with age. Additionally, we did not

observe a correlation between QRI and intracranial brain volume for

any measures but used this value as a covariate when calculating the

QRIs. For the validation sample, only QRI for white matter was

calculated.

2.5.2 | QRI validation

To confirm QRI as a valid measure of accelerated aging, relative to the

established BrainAge measure, we performed a linear regression anal-

ysis between QRI for white matter with the machine-learning-based

Δage from a previously published study (Jingtao Wang et al., 2020).

We compared QRI and Δage (calculated as the difference between

chronological and BrainAge) in the full N = 420 validation sample and

then in patients (N = 214) and controls (N = 206) separately. We also

calculated the patient-control effect size for QRI white matter mea-

sures, to compare them with the white matter effect size observed in

the UKBB sample.

2.5.3 | Omnibus testing of significance of effects of
psychiatric and CMD

We performed an omnibus test of our hypothesis that SMI without

CMD and the CMD without SMI and any other psychiatric illnesses

are each independently associated with significantly higher QRI using

a two-way analysis of variance (ANOVA) on the whole-brain QRI

(Equation (1)). We coded predictors: 0 (no diagnosis/substance use) or

1 (diagnosis/substance us) for SMI and cardio-metabolic disorder
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(CMD) and tobacco smoking and alcohol. The focus of these analyses

was to evaluate the direct versus interactive effects of SMI and CMD

on brain aging.

QRI ~SMIþCMDþAlcoholþTobaccoþSMI�CMDþSMI�Alcohol
þSMI�Tobacco

ð1Þ

To further assess the primary hypothesis that SMI and CMD show an

additive effect, such that SMI + CMD would have the highest QRI,

we performed a t-test to assess the statistical significance of group

differences in whole-brain QRI, for each of the following five scenar-

ios: (I) SMI+/MD� versus SMI�/MD�; (II) SMI�/CMD+ > SMI�/

CMD�; (III) SMI+/CMD+ > SMI+/CMD�; (IV) SMI + C/MD

+ > SMI�/CMD+; and (V) SMI + C/MD+ > SMI�/CMD�. Additive

effects would be fully supported when the five comparisons were all

statistically significant in the hypothesized direction. Additive effects

may still be present if only some of the above comparisons were sig-

nificant, but all analyses were in the expected direction.

2.5.4 | Testing of medication effects

We used an ANOVA and pairwise Tukey Honest Significant Differ-

ences tests to assess the direct and interactive effects of medications

(antipsychotic, antidepressant, mood stabilizing, and lithium; coded as

0 or 1; Equation (2)) and CMD in SMI+ subjects.

QRI ~MedicationþCardio�metabolicþMedication
�Cardio�metabolic ð2Þ

Bonferroni correction to account for Type I errors associated with

multiple N = 4 QRI comparisons set the significance threshold to

p < .05/4 = .0125 and trend-level significance values at

.0125 < p < .05.

Effect sizes were first calculated for the four QRIs using

the N = 13,467 sample based on diagnostic status for the three

SMI together. The effects of diabetes, hypertension, and hyperlip-

idemia were analyzed separately in SMI+ and SMI� subjects.

Effect sizes were calculated using R package “effsize”
(Torchiano, 2020).

2.6 | Association with WMH

Finally, we tested the association of QRI, SMI, and CMD with the total

volume of WMH. We performed univariate correlation analyses

among whole-brain and tissue-specific QRI and WMH. We also used

Equation (1) to test the impact of SMI and CMD on the WMH by

using WMH instead of QRI.

3 | RESULTS

3.1 | Comparison of QRI and BrainAge Δage in
Schizophrenia

We compared QRI to the Δage data calculated using nonlinear,

machine learning-based BrainAge approach published in Jingtao Wang

et al. (2020). Neither QRI nor Δage were significantly correlated with

chronological age (r < .01). Both QRI and Δage demonstrated similar

patient-control effect sizes (Cohen’s d = 0.51, 95% CI: [0.32, 0.70];

d = 0.41, 95% CI: [0.21, 0.60], for QRI and Δage, respectively) for

cerebral white matter in an SSD sample. QRI and Δage were signifi-

cantly correlated in both patients and controls, separately (Figure 2,

r = .82 and 0.68, p < .0001, respectively).

F IGURE 1 Calculation of the Quantile Regression Index. Quantile regression analysis was performed using the regional data for gray matter
thickness, gray matter subcortical volumes, and white matter fractional anisotropy separately. Using FA as an example, the regression analysis
generated aging trajectory curves at 5, 50, and 95% for each region. For each subject and each region, the FA value was compared to the 5 and
95% curves to determine placement on the aging trajectory. Values >95% were classified as resistant to aging and assigned a value of �1 (blue);
values <5% were considered indicative of accelerated aging and assigned a value of 1 (red); all others were assigned a value of 0. For FA, this
resulted in a vector of 22 scores for each subject. The scores were then averaged across the regions to produce an individual’s Quantile
Regression Index (QRI) score. The whole-brain QRI was derived by averaging an individual’s three tissue-specific QRI scores

RYAN ET AL. 2001



3.2 | Accelerated brain aging: SMI and CMD

A two-way ANOVA analysis showed significant effects of both SMI

and CMD on whole-brain QRI (F = 40.47 p = 2.06 � 10�10; F = 24.69,

p = 6.82 � 10�7, for SMI and CMD, respectively) with no significant

interactions between them (p = .55; Table 2). SMI exerted significant

effects on white matter (F = 32.51, p = 1.21 � 10�8) and subcortical

QRI (F = 28.39, p = 1.01 � 10�7), but not cortical QRI (F = 0.29,

p = .59; Table 2). CMD demonstrated significant effects on white mat-

ter QRI (F = 62.80, p = 2.60 � 10�15). There were no significant inter-

actions between SMI and CMD for any of the imaging modalities (all

p > .55; Table 2). Alcohol and tobacco smoking status had no direct or

interactive effects (all p > .07) on the whole brain (Table 2).

Group comparisons to SMI�/CMD� showed a significant step-

wise increase in average whole-brain QRI (Figure 3a). SMI+/CMD+

had the largest average QRI (t = 6.34, p = 3.90 � 10�10; Figure 3a)

followed by SMI+/CMD� (t = 4.10; p = 4.25 � 10�5) and SMI�/

CMD+ (t = 4.15; p = 3.30 � 10�5). SMI�/CMD� had the lowest

average QRI.

Tissue-specific QRI comparisons are shown in Figure 3b–d. Corti-

cal gray matter thickness QRI showed no significant group differences

or additive effects (Figure 3b, all p > .66). Subcortical gray matter vol-

ume QRIs showed significant group differences for SMI�/CMD� ver-

sus SMI+/CMD+ (p = 2.94 � 10�7), SMI+/CMD+ versus SMI�/

CMD+ (p = 8.51 � 10�6), and SMI+/CMD� versus SMI�/CMD�
(p = .002) but not SMI�/CMD� versus SMI�/CMD+ (p = .28)

suggesting that QRI elevation is associated with SMI but not CMD.

The lack of a detectable difference in QRI between SMI+/CMD� and

SMI+/CMD+ (p = .02) further supported this finding (Figure 3c).

White matter QRI showed significant group differences in all five

group comparisons, suggesting that SMI and CMD are independently

and additively associated with accelerated aging (all p < .001,

Figure 3d).

3.3 | Disorder-specific effects: SMI

Given the lack of a detectable interaction between SMI and CMD, these

effects were tested separately in the full sample. Effect sizes of whole-

brain QRI for each of the three SMI diagnoses are shown in Figure 4 and

Table S3. Positive effect sizes indicated that SMI were associated with

older looking brains. SSD had the largest effect size for whole-brain QRI

(Figure 4a, Cohen’s d = 1.42; 95% CI: [0.54, 2.30]) followed by BD

(d = 0.55; 95% CI: [0.26, 0.84]) and MDD (d = 0.15; 95% CI: [0.10, 0.21]).

For cortical thickness QRI (Figure 4b), the effects of MDD, SSD,

and BD were not significant.

For subcortical gray matter volume QRI, subjects with SSD, BD,

and MDD showed significant effect sizes for subcortical volume

(Figure 4c, d = 1.49, 95% CI: [0.62, 2.38]; d = 0.42, 95% CI: [0.13,

0.71]; d = 0.13, 95% CI: [0.08, 0.18], respectively).

For white matter QRI, BD (Figure 4d, d = 0.69; 95% CI: [0.40,

0.97]) and MDD (d = 0.14, 95% CI: [0.09, 0.19]) showed significant

effect sizes.

3.4 | Disorder-specific effects: MD

The effect sizes for each of the three cardio-metabolic conditions on

the whole brain QRI were calculated separately in SMI+ (N = 1,619)

and SMI� (N = 11,849; Figure 5a and Table S4). Hypertension

showed significant and comparable effects for SMI+ and SMI� sub-

jects (d = 0.19, 95% CI: [0.08, 0.29]; d = 0.14, 95% CI: [0.09, 0.18],

F IGURE 2 A significant, positive correlation between QRI for White Matter and Δage suggests that a more positive QRI is a sign of more
severely accelerated aging. Using the sample of N = 206 healthy controls and N = 214 patients with SSD from (Jingtao Wang et al., 2020), QRI
calculated for white matter FA was significantly and positively correlated with Δage in (a) patients with SSD and (b) controls
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respectively). Diabetes showed a significant effect size for those SMI

+ (d = 0.41, 95% CI: [0.20, 0.62]), but not for SMI� (d = 0.11, 95%

CI: [�0.12, 0.33]). High cholesterol showed no significant effects in

either group. The effects of CMD on tissue-specific QRI are shown in

Figure 5b–d and Table S4.

3.5 | Effects of antipsychotic, antidepressant,
mood stabilizers, lithium, tobacco, and alcohol

Antipsychotics were the only medications with significant direct

effects on subcortical and whole-brain QRIs (p = 2.24 � 10�3,

8.28 � 10�3, respectively) and suggestive effects on WM QRI

(p = .02). A significant antidepressant–CMD interactive effect was

observed for subcortical QRI (p = .01), suggestive of accelerated aging

(Table S5).

A post hoc analysis (Table S6) that separated the three

CMD demonstrated significant positive interactions between

antipsychotic medication and diabetes on the whole-brain

(p = .01) and subcortical QRIs (p = 2.72 � 10�3). Lithium showed

a positive interaction with hypertension (p = 3.12 � 10�3) and

a negative interaction with high cholesterol (p = 4.73 � 10�5) on

the WM QRI. Specific group comparisons are presented in

Table S7.

TABLE 2 SMI and CMD independently contribute to elevated QRI

QRI gray matter thickness QRI subcortical volume QRI White matter QRI whole brain

SMI 0.29 (0.59) 28.39 (1.01 � 10�7) 32.51 (1.21 � 10�8) 40.47 (2.06 � 10�10)

CMD 0.18 (0.67) 3.37 (0.07) 62.80 (2.60 � 10�15) 24.69 (6.82 � 10�7)

Alcohol 0.96 (0.33) 1.79 (0.18) 0.01 (0.91) 0.09 (0.68)

Tobacco 0.10 (0.75) 3.36 (0.07) 0.002 (0.97) 0.86 (0.77)

SMI * CMD 0.05 (0.83) 2.97 (0.09) 0.44 (0.51) 1.35 (0.25)

SMI * Alcohol 1.30 (0.25) 1.10 (0.29) 0.10 (0.75) 1.17 (0.28)

SMI * Tobacco 0.27 (0.60) 0.04 (0.85) 0.19 (0.66) 0.36 (0.55)

Note: F (p-value). Bolded values indicate significance (p < .05/4 = .0125).

F IGURE 3 The additive effects of SMI and CMD on accelerated aging on the (a) whole-brain QRI, (b) gray matter thickness QRI,
(c) subcortical volume QRI, and (d) white matter QRI. A t-test to assess statistical significance was performed for the following five scenarios:
(I) SMI+/CMD� versus SMI�/CMD�; (II) SMI�/CMD+ > SMI�/CMD�; (III) SMI+/CMD+ > SMI+/CMD�; (IV) SMI+/CMD+ > SMI�/CMD+;
and (V) SMI+/CMD+ > SMI�/CMD�
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3.6 | Association among QRI, SMI, and CMD
and WMH

In the full sample, the whole-brain QRI was highly correlated with

whole-brain WMH volume (r = .18, p < 10�16). This association was

primarily driven by QRI-WM (r = .33, p < 10�16), however, correla-

tions with QRI-cortical and subcortical were also significant (r = .02

and .03, p < .001). Equation (1) was highly significant when WMH was

used instead of QRI (F = 139.8, p < 10�16), however, SMI was not a

significant predictor (t = 1.9, p = .06). CMD, smoking, and alcohol use

F IGURE 4 SMI+ patients show
significantly increased QRI compared to
SMI� subjects. Effect sizes for (a) whole-
brain QRI, (b) gray matter thickness,
(c) subcortical volume, and (d) white
matter

F IGURE 5 Effects of common cardio-metabolic disorders on whole-brain and tissue-specific QRI in SMI+ (red) and SMI� (gray)
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highly associated with higher WMH (t = 24.0, 5.8, and 3.1, respec-

tively, p < .001). There were no significant interactive effects between

SMI and substance on the WMH. CMD-specific analyses demon-

strated that all three contributed to the higher WMH load (t = 19.7,

6.9 and 7.4, for hypertension, diabetes, and hyperlipidemia, respec-

tively, p < 10�12).

4 | DISCUSSION

We evaluated the effects of three SMI—SSD, MDD, and BD, and

three common CMD—on brain aging in a large and representative

sample provided by the UK Biobank. We used a novel quantile regres-

sion index (QRI) to quantify accelerated or delayed brain aging in an

individual and validated it against a more established BrainAge index,

Δage. We show that SMI is significantly associated with accelerated

brain aging and this effect is additive and independent of CMD. We

replicated the effect of CMD on brain aging and observed similar

trends in both SMI+ subjects and controls. The effects of SMI were

direct and remained after correction for psychiatric medications and

substance use. However, there were some significant interactions

between antipsychotic medication and cardio-metabolic illnesses that

suggested a possible contribution of antipsychotic medications to

cardio-metabolic dysregulation. Treatment with lithium did suggest a

significant neuroprotective effect. In summary, we observed intriguing

patterns of accelerated aging that varied by disorder and brain tissues.

These effects were direct and suggested that subjects with SMI are

vulnerable to unfavorable, accelerated brain aging.

We first validated that QRI captures most of the variance

obtained using the traditional but more computationally complex,

machine-learning BrainAge method. Using an independent sample of

SSD patients (Jingtao Wang et al., 2020), we showed a strong positive

correlation between white matter QRI and Δage in both patients and

controls. QRI and Δage showed a similar effect of diagnosis. After val-

idation, we used the UKBB sample to show that mental illness is

directly associated with accelerated brain aging and can be used as a

biomarker to study these changes. The effects of mental illness were

stronger than, additive to, and independent of, cardio-metabolic ill-

nesses. We observed significant direct effects of antipsychotic medi-

cation and cardio-metabolic illnesses. Specifically, the significant

effects of antipsychotic medication in subjects with diabetes suggest

that careful consideration should be given to the long-term side

effects of these medications alongside the consideration of immediate

side effect risks. In summary, SMI is a significant risk for unfavorable

cerebral aging and patients with SMI should be the primary target of

preventative interventions against accelerated aging.

Accelerated brain aging in patients with SMI has been suggested

since Kraepelin’s definition of psychotic disorders as “premature

dementia” and is supported by the significantly higher risk of aging-

related neurocognitive disorders in patients with SMI compared to

the general population (Kirkpatrick et al., 2008; Ribe et al., 2017;

Wolkowitz et al., 2011). Here, we used a statistically powerful epide-

miological sample to study the effects of SMI on aging. We first

demonstrated significant SSD aging effects in an independent sample

and subsequently for SSD, MDD, and BD in the UKBB sample. While

these three disorders may lack the neuropathological findings com-

mon in Alzheimer’s disease, neuroimaging studies have identified sim-

ilarities in deficit patterns between SMI and dementia that mirror the

pattern of cognitive deficits (Kochunov et al., 2020; P. Kochunov

et al., 2020). For example, anatomical integrity in the temporal lobe,

hippocampal regions, and white matter tracts that connect them are

highly impacted in many psychiatric illnesses including SSD, BD, and

MDD (Crossley et al., 2014; P. Kochunov, Zavaliangos-Petropulu,

et al., 2020; Schmaal et al., 2016; van Erp et al., 2016). The effect size

observed in this study replicated the pattern of the severity of accel-

erated aging in SMI in the analysis performed by Kaufmann

et al. (2019). They likewise reported the SSD > BD > MDD patterns

of aging with effect sizes (d = 0.51, 0.29, and 0.10) that were numeri-

cally smaller but not much different from the effect sizes observed by

this study. The study by Kaufmann did not find significantly acceler-

ated aging in MDD. This is likely due to a small sample (N = 208) of

MDD subjects in their analysis. In addition, the study by Kaufmann

did not include white matter measurements which showed the largest

evidence of accelerated aging in this analysis.

The effect sizes for SMI on aging were numerically larger than

those for CMD that impact brain integrity through cerebrovascular

and cardio-metabolic causes—hypertension, hyperlipidemia, and dia-

betes (Marks, Katz, Styner, & Smith, 2010; Spieker et al., 2015). We

observed significant and similar effect sizes for hypertension for the

whole-brain (d = 0.19, 0.14) and white matter (d = 0.22, 0.21) QRIs in

subjects with SMI and controls. We readily replicated hypertension as

a specific risk factor for reduced cerebral white matter integrity.

Chronic hypertension is associated with damage to the long-

penetrating cerebral blood vessels (Kochunov, Glahn, Lancaster,

Winkler, et al., 2010) that leads to reduced white matter integrity, for-

mation of hyperintense lesions (Jagust, Harvey, Mungas, &

Haan, 2005), and eventually deficits in cortical thickness and subcorti-

cal volumes (Alfaro et al., 2016; Kochunov et al., 2011, 2012;

Kochunov, Glahn, Lancaster, Winkler, et al., 2010). The effects of

hyperlipidemia were not significant in both groups. Hyperlipidemia

has been associated with reduced cerebral integrity. However, these

effects become inconsistent once controlled for hypertension and

other illnesses (Anstey, Ashby-Mitchell, & Peters, 2017). For example,

some studies have linked hyperlipidemia with reduced performance

on cognitive assessments (Meusel et al., 2017) and a higher risk for

dementia and Alzheimer’s disease (Solomon et al., 2009). Conversely,

others have shown that higher cholesterol levels are associated with

better cognitive performance (Lv et al., 2016) and a lower risk for

dementia (Reitz et al., 2010); yet still others have reported no relation-

ship (Mielke et al., 2010).

Diabetes is likewise a significant risk factor for accelerated brain

aging (Biessels et al., 2002), but in this study, its effects were only

detectable in patients with SMI. Detrimental effects of diabetes were

observed for gray matter subcortical volume, white matter, and

whole-brain QRI. We tested the hypothesis that subjects with SMI

may be more sensitive to diabetes due to antipsychotic medication
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side effects, specifically high blood sugar (Foley & Morley, 2011;

Perez-Iglesias et al., 2014), that can exacerbate the effects of diabetes

on the brain. We observed significant direct effects of antipsychotic

medication on the subcortical and whole-brain QRI and interaction

effects of antidepressants and CMD on subcortical QRI. Subjects who

took antipsychotic medications and were diagnosed with diabetes

were at a higher risk of accelerated aging. However, this outcome

may be biased by the higher use of antipsychotic medications in SSD

and BD, two disorders with more greatly accelerated aging rates, com-

pared to MDD (only 27 out of 1,590 MDD subjects took antipsy-

chotic medications). Nonetheless, the interaction suggests that careful

consideration of the cardio-metabolic side effects of antipsychotics is

necessary in subjects with existing diabetes. We observed no signifi-

cant direct or interaction effects for lithium or mood stabilizers. Lith-

ium is a common medication prescribed to treat BD. The use of

lithium medication has been associated with greater gray matter den-

sity, giving rise to the hypothesis that lithium could be used as a posi-

tive modulator of aging (Bearden et al., 2007; Monkul et al., 2007;

Moore et al., 2009). In summary, the effects of the mental illnesses

remained strong and significant and only modestly explained using

psychiatric medications.

Finally, we evaluated association of QRI with an independent

neuroimaging index of aging—the volume of WMH, as well as impact

of SMI and CMD on WMH. The WMH are regions of accumulation of

extra-cellular water due to focal degradation of the myelin sheath

(Fazekas et al., 1993) and their volume is an important neuroimaging

marker of white integrity (DeStefano et al., 2006; Kochunov

et al., 2008, 2009; Kochunov, Glahn, Lancaster, Winkler, et al., 2010;

Turner et al., 2005). As expected QRI-WM showed the strongest

association with WMH, with the indexes sharing �11% of the vari-

ance. The CMD were the strongest predictors of the elevated WMH,

while SMI was not a significant predictor. We found that hypertension

showed the strongest association with WMH, which replicates previ-

ously reported genetic links between this illness and the integrity of

cerebral white matter (Kochunov et al., 2009, 2010; Kochunov, Glahn,

Lancaster, Winkler, et al., 2010). The lack of association between SMI

and WMH is likewise in agreement with previously reported findings

of modest-to-nonsignificant differences in WMH among people with

SMI and controls (Beyer, Young, Kuchibhatla, & Krishnan, 2009;

Kochunov et al., 2014; Wadhwa et al., 2019; Zanetti et al., 2008).

This study has several methodological and conceptual limitations.

QRI was used in this analysis as alternative to the BrainAge/Gap indi-

ces. QRI is a simple index that is based on evaluation of the statistical

deviation from the populational trends and requires no preliminary

training. The BrainAge/Gap indices use complex machine learning

approaches to derive the relationship between age and variance in

neuroimaging traits. We observed a strong correlation between QRI

and Δage in one disease (SSD) and in healthy controls but that does

not necessarily prove that these findings can be translated to other ill-

nesses. Second, the UKBB recruitment is biased toward healthy volun-

teers which reduces the number of participants with mental illness/

substance use versus the population prevalence (Fry et al., 2017). The

sample used included only a small number of subjects with SSD and

therefore lacks statistical power in those results. However, the effect

sizes in SSD were verified in an independent SSD cohorts and effects

of SSD on the whole-brain QRI were significant. Furthermore, the

UKBB sample had many people with MDD and demonstrated signifi-

cant effects in that illness as well as for BD; the sample sizes for the

three CMD varied in size. Third, the diagnostic information provided in

UKBB is based on self-reported information and hospitalization records

and may be susceptible to misclassifications (Bycroft et al., 2018). Addi-

tionally, the CMD diagnoses were based on ICD codes which may not

have captured the effects of treated versus untreated CMD. Ad-hoc

analyses that identified subjects with elevated blood pressure (SBP

and DBP > 140 and 90 mmHg) demonstrated similar effect sizes but

were not included due to much smaller sample for whom two or more

blood pressure measurements were available. Our analyses focused

on the independent versus interactive effects of SMI and CMD. It is

common for CMD to cluster in individuals and further analyses would

be needed to study the additive versus interactive effects of CMD on

brain aging.

At this time, the full UKBB population is comprised of approxi-

mately 54% female and 46% male subjects. As such, our sample mir-

rored the distribution and contained fewer male subjects likely due to

the lack of male imaging data collected and increased MDD diagnosis

in females. Post hoc analyses revealed significant sex effects for white

matter, subcortical, and whole-brain QRI that did not significantly

change the impact of SMI and CMD on QRI. Furthermore, male sub-

jects showed a significantly larger QRI compared with females which

agrees with previous studies performed by the UKBB (Ritchie

et al., 2018) and ENIGMA (Wierenga et al., 2020) that reported signifi-

cant structural differences and increased variability in males compared

to females. This UKBB sample is a cross-sectional study, and as such,

cross-sectional estimates may not follow longitudinal trends (Bycroft

et al., 2018). There also exists the potential survival bias within the

sample since the age of subjects ranged from 50 to 80 years. Finally,

the sample was predominately British or Irish (93%). Expanding the

sample to include younger, ethnically diverse subjects as well as longi-

tudinal data would allow for QRI to be tracked over time in a more

representative sample and potential interventions tested.

5 | CONCLUSIONS

In conclusion, we used a simple, yet robust, quantile regression index

(QRI) to evaluate accelerated aging using a large sample from the UK

Biobank. We successfully validated the QRI approach against the

commonly used machine-learning BrainAge methods in an indepen-

dent SSD sample. In the UKBB sample, we showed significant omni-

bus effects of mental illness and CMD with no significant interaction

between them. We compared the effect of psychiatric (SSD, MDD,

and BD) and cardio-metabolic (diabetes, hyperlipidemia, and hyper-

tension) disorders on cortical gray matter thickness, subcortical gray

matter volume, white matter, and the whole brain. We showed a

greater effect of psychiatric illnesses on QRI compared to cardio-

metabolic illness. Progress in medical care has improved the quality of
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life for many patients with psychiatric illness, but the personal and

economic costs of these disorders may be further worsened by the

high risk of brain deterioration and faster cognitive decline throughout

their lifetime. Our findings suggest that patients with SSD, BD, and

MDD should be a primary target for interventions to protect against

age-related cognitive decline. It also calls for interventions to protect

against burdens imposed from common cardio-metabolic conditions,

especially hypertension, on the central age-related decline.
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