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Introduction

Subarachnoid hemorrhage (SAH) may arise due to trauma or 
spontaneously.[1,2] It is a devastating pathology.[3,4] Vasospasm 
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20 days, volume values of AKA and neuron density of L4DRG were analyzed.
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density L4DRG were significantly different between the SAH and other two groups (P < 0.05).
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following SAH is still a significant underlying cause of 
morbidity and death following SAH.[5,6] More than one-third of 
patients with SAH develop clinically significant vasospasm.[7,8] 
For that reason, the exact mechanisms of vasospasm remains 
to be an important subject. It was reported that interruption of 
bilateral segmental arteries at the level of Adamkiewicz artery 
(AKA) risks producing ischemic spinal cord (SC) dysfunction 
in a dog model.[8] Kato et al. reported that interruption of 
bilateral segmental arteries at >=4 consecutive levels 
including the level of Adamkiewicz artery risks producing 
ischemic spinal cord dysfunction[9]. However, Murakami et al. 
found that interruption of the artery of Adamkiewicz for total 
en bloc spondylectomy did not adversely affect neurologic 
function.[10] In this study, we investigated histopathological 
feature of L4 dorsal root ganglion following spinal SAH, 
because ganglionary neuron cell changes of this entity were 
investigated various authors.[1,11-13] It is well-known that 
spinal SAH is a rare event.[14] Unfortunately, clinical trials 
have mostly been disappointing, predominantly unable to 
prevent ischemic damage and improve patient outcome.[15] 
The vasospasm following spinal SAH can lead to damage of 
the third and the second sensory neurons of the spino-cortical 
sensory pathways, and result in neurodegeneration of DRG. 
Upper cervical ganglions innervate the anterior superior 
alveolar by vasodilating effects,[16] so that ischemic injuries of 
these structures secondary to SAH may lead to anterior spinal 
artery vasospasm.[17] Kanat et al. also reported that anterior 
spinal artery vasospasm after SAH may lead to degeneration 
in DRG neurons at C3 level.[13] The lumbosacral plexus derives 
its blood supply from a single artery described in 1882 by 
Adamkiewicz,[18] and the blood supply of the lower SC is 
heavily dependent on this artery, but the effects of vasospasm, 
as a cause of ischemia, of the artery of Adamkiewicz following 
spinal SAH have not been studied yet. The aforementioned 
artery is of enormous clinical and surgical importance. We 
investigated the effect of AKA vasospasm following spinal 
SAH on the L4DRG.

Materials and Methods

This study was conducted on 20 male rabbits, which were 
randomly divided into three groups: Spinal SAH (n = 8), 
serum saline (SS) (SS; n = 6) and control (n = 6) groups. The 
animal protocols were approved by the Ethics Committee of 
Erzurum Ataturk University, Medical Faculty. The animals were 
anesthetized by subcutaneous injection of a mixture of ketamine 
hydrochloride (25 mg/kg), lidocaine hydrochloride (15 mg/kg), 
and acepromasine (1 mg/kg). After the occipito-cervical region 
was prepared, autologous blood (0.5 mL) was taken from the 
auricular artery and injected into the spinal subarachnoid 
space at the level L1 in the SAH group, and 0.5 mL SS injected to 
spinal subarachnoid space of SS groups with a 22-gauge needle. 
Prior to injecting 0.5 cc of saline, 0.5 cc of blood was removed 
from the SS group. The animals in the control group were not 

subjected to this procedure. All animals were followed-up 
for 20 days and sacrificed. For the light microscopic analysis, 
these materials were preserved in 10% formalin solution. 
Their lumbar DRGs at the L4 level were removed. AKA and 
lumbar 4 dorsal root ganglion (L4DRG) were examined 
histopathologically after stained by hematoxylin and eosin 
and tunel. Histopathological changes were investigated and 
the density of normal and degenerated neurons of L4DRG was 
calculated. Neuronal shrinkage, perinuclear halo formation, 
stoplasmic condensation, cellular angulation and neuronal loss 
were accepted as ganglionary degeneration criteria.

Stereological analyses of histopathological data were made by 
according to the principles described previously.[19-20] To obtain 
an estimation of the total degenerated neuron number, we used 
the two-dimensional dissector technique. A counting frame 
was placed on a monitor, and the sampled area was selected 
by a systematic uniform random manner via the dial indicator 
controlled specimen stage. Physical dissector method was used 
to evaluate the numbers of degenerated and live neurons of 
L4DRG cells. Two consecutive sections (dissector pairs) obtained 
from tissue samples with named reference were mounted on 
each slide. Reference and look-up sections were reversed in 
order to double the number of dissector pairs without taking 
new sections. The mean numerical density of neurons of L4DRG 
cells/mm3 was estimated using the following formula;

NvGN = Q N / txA-Σ

Where ΣQ − N is the total number of counted neurons appearing 
only in the reference sections; t is the section thickness, and A 
is the area of the counting frame. Cavalieri volume estimation 
method was used to obtain the total number of neurons in 
each specimen. Total number of neurons was calculated by 
multiplication of the volume (mm3) and numerical density of 
neurons in each L4DRG.

To calculate the volumetric changes of the AKA due to 
vasospasm or vasodilatation factors, a three-dimensional 
cylindrical AKA model was created by the reconstruction of 
seven consecutive histological sections of each AKA. In the 
AKA model, the luminal radius is represented by “r”, and the 
height is represented by “h.” 10 mm segment of AKA was 
evaluated as a standard model and it accepted as the height 
of AKA. Geometrical volume calculation methods were used 
in the reconstructed cylindrical AKA sample. The standardized 
AKA’s volume was calculated with the following formula:

π 2V = r h

Adamkiewicz arterys vasospasm index (VSI) was preferred 
over the only measurement of lumen radius and volume 
values because the volume estimation method can be readily 
performed, is intuitively simple, more reliable, free from 
assumptions about vessel diameter of various segments 
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and is unaffected by overestimation error of radius values 
of the AKAs. The wall ring surface values were calculated as 
the following formula: S1= πR12 - πr12. The lumen surface 
area was calculated as the same method. So, lumen surface 
value (S2) = πr12. The VSI was calculated as the proportion of  S1/S2.  
VSI = S1/S2= πR12 - πr12/πr12= π (R12 - r12)/πr12 = R12 - r12/r12: 
VSI = (R2 - r2)/r2.

Statistical methods
The volumetric changes of the AKA, alive and degenerated 
neuron number of L4DRG were compared between groups 
using two-tailed t-test. Nonparametric relationships were 
examined with Mann-Whitney U-tests. P < 0.05 was 
considered as significant.

Results

In the SAH group, bowel and bladder dysfunctions occurred 
in the majority of the animals, but this was not quantified. 
Figure 1 shows a normal appearance of a rabbit SC, AKA 
at the level of L1 vertebra. Histopathological appearance 
of AKA of a rabbit with and without SAH was shown in 
Figures 2 and 3. In histopathological examinations of L4DRG 
revealed degenerated and normal neurons [Figure 4a and b]. 
Demonstrable severe apoptosis were detected in the animals 
of SAH group. Normal motor neurons and degenerated motor 
neurons (left upper corner) at the Onufs’ nucleus are seen at 
the L4DRG ganglion of an animal with SAH in Figure 5.

The mean alive neuron density of the L4DRG was 
15420 ± 1240/mm3 and degenerated neuron density was 
1045 ± 260/mm3 in the control group. Whereas, the density of 
living neurons was 12930 ± 1060/mm3 and degenerated neuron 
density was in 1365 ± 480/mm3 for the SS group. Neuron density 
of L4DRG was 9845 ± 1028/mm3 and degenerated neuron 
density was 4560 ± 1340/mm3 in the SAH group and hence 
we found that numerous neuron degenerations secondary to 
vasospasm of AKA at the L4DRG in the SAH group, but not in 
serum saline and control groups [Tables 1 and 2]. Vasospasm of 
AKA was also not occurred in SS and control groups. The density 
of living neuron was statistically significantly reduced in the 
SAH group compared with the control and Serum saline (SS) 
groups (P < 0.05).

The mean inner radius values of AKA was measured as 
0.653 ± 0.102 mm at the entering point of the anterior median 
sulcus of L1 level. The mean volume of imaginary AKAs was 
estimated as 1.250 ± 0.310 mm3 in the control group and 
1.030 ± 0.240 mm3 in the SF group and 0.910 ± 0.170 mm3 
in SAH group. Volume reduction of the AKAs was significantly 
different between the SAH and other two groups (P < 0.05). 
The VSI values of AKA was 1.042 ± 0.60 in control group, 
1.75 ± 0.30 in SF and 2.98 ± 0.160 in SAH group. The 
differences between the degenerated neuron density of L4DRG 

and VSI values was meaningful in SAH group (P < 0.005). 
Demonstrable severe apoptosis was detected on DRG of 
animals with high VSI in SAH group. Apoptotic degeneration 
of AKA was also noted especially in animals with massive 
SAH. Comparison for the SS group versus controls for the DRG, 
AKA volumes, and VSI values were not showed statistically 
significant difference (P > 0.05).

Discussion

Subarachnoid hemorrhage affecting the SC is very rare, and may 
have disastrous consequences. The DRG is located between the 
dorsal root and the spinal nerve. It contains pseudounipolar 
neurons that convey sensory information from the periphery to 
the CNS.[21] These neurons are of two main types: Nonnociceptive 
neurons that respond to nonnoxious, low intensity, normally 
nonpainful stimuli; and nociceptive neurons that respond to 
noxious, high intensity, normally painful stimuli.[22] Ventral 
root afferent that causes pain in the ventral root of the spinal 
nerve comes from dorsal root ganglia, forms a loop, goes into 
the ventral root, and then goes back to the spinal cord, and 
this may be the reason why pain was not relieved even after 
posterior rhizotomy. The chronic compression of the DRG or 
nearby nerve roots after vertebral injuries, intervertebral disc 
herniation, or intervertebral foramen stenosis is an important 
factor causing lower back pain and sciatica,[21,23] so thorough 
knowledge of the ischemic neurodegenerative changes of the 
L4DRGs in this study may also be meaningful for understanding 
of pathologic anatomy in degenerative disorders.

The reason of preferring lumbar 4 dorsal root 
ganglion in this study
A series of detailed studies showed that the ventral portion of 
the rat L5-L6 intervertebral discs is innervated predominantly 
by the L1 and L2 DRG,[24] whereas the dorsal portion of the L5-L6 

Table 1: The mean alive and degenerated neuron 
density of the L4DRG of three groups
Groups Alive neuron 

density mean±SD
Degenerated neuron 

density mean±SD
SAH (n=8) 9845±1028 4560±1340
Control (n=6) 15420±1240 1045±260
Saline (n=6) 12930±1060 1365±480
SD – Standard deviation; SAH – Subarachnoid hemorrhage; L4DRG – Lumbar 4 
dorsal root ganglion

Table 2: The mean inner radius values of AKA and 
VSI values of groups
Groups Volume (mm3) mean±SD
SAH (n=8) 0.910±0.170
Control (n=6) 1.250±0.310
Saline (n=6) 1.030±0.240
SAH – Subarachnoid hemorrhage; AKA – Adamkiewicz artery; VSI – Vasospasm index; 
SD – Standard deviatiion
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Figure 1: Adamkiewicz artery is seen in a normal rabbit at the L1 level 
(AKA-Adamkiewicz artery; SC-spinal cord)

Figure 2: Histopathological appearance of an Adamkiewicz artery in 
a normal rabbit (light microscopic, tunnel stain, ×100)

Figure 3: Histopathological appearance of an Adamkiewicz artery 
(AKA) in a rabbit with subarachnoid hemorrhage. Vasospastic inner 
elastic lamina of AKA, slight apoptotic changes at the endothelial cells 
and muscular cells are seen (light microscopic, tunnel stain, ×100)

Figure 4: (a and b) L4: Spinal ganglion of a rabbit. The nucleoli marked 
with “2–6” are dissector particles on A section as it disappeared section 
B. The nucleoli marked with”1, 7, 8” not dissector particles on A section 
as it disappeared section B (H and E, 40, light microscopic). At the right 
side, L4 spinal ganglia, nerve root and Adamkiewicz artery are seen. 
Degenerated and normal neurons are observed at the L4 neurones. 
(LM, H and E, ×20)

Figure 5: Apoptotic ganglion neurons are observed at the L4 nerve 
root ganglion (light microscopic, tunnel stain, ×40)

disc is innervated extensively by the L1-L6 DRG.[25] For that 
reason, we preferred to perform spinal SAH at L1 level in this 
study and examined histopathologic changes of L4DRG. We 
found that demonstrable severe apoptosis occurred in rabbits 
of SAH group [Figure 5], not other two groups. Retrograde 
neuronal death is well established in DRG after peripheral 
nerve injury or severe SC trauma.[14,26] Previously, it was 
reported that SAH results in bloody cerebrospinal fluid (CSF), 
and this bloody or highly proteinous CSF may lead to neural 
degeneration,[26] but the effect of vasospasm following SAH 
on DRG degeneration has not been investigated to date. Our 
study shows that spinal SAH with AKA vasospasm is another 
cause of neurodegeneration in the DRGs.

Importance of the present study
We induced SAH in eight rabbits by injecting autologous 
blood into the lumbar subarachnoid space, and compared 
findings with animals who had nothing injected as well as 
rabbits who were injected with saline, and found decreased 
volume of the lumen of the artery of Adamkiewicz in animals 
with SAH compared with controls, as well as increased 
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degeneration of the DRG in these animals. We also noted 
apoptosis in animals of SAH group. Results of this study may 
be due to ischemia or vasospasm in AKA. Edema of the cord 
and raised intramedullary pressure may be other responsible 
causes. We assumed that vasospasm of the AKA leads to these 
changes in rabbits. The model used by us would have value 
in cases of spinal SAH that is very rare. The spinal SAH may 
occur by trauma or vascular lesions. We know that minimal 
invasive surgery and anterior surgery, which do not usually 
produce spinal SAH, but AKA vasospasm following spinal SAH 
noted in this study, may be a model for AKA injury during 
thoraco-lumbar spinal surgical procedures. Lumbar nerve root 
blocks and epidural steroid injections are frequently studied 
in the management of degenerative conditions of the lumbar 
spine.[27] In evaluating the significance of our observations, 
paraplegia and paraparesia complicating lumbar nerve root 
blocks and epidural steroid injections must be borne in mind. 
The factors responsible for this disaster should be clarified. 
Houten and Errico proposed that the mechanism for this 
rare but devastating complication is the concurrence of two 
uncommon circumstances, the presence of an unusually 
low origin of the artery of Adamkiewicz and an undetected 
intraarterial penetration of the procedure needle.[27] Acute 
hypoperfusion of AKA might lead to catastrophic ischemic 
complications resulting in paraparesis or paraplegia.[28] Such 
a complication, particularly, during anterior or minimally 
invasive approaches, after otherwise successful spinal surgery 
is a devastating complication for both patient and physician. 
We think that the pathogenesis of such complications requires 
an understanding of the vascular supply of the DRG and spinal 
cord. AKA occlusion may result in severe neurological deficit.[10] 
Our study shows that AKA has clinical and surgical importance. 
It is hoped that our observations will not discourage clinicians 
from using lumbar nerve root blocks and epidural steroid 
injections for the relief of pain in properly selected patients. 
However, until morphological detail concerning the damage 
done to AKA in human patients is available, it would seem 
prudent not to apply lumbar nerve root blocks and epidural 
steroid injections at the upper lumbar level, especially on the 
left side. Because AKA originates between T9 and L2 on the 
left side in 85% of people.[29] At present, neurosurgical practice 
is confronted by an explosion of technology,[30,31] but SAH is 
still a devastating condition,[16,4] so it is possible that recent 
advances in magnetic resonance angiography and computed 
tomography angiography may lead to changes in the 
detectability of this artery before surgical approaches in this 
area. Casual association of the AKA vasospasm and L4 dorsal 
root ganglion cell degeneration in spinal SAH was first-time 
studied in an experimental rabbit model. Our results mean 
that the arterial supply of L4DRG by AKA crucial.

Limitation of the study
Several limitations of this study deserve mention. Stereologic 
methods were used for the determination of degenerative 

changes of the L4DRG cells. We know that spinal SAH is a 
rare entity. An estimate of the number of live or degenerated 
neurons in each specimen was the basis of our results. It was 
noted that there is a direct link between degeneration of 
L4DRG and AKA vasospasm. We strictly emphasize that this 
is an experimental, observational study, and the relationship 
between AKA vasospasm and degeneration L4DRG has first-time 
been reported in rabbits by us, and they can be inhuman too. 
Perhaps the most important limitation of study, it is not possible 
to see these changes in vivo or autopsy, particularly in man 
with spinal SAH. Another limitation is that our experimental 
rabbit model of SAH may not accurately mimic the human 
disease process. For that reason, our experimental rabbit model 
cannot be represent a human SAH model. In addition, blood 
was injected at the same lumbar level (L1) in each rabbit, but 
the AKA is often variable. Lumbar spine SAH in the human is a 
rare happenstance and does not often cause paraplegia when it 
does occur. We stated that SAH-animals had bowel and bladder 
dysfunction, but this was not quantified. No motor functional 
testing was done because the aim of this study is not to show 
the bowel and bladder dysfunction and motor deficit following 
spinal lumbar SAH in rabbits.

Conclusion

In this study, neurodegeneration of animals with AKA 
vasospasm was occurred which were not observed in 
animals in SS and control groups. The balance between 
cell proliferation and cell death is crucial in all tissues, 
particularly in the nervous system and DRG. Several studies 
have examined the occurrence of medical complication after 
spine surgery. Identification of risk factors can be beneficial 
to spinal surgeons. Our results show that AKA vasospasm 
with spinal SAH leads neurodegeneration of L4DRG, which 
was first-time reported. Knowledge of this neurodegeneration 
of L4DRG cells by the AKA vasospasm may be important in 
reducing the risk of paraplegia or paraparesis, disturbances 
of urination and defecation, and impairment of pain and 
temperature sensations following lumbar spinal surgery. In 
addition, documenting such an irreversible ischemic neuron 
degeneration of the L4DRG with AKA vasospasm will aid in 
the planning of future experimental studies and determining 
the clinical importance of this artery.
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