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Accurate quantification of period, τ, and phase, φ, 
is a critical component of many studies of circadian 
rhythms. While multiple methods exist to quantify 
period (Dowse, 2009; Levine et  al., 2002), ranging 
from relatively simple (linear regression of onset 
time, cosinor analysis) to more complex (chi-square 
periodogram, autocorrelation [Sokolove and Bushell, 
1978]; discrete wavelet transformation, maximum 
entropy spectral analysis [Dowse, 2013; Leise, 2013; 
Leise and Harrington, 2011]), there are fewer options 
for estimating changes in phase. Phase analysis suf-
fers from two large issues. First, methods to quantify 
changes in phase are less standardized, and thus 
potentially less reproducible, than those used for 
period analysis. Second, because phase shifts often 
coincide with changes in period (Comas et al., 2006; 
Pittendrigh and Daan, 1976), measurements of phase 
change can be affected by the magnitude of the coin-
cident period change. Here we seek to address both 

of these issues by proposing a computationally sim-
ple but rigorous strategy for measuring phase shifts 
in multiple types of circadian data.

The measurement of a change in phase of a circa-
dian pacemaker typically involves assessing how a 
pacemaker would have progressed if unperturbed (a 
null model) compared with how it actually progressed 
(Fig. 1). Within rhythmic data are overt phase refer-
ence points, such as onsets in actigraphy (Fig. 1A) or 
peaks in bioluminescence imaging (Fig. 1B). Phase ref-
erence points are a valuable property in the estimation 
of phase and period, as they represent a way to assess 
the progression of the pacemaker over time. Two 
successive phase reference points are assumed to occur 
one circadian cycle apart, and at those phase reference 
points the pacemaker is assumed to be at the same 
phase. Phase reference points are chosen for their 
recognizability and for the likelihood that their tim-
ing will remain consistent across changes to the overt, 
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measured rhythm. For example, acrophase, the peak 
of a cosine fit to a circadian wave, is assumed to remain 
consistent even if the waveform broadens. In an exper-
iment in which a pacemaker undergoes a potentially 
phase-shifting stimulus, a null model indicates the 
expected timing of these phase reference points after 
the stimulus, assuming no period or phase change 
(Fig. 1, A and B, dashed lines). The difference between 
the expected and observed timing of the poststimulus 
phase reference points can then be used to estimate the 
phase shift (Fig. 1, A and B, black arrows). If the stimu-
lus also changes the period, however, the phase rela-
tionship between the observed poststimulus phase 
reference points and those of the null model is not con-
sistent, and as such the difference between the real 
progression of the pacemaker and the null model 

varies by cycle, producing different measurements of 
the phase shift (Suppl. Fig. S1). One strategy for calcu-
lating phase shifts in the presence of period changes, 
most frequently used in actigraphy, involves altering 
the null model to include the change in period (Fig. 2). 
The original progression of the pacemaker, as well as 
the null model with the changed period, is depicted on 
the actogram as lines. The phase shift, Δφ, is then calcu-
lated as the distance between the 2 lines on the cycle 
after the stimulus occurs. This difference is represented 
in either circadian hours (relative to the period of the 
pacemaker after the stimulus) or in degrees. Using 
these units ensures that changes in phase can be com-
pared across experiments.

Figure 1. S chematic view of phase shift estimation. (A) A simu-
lated actogram depicting a phase shift. Onsets before the shift are 
projected (dashed line) and the difference between the poststim-
ulation onsets and the projection is taken to be the phase shift. 
(B) A simulated circadian waveform. A stimulus induces a phase 
delay, and the original trajectory of the wave is projected (dashed 
line). In both cases, the phase shift (black arrows) is calculated as 
the difference between the projected and the actual data.

Figure 2.  Period changes affect phase shift measurements. 
When a stimulus induces a period change along with a phase 
shift, the calculation must be adjusted. The phase relationship 
between the poststimulus phase reference points and the pro-
jected null model is not consistent from cycle to cycle (see Suppl. 
Fig. S1). To account for this, the phase shift is calculated as the 
difference between the projection of the prestimulus phase ref-
erence points and the linear fit of the poststimulus phase refer-
ence points. In this way, the change in period is included in the 
analysis.

https://journals.sagepub.com/doi/suppl/10.1177/0748730418768116
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Measuring the difference between the null model 
and the real data on the first cycle after the stimulus 
can be visualized as an altered version of the null 
model (Suppl. Fig. S2). In this view, the null model is 
projected 1 cycle, and then beyond that first cycle the 
slope of the model is altered to take into account the 
poststimulus period. Because this poststimulus null 
has the same period as the real poststimulus pace-
maker, it maintains a stable phase relationship with 
the poststimulus phase reference points but is 
anchored to the prestimulus null model. The differ-
ence between the null model and the data on the first 
poststimulus cycle, which represents the phase shift 
(Fig. 2), is now recapitulated on every cycle (Suppl. 
Fig. S2). These representations are 2 depictions of the 
same phase shift estimation.

Because the prestimulus and poststimulus data 
are used to fit linear regression models, the respec-
tive periods are represented in the slope of the lines. 
This estimation therefore attempts to account for 
changes in period. In theory, if there were no change 
in phase, these pre- and poststimulus linear fits 
would intersect at the point of comparison (or, in the 
case of the altered visualization, the lines would 
overlap), and the estimated phase shift would be 0. 
In practice, however, changes in period between the 
pre- and poststimulus cause systematic error in the 
measurement of the phase change (Fig. 3). When 
using this strategy, which we term the “actogram 
approach,” the estimated phase shift becomes more 
negative (i.e., toward a delay) as the period decreases 
and more positive (advance) as the period increases, 
regardless of whether the actual phase shift is a 
delay (Fig. 3, left) or an advance (Fig. 3, right) or 
whether there is no shift at all (Fig. 3, middle). The 
average magnitude of the error in the phase shift 
estimate is about half the magnitude of the change 
in period (e.g., a typical error of –0.5 h for a period 
change of –1 h).

These inaccuracies are caused by an improper 
assumption about the relative time that the pacemaker 
undergoes a change in period, phase, or both. When 
measuring the difference between the 2 regression 
lines on the stimulus cycle, the actogram approach 
assumes that if the pacemaker’s phase and/or period 
was altered, that change occurred 1 full circadian 
cycle after the last prestimulus phase reference point. 
This assumption is made whether the stimulus occurs 
at the last prestimulus phase reference point, hours 
later, or nearly at the time of the next cycle’s phase 
reference point (Suppl. Fig. S2). The slope of the line 
for the null model begins operating under the post-
stimulus period parameter only at the first projected 
poststimulus phase reference point.

This assumption explains why, if the stimulus 
changes the pacemaker’s period, the actogram 
approach’s phase shift estimates are biased. The acto-
gram approach does not account for the speed with 
which the pacemaker resets after a phase-shifting 
stimulus. This speed is a fundamental property of cir-
cadian pacemakers that has been measured experi-
mentally. Classic experiments by Chandrashekaran 
(1967) and later by Pittendrigh (1981) established that 
the phase of the pacemaker resets within 1 h, at most. 
Since that time, the field has made substantial prog-
ress in establishing the molecular underpinnings of 
the clock in multiple organisms, including the molec-
ular basis for the phase shift response (Shigeyoshi 
et al., 1997). While much remains unknown about the 
mechanism of the phase shift response, the work by 
Chandrashekaran and Pittendrigh demonstrates the 
timeframe within which the molecular resetting must 
occur. Because the expected phase response in the 
clock is achieved within at most 1 h, the molecular 
changes within the pacemaker that are required for 
that response are then known to occur within this 
window. The rapid induction of Per1 has been estab-
lished as a portion of the molecular mechanism for 

Figure 3.  Period change affects phase shift estimates using the actogram approach. The phase shift estimate in circadian hours using 
the “actogram approach” is plotted against the magnitude of the period change in simulations with a phase delay (left, Δϕ = −1.2), no 
phase change (middle, Δϕ = 0), or a phase advance (right, Δϕ = +2.4). Each point represents 1 simulation of a circadian time-course. The 
dotted line represents the actual shift for that group of simulations. In all cases, period shortening produces a more delayed phase shift 
estimate and period lengthening produces a more advanced phase shift estimate. One-way ANOVA: **** corresponds to p < 0.0001. Δϕ 
values are represented in circadian hours. Error bars represent the standard deviation.
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pacemaker resetting within this timeframe (Shigeyoshi 
et  al., 1997). This fast resetting is critical to accu-
rately measuring phase shifts. If we assume that any 
changes in period and phase occur within an hour of 
the time of the stimulus (for stimulus lengths ≤1 h; 
for longer stimuli, see below), we can see a source of 
error in the actogram approach. The estimated phase 
shift includes not only the actual phase shift but also 
the change in period, weighted by the percentage of 
the cycle that occurs prior to the next phase refer-
ence point. Figure 4 illustrates this schematically, 
with 2 circadian waveforms with prestimulus peri-
ods (τpre) of 24 h undergoing an instantaneous period 
change (a period shortening of 2 h, poststimulus 
period τpost of 22 h) but no phase change. The projec-
tion begins operating with the τpost period parameter 
at the first projected poststimulus peak regardless of 
the stimulus time, which creates gaps between the 
projection and the poststimulus data that would be 
interpreted as phase shifts (dashed and solid lines, 
respectively; Fig. 4).

To more accurately quantify the error in the acto-
gram approach and to adjust for it, we assessed the 

relationship between the phase shift estimate and the 
time of stimulus relative to the last prestimulus phase 
reference point in a series of simulated phase shifts. 
In each simulation, the stimulus time is represented 
as the fraction of the circadian cycle that has elapsed 
when the stimulus occurred. We examined the error 
in the actogram approach’s phase shift estimate as a 
function of the stimulus time across 9 different condi-
tions covering phase advances, delays, and no phase 
shift, as well as period lengthening, shortening, and 
no change in period (Fig. 5). We observed a clear rela-
tionship between the phase shift estimate and the 
stimulus time that was dependent on the change in 
period. When the period remained constant between 
the pre- and poststimulus conditions, using the acto-
gram approach produced an accurate estimation of 
the phase shift (Fig. 5, middle row). When the period 
changed, the actogram approach was least accurate 
when the stimulus time was near the last prestimulus 
phase reference point and most accurate when the 
stimulus time approached 1 full circadian cycle later.

Methods

Tau-independent Phase Analysis (TIPA)

An ideal method for calculating phase shifts 
should be accurate regardless of the stimulus time 
and period change. We therefore sought to develop a 
method that would address the deficiencies of the 
actogram approach. The basis of tau-independent 
phase analysis (TIPA) is the creation of a null model 
of the pacemaker’s progression (represented by the 
time of occurrence of a chosen phase reference point) 
anchored appropriately to the actual time of phase 
and/or period change using the stimulus time 
described above (Fig. 6). This null model is based on 
the assumption that the pacemaker has undergone a 
change in period but no change in phase and that the 
change occurred exactly at the stimulus time. The dif-
ferences between the observed times and the expected 
times according to the null model are then used to 
calculate the phase shift (Fig. 6, black arrows).

The setup to this calculation is similar to the altered 
version of the actogram approach described above 
(Suppl. Fig. S2). Whereas the actogram approach 
anchors the poststimulus linear regression to the final 
prestimulus phase reference point, TIPA anchors its 
poststimulus null model to the stimulus time (Fig. 6, 
black arrowhead). The vertical position of the TIPA 
anchor can be determined by establishing the fraction 
of the circadian cycle that has elapsed by the time the 
stimulus occurs. In an actogram, time is represented 
both horizontally and vertically. Figure 6B shows the 
fraction of the circadian cycle horizontally from 0 to 

Figure 4. S chematic view of null model anchoring. When the 
poststimulus projection is anchored to the first projected post-
stimulus phase reference point (the “null anchor”), the projec-
tion begins operating under the τpost parameter 1 full cycle after 
the last prestimulus phase reference point. This is the case 
whether the stimulus occurs early (top) or late (bottom) in the 
circadian cycle. In both examples, the stimulus does not cause a 
phase shift, but the period is shortened from 24 h to 22 h. Using 
the difference between the projected peak and the actual first 
poststimulus peak, the phase shift estimate is different between 
the 2 conditions. In top, the estimated phase shift would equal 
–1.5 h (0.75 * Δτ) and in bottom, –0.5 h (0.25 * Δτ), despite no phase 
shift having occurred. 

https://journals.sagepub.com/doi/suppl/10.1177/0748730418768116
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1, with the stimulus occurring just before half the 
cycle is complete. The same 0 to 1 scale is then shown 
vertically as the height of a single actogram day. 
Again, the stimulus is represented, occurring just 
before half the cycle is complete. This is where the 
TIPA anchor is located, at the vertical position of the 
stimulus. The position of the anchor is intended to 
coincide with the instant of the period and phase 
change. For stimuli shorter than 1 h, the anchor is 
placed at the end of the stimulus. While maximum 
phase resetting occurs within 1 h of the onset of a 
stimulus (Shigeyoshi et  al., 1997), period changes 
have been shown to align with the midpoint of the 
stimulus (Comas et al., 2006). For stimuli longer than 
1 h, the TIPA anchor is therefore placed at the mid-
point of the stimulus. Using this anchor, TIPA null 
estimates are then produced for each poststimulus 
cycle based on this origin at the time of stimulation, 
the fraction of the stimulus cycle that is operating 
under the poststimulus period parameter, and the 
poststimulus period. For each cycle, the difference 

between the actual poststimulus phase reference 
point and the TIPA null for that cycle is determined. 
The circular mean of these differences is the estimate 
of the phase shift (see below).

Simulations

To compare TIPA to the standard actogram 
approach, we simulated time-courses of circadian 
oscillations before and after a stimulus. Rather than 
simulating the full waveform, we directly simulated 
the times of phase reference points (e.g., activity 
onset times or peaks in bioluminescence). We varied 
multiple parameters of the simulated time-courses: 
the period of the oscillator before the stimulus, the 
number of cycles observed before and after the stim-
ulus, the standard deviation of interreference point 
times, and the phase shift induced by the stimulus 
(Suppl. Table S1). For each combination of parameter 
values, we generated 100 simulations. The period of 

Figure 5.  Relative stimulus time has systematic effects on the phase shift estimate using the actogram approach. Using the actogram 
approach, the relative time of the stimulus compared with the last prestimulus phase reference point has a predictable effect on the 
phase shift estimate, depending on the size and direction of the period change. When there is a period change (top and bottom rows), the 
estimate is least accurate when the stimulus occurs at or near the time of the last prestimulus phase reference point. This occurs whether 
there is a phase delay (left column, Δϕ = −1.2), no phase shift (center column, Δϕ = 0), or a phase advance (right column, Δϕ = +2.4). The 
direction of the error is dependent on the period change, with lengthening (top row, Δτ = +2) producing more negative (delayed) esti-
mates and shortening (bottom row, Δτ = −1) producing more positive (advanced) estimates. When there is no period change, the actogram 
approach is generally accurate (middle row, Δτ = 0). Each point represents 1 simulation, and each black line shows a linear fit of esti-
mated phase shift vs. relative stimulus time. Δϕ values are represented in circadian hours, Δτ values are represented in hours.

https://journals.sagepub.com/doi/suppl/10.1177/0748730418768116
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the oscillator prior to the stimulus was fixed at 24 h. 
In each simulation, phase-reference point intervals 
(produced separately for pre- and poststimulus 
epochs) were drawn from a Gaussian distribution 
with mean corresponding to the period of the oscilla-
tor and the given standard deviation. The fraction of 
the cycle elapsed at the time of the stimulus was 
drawn from a uniform distribution between 0 and 1. 
Any changes in period or phase induced by the stim-
ulus were modeled as occurring instantly.

The simulations were imported into MATLAB 
where they were parsed into pre- and poststimulus 
subsets, with each subset being fit with a linear 
regression. The parameters from these regressions 
were used to make a set of predicted phase reference 
points for each simulation. For the phase shift esti-
mate by the actogram approach, prestimulus and 
poststimulus predictions were compared on the cycle 
after, or the cycle of, the stimulus, as indicated.

TIPA Calculations

The phase-shift estimate of TIPA is calculated by 
measuring the difference, in circadian hours or 
degrees, between the observed poststimulus phase 
reference points and a set of poststimulus null esti-
mates that we term TIPAnull. The times of the phase 

reference points and the TIPAnull points are repre-
sented in the elapsed time of the experiment, such 
that phase reference points that occur at projected ZT 
12 each day would be represented as 12, 36, 60, 84 . . . . 
The TIPAnull for each poststimulus cycle i is calculated 
as follows:

TIPA i t i f inull s post s( ) = + +( ) =τ . , , , ...0 1 2

where ts is the time of the stimulus and fs is the fraction 
of the cycle that remains at the time of the stimulus. 
The difference (Δφ) between the observed poststimu-
lus phase reference points (φR, post) and TIPAnull for 
each poststimulus cycle i is calculated as

∆ ( ) = ( ) − ( )φ φi TIPA i inull R post, .

The phase-shift estimate of TIPA is calculated as the 
circular mean of Δφ(i) for all values of i.

For values reported in this study, circular means 
were calculated using the CircStat MATLAB toolbox 
(Berens, 2009). Period parameters were estimated 
using linear fits of the phase reference points for the 
actogram approach and mean phase reference point 
intervals for TIPA. Because of the limitations of linear 
regression, it may be more suitable to estimate the 

Figure 6. S chematic of tau-independent phase analysis. (A) A simulated actogram displaying a phase advance and a period shortening. 
(B and C) Using TIPA, the poststimulus null model (solid gray line) operates under the assumption that there is a period change but no 
phase change and that the period change occurred instantaneously at the time of the stimulus (gray triangle). The horizontal position 
of the stimulus is transposed vertically to show the TIPA anchor (black arrowhead in panel B). The sloped line representing the post-
stimulus null model is therefore anchored to a position along the prestimulus null model (gray dashed line) corresponding to the time 
of the stimulus. In panel C, the phase shift estimate (black arrows) for each cycle is shown as the difference in hours between the phase 
reference point (open circles) and the position of the TIPA null model (solid gray line) for that cycle.
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period of the pre- and poststimulus data subsets 
using an external method, such as chi-square peri-
odogram or autocorrelation, and then fixing the τpre 
and τpost parameters to those values. In cases where 
limited numbers of cycles are available in the data, 
we recommend estimating the period as the mean 
interval between phase reference points.

Actogram Figure Generation and Data Availability

Actogram figures were simulated using sets of 
phase reference points selected from the simulations 
generated to test TIPA. The actograms values were 
created in MATLAB by creating a 10-day, 14,400-bin 
array with 12-h runs of randomly generated numbers 
1 to 100 starting on each cycle with that cycle’s simu-
lated onset time. Actograms were then formatted as 
TriKinetics monitor files and visualized using the 
ImageJ plugin ActogramJ (Schmid et  al., 2011). 
Schematics of gene expression data were made using 
the curve generation function within Prism 
(GraphPad). Markings were then added in Adobe 
Illustrator. A spreadsheet for calculating the TIPA 
phase shift for all 3600 simulations generated for this 
analysis and the R code used to generate the simula-
tions are available online at https://doi.org/10.6084/
m9.figshare.5484916. An R package for calculating 
phase shifts using TIPA is available at https://github.
com/hugheylab/tipa.

Results

To verify the accuracy and precision of the TIPA 
method, we analyzed the phase shift of 3600 simula-
tions with known phase shift parameters (Suppl. 
Table S1). Two specific weaknesses of the actogram 
approach described above are the influence of a 
change in period (Fig. 3) and the relative time of 
stimulus (Fig. 5). Compared with the actogram 
approach, TIPA was robust against changes in 
period (Fig. 7A) and remained consistently accurate 
regardless of the time of stimulus (Fig. 7B). We also 
assessed the precision of the two methods in the 
case of no period change, where the relative stimu-
lus time has no significant effect on the phase shift 
estimate of the actogram approach (Fig. 8). We found 
that TIPA was significantly more precise across 
phase delays (Fig. 8A), advances (Fig. 8C), and cases 
in which there was no phase shift (Fig. 8B). We fur-
ther tested the precision of the two methods in cases 
where there was no change in period using simula-
tions with various levels of noise and numbers of 
cycles (Suppl. Fig. S3). While both TIPA and the 
actogram approach showed lower precision in high 

noise simulations, the variance of TIPA’s estimates 
was significantly lower (Suppl. Fig. S3A). Neither 
the actogram approach nor TIPA showed reduced 
accuracy in simulations of 4 versus 5 poststimulus 
cycles, although TIPA had lower variance in each 
condition (Suppl. Fig. S3B).

The actogram approach is sometimes modified for 
early-cycle stimulus times by anchoring the poststim-
ulus null model to the last prestimulus phase refer-
ence point (Suppl. Fig. S4). We found that this version 
of the actogram approach produces a trend with a 
similar pattern to that of the previously described 
approach but with the estimate being most accurate 
as the relative stimulus time approaches 0 (Suppl. 
Fig. S4, green) rather than 1 (Suppl. Fig. S4, magenta). 
Using a hybrid of the two approaches, in which the 
phase reference point before the stimulus is used as 
an anchor for relative stimulus times of <0.5 and the 
predicted point τpre hours afterward is used as an 
anchor for relative stimulus times >0.5, results in esti-
mates that surround the true phase shift parameter of 
the simulations (Suppl. Fig. S5, blue). The hybrid 
approach is most accurate when the stimulus time is 
close to either the last prestimulus phase reference 
point or 1 full cycle later but is less accurate when the 
stimulus time is between these 2 points in the cycle. 
Although the hybrid version improves the accuracy 
of the actogram approach, this accuracy is due to 
counteracting errors in opposite directions that only 
cancel each other out if relative stimulus times are 
evenly distributed below and above 0.5 (Suppl. Fig. 
S5, green, magenta). Even with this increase in accu-
racy, we found that the precision of TIPA significantly 
exceeded that of the hybrid actogram approach 
(Suppl. Fig. S5).

Discussion

Accurately quantifying changes in phase in circa-
dian data sets is a critical aspect of many circadian 
analyses but has received less attention than quantifi-
cation of period. The typical actogram approach 
described here is not the only strategy used to mea-
sure phase shifts, but in using linear fits of pre- and 
postshifted data, it is one of the only approaches that 
accounts for period changes (see description of cross-
correlation in Dowse, 2009). Although we have used 
actograms as examples, the underlying strategy for 
measuring phase shifts using the progression of 
phase reference points is the same across virtually all 
data types and fits. As described above, the esti-
mation of phase shifts must involve the comparison 
of how the pacemaker would have progressed and 
how it actually progressed. Making that comparison, 
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whether by distilling full locomotor activity or gene 
expression rhythms down to identifiable phase refer-
ence points or by analyzing the entire wave through 
cosinor analysis, requires assumptions about how the 
pacemaker will progress after the stimulus. Previous 
applications of these methods are biased by assump-
tions regarding the change in period of the pacemaker 
after the stimulus. We show here that TIPA is an accu-
rate and versatile approach to determining phase 
shifts in circadian data by remaining consistent across 
changes in period and relative time of stimulus. TIPA 
can be applied to any type of circadian data with 
multiple cycles and identifiable phase reference 
points, while maintaining precision throughout dif-
fering noise levels and cycle numbers.

In our study, TIPA and the actogram approach 
were used to estimate the phase shift in simulations, 
which enabled us to compare the values estimated by 
each method against the known phase shift parame-
ter for that simulation group. This differs from exper-
imental biology where the true phase shift values are 
unknown. TIPA, like any method designed to sum-
marize a biological phenomenon into a single num-
ber, will have a range of error. Based upon our results, 
this range of error likely surrounds the true phase 
shift value regardless of period changes or the rela-
tive time of stimulus, in contrast to the actogram 
approach where the typical range of error is com-
pounded by baseline changes dependent on those 
two factors. Comparing TIPA to the hybrid version of 

Figure 7.  TIPA eliminates the effect of period changes and stimulus time on the phase shift estimate. (A) The estimate of the phase 
shift using TIPA is plotted against the period change for phase delays (left, Δϕ = −1.2), no phase shift (middle, Δϕ = 0), and phase 
advances (right, Δϕ = +2.4). One-way ANOVA: ns corresponds to p > 0.05. (B) The TIPA estimate of phase shift is independent of the 
relative stimulus time, across phase delays (left column, Δϕ = −1.2), phase advances (right column, Δϕ = +2.4), and no phase change 
(middle column, Δϕ = 0), as well as across period lengthening (top row, Δτ = +2), shortening (bottom row, Δτ = −1), and no period change 
(middle row, Δτ = 0). Each point represents 1 simulation, and each black line shows a linear fit of estimated phase shift vs. relative 
stimulus time. Δϕ values are represented in circadian hours.
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the actogram approach where the range of error sur-
rounds the true phase shift value, TIPA’s range of 
error is significantly narrower.

Like all phase shift estimation methods based on 
phase reference points, TIPA assumes that the identi-
fied phase reference points represent the same phase 
of the pacemaker from cycle to cycle, even if the 
period of the pacemaker changes. Although this 
assumption is likely valid if the period changes are 
relatively small, it may break down as period changes 
become large. TIPA also assumes that the poststimu-
lus period is stable. In many circadian experiments in 
which a period and/or phase change occurs, there 
are transient cycles poststimulus in which the rhyth-
mic output being measured lags behind the underly-
ing pacemaker and therefore does not reflect the 
pacemaker’s true phase. If applying TIPA to a dataset 
with transients, we recommend limiting the window 
of comparison to poststimulus cycles that have a sta-
ble period.

Finally, TIPA assumes that any potential phase and 
period changes occur nearly instantaneously. While 
there is experimental evidence to support the instanta-
neous resetting of the pacemaker’s phase (Shigeyoshi 
et al., 1997), the assumption that period changes occur 
instantaneously has not been conclusively verified. 
The concept of an instantaneously changed period 
serves as an improvement over other methods, how-
ever, which ignore the specific timing of the period 
change by bluntly anchoring period changes to phase 
reference points. This anchoring leads to inconsistent 
poststimulus modeling (see Fig. 4).

While many aspects of circadian data collection 
vary (e.g., number of cycles, sampling resolution, 
signal-to-noise level), the strategy of estimating phase 
shifts by comparing prestimulus and poststimulus 
models remains the same. Our results suggest that 
provided the data have a phase reference point and at 
least 3 cycles with a stable period, TIPA’s estimates 
are both accurate and precise. TIPA thus offers an 
opportunity for standardized and reproducible phase 
shift estimates across chronobiology.
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