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Nanometry is widely used in biological sciences to analyze the movement of molecules or molecular assemblies in
cells and in vivo. In cardiac muscle, a change in sarcomere length (SL) by a mere ~100 nm causes a substantial
change in contractility, indicating the need for the simultaneous measurement of SL and intracellular Ca® con-
centration ([Ca%7;) in cardiomyocytes at high spatial and temporal resolution. To accurately analyze the motion
of individual sarcomeres with nanometer precision during excitation—contraction coupling, we applied nanometry
techniques to primary-cultured rat neonatal cardiomyocytes. First, we developed an experimental system for simul-
taneous nanoscale analysis of single sarcomere dynamics and [Ca*]; changes via the expression of AcGFP in
7 discs. We found that the averaging of the lengths of sarcomeres along the myocyte, a method generally used in
today’s myocardial research, caused marked underestimation of sarcomere lengthening speed because of the su-
perpositioning of different timings for lengthening between sequentially connected sarcomeres. Then, we found
that after treatment with ionomycin, neonatal myocytes exhibited spontaneous sarcomeric oscillations (cell-
SPOCs) at partial activation with blockage of sarcoplasmic reticulum functions, and the waveform properties were
indistinguishable from those obtained in electric field stimulation. The myosin activator omecamtiv mecarbil
markedly enhanced Z-disc displacement during cell-SPOC. Finally, we interpreted the present experimental find-
ings in the framework of our mathematical model of SPOCs. The present experimental system has a broad range
of application possibilities for unveiling single sarcomere dynamics during excitation—contraction coupling in

cardiomyocytes under various settings.

INTRODUCTION

The state of the contractile system of cardiac muscle is
regulated by a change in the intracellular Ca** concen-
tration ([Ca®'];), regardless of the development stage
(Bers, 2002; Colella et al., 2008 and references therein).
It is likewise well established that cardiac contractile
performance is highly dependent on sarcomere length
(SL) in that a change of merely ~100 nm causes a sub-
stantial change in myocardial contractility (i.e., the
Frank-Starling relation; Allen and Kentish, 1985; Fukuda
etal., 2001; Katz, 2002; Hanft et al., 2008). This intrinsic
nature of cardiac myofilaments requires an accurate
measurement of SL to enhance our understanding of
myocardial dynamic properties, not only in adults but
also in neonates whose cardiomyocytes undergo rapid
growth for normal heart development via biochemical/
paracrine and mechanical signaling (Jacot et al., 2008,
2010; Rodriguez et al., 2011 and references therein). How-
ever, because of the lack of technology to measure single
SL at high spatial and temporal resolution, sarcomere
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dynamics and the impact on myocyte motion have not
been systematically investigated, especially in neona-
tal cardiomyocytes.

Although several studies have been conducted by using
various types of cardiac specimens, either neonatal or
adult, SL is usually averaged along myofibrils. However,
given the notion that [Ca®']; rises locally in cardiomyo-
cytes (in both adults [Bers, 2002] and neonates [Colella
et al., 2008]), it is imperative to investigate how the me-
chanical properties of myocytes are fine-tuned via single
sarcomere dynamics. Recently, we applied quantum dots
(QDs) to isolated adult cardiomyocytes and successfully
measured the length of a single sarcomere at 30-nm spa-
tial precision at 30 fps (Serizawa et al., 2011). However,
given the notion that only a small fraction of QDs were
incorporated into living myocytes, even with the use of
FuGene, the properties of sarcomeric motion in relation
to a change in [Ca?*]; could not be analyzed in detail
(Serizawa et al., 2011).
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a-Actinin is a 100-kD filamentous actin—binding pro-
tein that is concentrated in the dense bodies of stress
fibers and smooth muscle cells and in the Z discs of stri-
ated muscle cells. Dabiri et al. (1997) first demonstrated
green fluorescent protein fusion to the amino terminus
of a-actinin in living chick embryonic cardiomyocytes
and provided evidence that muscle thick and thin fila-
ments were assembled in different cellular locations to
form the sarcomeric structure. Recently, by taking ad-
vantage of this method, Hersch et al. (2013) estimated
the contractile force of rat neonatal cardiomyocytes.

In the present study, we coupled AcGFP to a-actinin
and transfected rat neonatal cardiomyocytes to directly
visualize single sarcomeric movements at nanometer
precision simultaneously with [Ca®'];. Results clearly
show that (a) the coordinated movements of sarcomeres
in series produce motion of a given region of a myocyte;
(b) single sarcomeric oscillation waveforms during
electric field stimulation are indistinguishable from
the spontaneous sarcomeric oscillations (SPOCs) occur-
ring at constant, partial [Ca*"] in skinned myocardium
(termed cell-SPOC; Sasaki et al., 2006; Ishiwata et al.,
2011; Serizawa et al., 2011); and (c) the myosin activator
omecamtiv mecarbil (OM) enhances Z-disc movements
during cell-SPOC. Moreover, the preset experimental
system was useful for the measurement of SL displace-
ment in adult ventricular myocytes. The molecular
mechanisms of cardiac sarcomere dynamics under vari-
ous conditions, as well as the application possibilities of
our experimental system, are discussed.

MATERIALS AND METHODS

AcGFP expression in the Z discs of neonatal cardiomyocytes
All of the experiments in this study conformed to the Guide for the
Care and Use of Laboratory Animals published by the National In-
stitutes of Health (NIH publication No. 85-23, revised in 1996).

Ventricular myocytes were isolated from 1-d-old Wistar rats and
were cultured based on a previous publication (Kojima et al.,
2003). pAcGFP-actinin plasmid transfection was performed on the
third day of incubation by using Lipofectamine LTX (Invitrogen).
PAcGFP-actinin plasmids were obtained by inserting the a-actinin
gene into pAcGFP-N1 (Takara Bio Inc.).

Microscopic system
Real-time nanoimaging was performed on AcGFP-expressing
neonatal myocytes by using an inverted microscope (IX-70; Olym-
pus) equipped with an electron-multiplying charge coupled device
camera (iXon +897; Andor Technology) using a 60x oil immer-
sion objective (numerical aperture of 1.45; Olympus; Oyama et al.,
2012). Fluorescence images were obtained from myocytes ex-
pressed with a-actinin~AcGFP. When changes in [Ca*']; were mea-
sured simultaneously with sarcomeric motion, the myocytes were
bathed in 2 mM Ca*-HEPES-Tyrode’s solution containing 2 pM
Fluo-4-AM (Dojindo) for 20 min at 25°C. Thereafter, experiments
were performed.

As a general rule of optics, spatial precision decreases with
an increase in camera speed (frame rate). Therefore, to obtain
high precision in the measurement of SL displacement, we imaged
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sarcomeric motions at 50 fps in the majority of the experiments in
this study (Drago et al., 2012).

Experimental procedure

Nanoscale imaging was performed 1 d after pAcGFP-actinin plas-
mid transfection. In experiments under electric field stimulation,
2 mM Ca*-HEPES-Tyrode’s solution was used as the bathing solu-
tion, and myocytes were electrically stimulated (Serizawa et al.,
2011 and references therein). For experiments on cell-SPOC,
myocytes were treated with 4 pM ionomycin (Sigma-Aldrich) to
increase the Ca® permeability of the membranes. Then, they
were bathed in Ca-SPOC solution (pCa 5.75 buffered by Ca®*'/
10 mM EGTA; see the Methods section of the online supplemen-
tal material) containing 4 pM thapsigargin (Sigma-Aldrich) and
200 pM ryanodine (Sigma-Aldrich). OM (Selleck) was initially
dissolved in ethanol and diluted with 0.6 pM Ca-SPOC solution.
The final concentration of ethanol was 0.1%, having no effect
on cell-SPOC.

Except for the experiment on spontaneous beating (performed
at 27 + 0.5°C), all the mechanical experiments were performed at
36.0 + 0.5°C in this study. When changes in [Ca*; were measured
simultaneously with sarcomeric motion, the myocytes were bathed
in the 2 mM Ca*-HEPES-Tyrode’s solution containing 2 pM Fluo-
4-AM for 20 min at 25 + 0.5°C. Thereafter, the imaging experi-
ments were performed at 36.0 + 0.5°C.

Data analysis

The intensity profiles of the fluorescence images were obtained
by iQ software (Andor Technology), transferred to Image] soft-
ware (National Institutes of Health), and analyzed by using our
Microsoft Excel macro, as described in previous studies (Sasaki
et al., 2006; Serizawa et al., 2011). In both the electric field stimu-
lation and cell-SPOC experiments, we obtained the following pa-
rameters as indices of sarcomeric contraction: SL oscillation
frequency, SL amplitude, sarcomere shortening time (velocity), sar-
comere lengthening time (velocity), and Z-disc amplitude. The
SL amplitude was defined as the SL at peak lengthening minus
that at peak shortening. The shortening (lengthening) time was
defined as the length of time from the onset to the end of SL
shortening (lengthening). The Z-disc amplitude was defined as
the distance of the movement of the Z disc during a cycle of con-
traction. Data obtained from three consecutive contraction cycles
were averaged for the aforementioned parameters.

Statistics

Significant differences were assigned using the paired or unpaired
¢ test as appropriate. Data are expressed as means = SEM unless
otherwise noted, with n representing the number of preparations.
Linear regression analyses were performed in accordance with the
method used in a previous study (Fukuda et al., 2001). Statistical
significance was assumed to be P < 0.05. NS indicates P > 0.05.

Online supplemental material

Supplemental text provides more information about the methods
used in this paper. Fig. S1 presents image analysis for a rat neona-
tal cardiomyocyte transfected with the a-actinin—AcGFP plasmid
showing the colocalization of a-actinin—AcGFP with the phase-
dense Z discs. Fig. S2 shows the fluctuation analysis of the length
of a single sarcomere in an a-actinin—AcGFP-expressing neonatal
cardiomyocyte in the presence of Fluo-4. Fig. S3 shows changes in
SL and fluorescence intensity (FI) in a cardiomyocyte upon elec-
tric stimulation in the absence of Fluo-4. Fig. S4 shows a-actinin—
AcGFP expression and SL nanometry in an adult cardiomyocyte
of the rat. Fig. S5 shows the time course of changes in the lengths
of sarcomeres during spontaneous beating in an AcGFP-expressing
neonatal cardiomyocyte. Fig. S6 presents histograms showing
averaged data versus individual data on amplitude, shortening,
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and lengthening properties during spontaneous beating. Fig. S7
shows sarcomeric motions during spontaneous beating in a neo-
natal cardiomyocyte without transfection of the a-actinin—~AcGFP
plasmid. Fig. S8 shows the relationship of electric stimulation fre-
quency versus time to peak FI in intact neonatal cardiomyocytes.
Fig. S9 shows cell-SPOC properties in AcGFP-expressing neonatal
cardiomyocytes. Fig. S10 shows waveform analyses of cell-SPOC
in the absence and presence of OM. Videos 1 and 2 show neona-
tal cardiomyocytes expressed with a-actinin—AcGFP in Z discs at
rest. Video 3 shows reconstruction of a three-dimensional image
of a neonatal cardiomyocyte. Video 4 shows that the FI from a
near full range of a cardiomyocyte does not change during the
course of sarcomeric contraction. Video 5 shows an adult cardio-
myocyte expressed with a-actinin—AcGFP in Z discs at rest. Videos
6 and 7 present neonatal cardiomyocytes showing spontaneous
beating. Videos 8 and 9 present neonatal cardiomyocytes show-
ing contractions in response to electric field stimulation. Videos
10-12 present neonatal cardiomyocytes showing cell-SPOC. On-
line supplemental material is available at http://www.jgp.org/
cgi/content/full/jgp.201311118/DC1.

RESULTS AND DISCUSSION

First, the a-actinin-AcGFP construct produced fluo-
rescent-labeled protein in Z discs within 24 h after
transfection when introduced into neonatal myocytes
(as demonstrated in neonatal chick [Dabiri et al., 1997]
and rat myocytes [Hersch et al., 2013]; Fig. 1 A). This
fusion protein was incorporated into the Z discs of nor-
mal cellular structures rich in endogenous a-actinin,
and a-actinin—AcGFP colocalized in a banded pattern
with the phase-dense Z discs (Fig. S1).

As shown in the plot profile in Fig. 1 A, SL averaged
~1.95 pm under the resting condition (1.965 + 0.021 pm;
from 10 myocytes x 3 sarcomeres). This value is similar
to that reported previously in rat neonatal myocytes
(Hersch et al., 2013), and it is slightly longer than that
reported by others in isolated adult rat and mouse myo-
cytes (i.e., ~1.70-1.85 pm; Bub et al., 2010; King et al.,
2011 and references therein; compare with Fig. S4). The
differential value of SL is likely to primarily underlie the
different experimental settings. Namely, in the present
study, neonatal cardiomyocytes were cultured, as op-
posed to adult cardiomyocytes isolated from the heart in
these previous studies. Also, it is likely that the differen-
tial titin (connectin) expression profile in neonatal ver-
sus adult cardiomyocytes may in part underlie the
differential SL values. Indeed, Lahmers et al. (2004) re-
ported that the titin expression profile in rats differs in
adults versus neonates, with stiff N2B titin predominantly
expressed in adults in contrast to more compliant neona-
tal isoforms (e.g., N2BA isoforms) expressed in neonates,
with titin-based passive force ~0 mN/mm? at SLs up to
~2.0 pm. Given the widely accepted role of titin as a mo-
lecular ruler to determine the SL during myofibrillogen-
esis in striated muscles (Gregorio et al., 1999; Udaka
et al., 2008 and references therein), the slightly longer
SL observed in the present study under the isometric
condition may be partly caused by N2BA titin isoforms
predominantly expressed in neonatal myocytes.

The transfection efficacy of AcGFP expression in
Z discs (i.e., the ratio of AcGFP-expressing myocytes
[determined by fluorescence observation] to all myo-
cytes attached to the glass plate [determined by phase-
contrast observation]) was 38.14 + 5.47% (number of
observations, 17, at the image size of 138 x 138 pm with
a 60x oil immersion objective).

Nanometry is a powerful technique that is widely used
in single-molecule biophysics by many researchers for
things like actomyosin interaction (Uemura et al., 2004;
Komori et al., 2009; Kaya and Higuchi, 2010) and was
recently used in molecular imaging in cells (Yoo et al.,
2008; Watanabe et al., 2013) and even in vivo (Tada
et al., 2007; Gonda et al., 2010) in various bioscience
fields. In the present study, AcGFP was clearly expressed
in Z discs in neonatal cardiomyocytes with relative ease
via lipofection, providing a suitable experimental sys-
tem for nanometry on a single SL displacement mea-
surement (Fig. 1 B). Under the present experimental
condition, the SL displacement precision was 3 nm at
50 fps (Fig. 1 B and Video 1). Likewise, it was 8 nm at
50 fps in the presence of the Ca** indicator Fluo-4 (Fig. S2
and Video 2). The present method (i.e., SL nanometry)
provides high accuracy of the positioning of the AcGFP-
expressed Z disc by fitting the 3 pixels, including the
peak point (with the width of 0.81 pm), thereby mini-
mizing the influence of the fluorescence of the neigh-
boring Z discs (Fig. 1 B). Given a relatively short range
of SL in cardiac preparations compared with that in
skeletal muscle preparations, it can be considered that
the present analysis provides a powerful tool in quanti-
tating the SL displacement in cardiac muscle.

By moving the stage of the microscope (i.e., at
0.496 pm/s) in the Z direction (Video 3), the thickness
of the myocyte in Fig. 1 A was estimated as ~6 pm. How-
ever, considering the bleed over of the AcGFP fluo-
rescence signal, this will be an overestimated value. To
accurately measure the thickness of the myocyte cul-
tured under the present setting, it will be necessary to
measure the distance between the fluorescence beads
(or nanoparticles) with a known diameter adhered to
the top and bottom of the myocyte.

Itis worth noting that because of the similar wavelengths
of AcGFP (peak: 505 nm) and Fluo-4 (peak: 518 nm),
the present experimental system enables simultaneous
imaging of the SL displacement and [Ca®']; changes
without the use of double light-path microscopy. As shown
in Fig. S3 (also see Video 4), the FI obtained from the
near full range of a cardiomyocyte did not change dur-
ing the course of sarcomeric contraction (from ~2.0 to
~1.8 pm) in the absence of Fluo-4 during spontaneous
beating, indicating that there was no interference of
AcGFP and Fluo-4 fluorescence.

Clear striation patterns were likewise observed under
confocal microscopy in isolated adult cardiomyocytes of
the rat by using the adenovirus vector system, enabling
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Figure 1. SL nanometry in a-actinin—~AcGFP-expressing rat neonatal cardiomyocytes. (A, top left) Epi-illumination image of a neona-
tal cardiomyocyte expressed with a-actinin-AcGFP. (left, bottom) Side view of the reconstructed image of the myocyte at the top left.
“Top” or “bottom” indicates the direction (i.e., “bottom” attached to the cover glass). See Video 3. (top right) Plot profile of the yellow
outlined rectangular region in the image at the top left. (bottom right) Plot profile of the yellow outlined rectangular region in the
image at the bottom left. Numbers in plot profiles indicate the values of mean lengths of seven sarcomeres viewed from different angles
(NS, P> 0.05 compared with the value at the top right). (B, top left) Epi-illumination image of a neonatal cardiomyocyte expressed with
a-actinin—AcGFP in Z discs. Imaging performed at rest; clip from Video 1. The sarcomere in the yellow outlined rectangle was used for the
analysis. (bottom left) A graph showing an example of SL nanometry. Fluorescence peak was fitted by a parabolic function of Y= —AX* +
BX— C (A, B, and C are constants) using 3 pixels (i.e., peak and before and after the peak) at each camera frame to obtain the midpoint
for the curve. a: A, B, and C, 1,227.7, 3,435.2, and 2,166.0, respectively (X = 3.521 pm). b: A, B, and C, 1,207.1, 8,500.0, and 1,4715.0,
respectively (X=1.399 pm). 1 pixel, 270 nm (for all experiments with neonatal cardiomyocytes). Because of the mathematical nature,
the parabolic function passes all 3 pixels. The midpoint of the parabolic function was defined as the Z-disc position, and SL was derived
by the difference between the adjacent two midpoint values. (top right) A three-dimensional graph showing changes in the positions
of a and b from frame 1 (same as in bottom left) to 6. Yellow lines, time-dependent changes in the Z disc. (middle right) Kymographs
showing changes in the longitudinal positions of the AcGFP fluorescence signals. a and b indicate the AcGFP fluorescence signals in the
yellow outlined rectangle in the top left image. Time course, 2 s (as shown by dashed arrows). The time period shown by a red rectangle
was used for the analysis in the top right. (bottom right) Fluctuation of the length of a single sarcomere (distance between a and b).
SD (i.e., SL displacement precision) was 3.37 nm. a.u., arbitrary units.
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us to measure single SL displacement with 15-nm preci-
sion at 30 fps (Fig. S4 and Video 5). It should be noted
that this value is approximately twofold greater than
that obtained in our previous study using QDs conju-
gated with anti-o-actinin antibody (i.e., 30-nm preci-
sion at 30 fps; Serizawa et al., 2011), indicating the
usefulness of our experimental system in the analysis of
sarcomere dynamics in isolated adult cardiomyocytes.
In the present study, however, we systematically investi-
gated the single sarcomere dynamics in cultured neonatal
cardiomyocytes, taking into consideration the following
three merits. First, experiments can be performed
under the isometric condition (hence the results can be
simply extrapolated to the previous findings obtained
from skinned fibers/myocytes of various cardiac speci-
mens). Second, a very high precision (~3 nm) in the
measurement of SL displacement can be obtained with
no need for a confocal system because of a thin layer of
myofibrils (compare with Fig. 1 A). Third, AcGFP can
be routinely expressed with a success rate of ~40% in
Z discs via lipofection (i.e., no need for advanced gene
expression techniques). Future research will need to
thoroughly investigate the sarcomere dynamics in both
healthy and diseased adult cardiomyocytes at nanome-
ter precision.

Itis well known that spontaneous, periodic releases of
Ca* occur from the SR in cultured neonatal myocytes
under physiological conditions, subsequently inducing
contractions with large sarcomeric amplitudes (Jacot
et al,, 2008, 2010; Rodriguez et al., 2011; Hersch et al.,
2013). Because the advantage of the present method is
to track the individual SL instead of measuring the
mean value, we conducted simultaneous imaging of sin-
gle sarcomeres and [Ca®]; in a-actinin~AcGFP-expressing
myocytes during spontaneous beating (at ~1 Hz; see
Fig. 2 A for six consecutive beats; also see Video 6).
The striations of AcGFP fluorescence were clearly seen
along the myocyte even after the loading of the Ca®* indi-
cator Fluo-4 during the course of beating, with Fluo-4 fluo-
rescence increasing only in the SL shortening phase.
We then conducted in-depth SL analyses on the second
and third beats (Fig. 2 B). It was found that sarcomeres
first shortened by ~0.3 pm in response to a rise in [Ca'];
(phase 1), followed by quick lengthening (phase 2) and
subsequent shortening to the original SL (phase 3).
Although phase 1 was observed in all sarcomeres within
the myocyte, phase 2 (and the subsequent phase 3) was
observed in a time-dependent and SL-dependent man-
ner (Fig. S5), independent of [Ca*T; (see Fig. 2 B, top,
a kymograph, for similar [Ca®*]; changes in various sar-
comeres). Namely, sarcomeres with lengths longer than
the mean value (~1.95 pm in this myocyte) were length-
ened in a consecutive manner, and shorter sarcomeres
did not exhibit the lengthening phase, coupled pre-
sumably with a decrease in load on myofibrils. Our anal-
ysis revealed that the averaging of SL measurement

caused marked underestimation of the lengthening speed
as a result of delineation of the timing for lengthening
between sequentially connecting sarcomeres (which oc-
curred in a time-dependent and length-dependent man-
ner). The histograms in Fig. S6 show that mean values
differ from the individual values on shortening and
lengthening properties and amplitude.

Here, it may be suggested that some sarcomeres are
overstretched under the present experimental setting
(i.e., up to ~2.8 pm; Fig. 2, A and B). However, Opitz et al.
(2004) demonstrated in rats that N2BA titin-expressing
fetal/neonatal myofibrils produce passive force ~15
times lower than that of adult myofibrils, and fetal/
neonatal myofibrils can be reversibly elongated up to
3.5-4.0 pm (compare with 2.5-3.0 pm in N2B titin-
expressing adult myofibrils). It is therefore likely that
depending on the condition, sarcomeres can be elon-
gated up to ~2.8 pm in cultured neonatal cardiomyo-
cytes of the rat, as observed in the present study. Future
research will clarify the molecular mechanism of the
propagation of lengthening/shortening of sarcomeres
along myofibrils during spontaneous beating.

As evident by the finding of nonuniform sarcomere
motion even within the same cell, it is reasonable to
consider that our SL nanometry has broad potential to
reveal slight but fundamental changes in sarcomere dy-
namics in neonatal as well as adult (Fig. S4) cardiomyo-
cytes under various conditions. We consider that SL
nanometry will enable nanoscale measurements of the
displacement of the distance between dye-labeled T tu-
bules in the isolated heart, not only when the heart is at
rest (Bub et al., 2010; Serizawa et al., 2011; Botcherby
etal.,, 2013; Inoue et al., 2013) but also in motion (e.g.,
in the beating heart in vivo).

The magnitude of SL shortening during spontaneous
beating in myocytes with no AcGFP expression was simi-
lar to that observed in AcGFP-expressing myocytes (i.e.,
~0.3 pm; Fig. S7 and Video 7). This demonstrates that
AcGFP expression in Z discs does not hinder sarcomeric
contractile properties.

Recently, Llewellyn et al. (2008) successfully imaged
sarcomere motion with the second harmonic genera-
tion (SHG) method. SHG allows for label-free imaging
of the A band of the sarcomere at a subsarcomere preci-
sion and thus appears to be versatile for the investigation
of sarcomere dynamics in various muscle types. How-
ever, the present method using the a-actinin—-AcGFP
expression provides (a) higher precision in the analysis
of SL displacement (3 and 15 nm in neonatal and adult
cardiomyocytes, respectively, as compared with 20-50 nm
by using SHG; Boulesteix et al., 2004; Llewellyn et al.,
2008); (b) nanoscale analysis of individual sarcomere dy-
namics without the use of smoothing techniques (which
are frequently used in SHG; Llewellyn et al., 2008);
(c) sharper fluorescence images based on the smaller
width of Z discs than that of the A band; and (d) steady
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Figure 2. Simultaneous measurement of single SL and [Ca®"]; in neonatal myocytes during spontaneous beating. (A, top) Epi-illumina-
tion image of an a-actinin—AcGFP-expressing myocyte loaded with Fluo-4. Numbers shown by arrows indicate sarcomeres used for
the analyses. (middle) Time course of changes in the lengths of seven sarcomeres and the FI of Fluo-4. (bottom) Superimposed data
showing SL changes. Six consecutive beats are shown. See Video 6. (B, top) Kymograph showing changes in the lengths of the seven
sarcomeres (second and third beats; compare with A). Color bar at right indicates the pseudo-color representation of FI (arbitrary).
(bottom) Graph showing changes in the lengths of the seven sarcomeres and the FI of Fluo-4 (second and third beats). Individual SL
data (corresponding to the sarcomeres numbered with different colors in A), averaged SL data (black line), and [Ca?]; changes (red
line) are shown on the same time course. (C, top) Bar graphs comparing the values of shortening time (left) and shortening velocity
(right) obtained by using different types of analysis. (bottom) Bar graphs comparing the values of lengthening time (left) and lengthen-
ing velocity (right) by using different types of analysis. Single SL (averaged individual SL, from 1 to 7, during six consecutive beatings)
versus averaged SL (from 1 to 7 during six consecutive beatings). *, P < 0.05. Error bars indicate means + SEM. a.u., arbitrary units.

fluorescence images independent of the viewing angle
(as compared with SHG; Plotnikov et al., 2006). In addi-
tion, our system allows for the simultaneous visualization
of individual sarcomere dynamics and [Ca®']; changes
at one wavelength excitation (with the precision of SL
displacement of 8 nm in the presence of the Ca**-sensi-
tive dye Fluo-4). Therefore, we consider that the present
method using a-actinin—AcGFP expression is a more
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suitable choice than SHG for the analysis of excitation—
contraction coupling in living cardiomyocytes at the in-
dividual sarcomere level.

Next, to investigate whether SL. nanometry is indeed
useful in analyzing sarcomere dynamics under conditions
with electric field stimulation, i.e., an experimentation
method frequently conducted in cardiac physiology, we
simultaneously recorded the motion of single sarcomeres
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and changes in [Ca®']; at various frequencies. Fig. 3 A
shows a typical Fluo-4-loaded AcGFP-expressed myocyte
at rest and at peak shortening and peak lengthening.
Clear striation patterns at both phases indicate that our
SL measurement system is of high precision regardless
of the level of [Ca®'];. Fig. 3 B represents typical record-
ings showing changes in SL and Fluo-4—dependent FI at
4 Hz (Video 8; also see Video 9 for stimulation at 2 Hz
in the same myocyte). All the sarcomeres started to
shorten (lengthen) almost simultaneously in response

Error bars indicate means + SEM.
a.u., arbitrary units.

1 2 3 4 5 6
Frequency (Hz)

to a rise (decrease) in FI. By analyzing the waveform
properties of single sarcomeres as a function of stimula-
tion frequency, we found that the lengthening time de-
creased with little change in shortening time, resulting
in a significant difference between shortening time and
lengthening time at 3, 4, and 5 Hz (shortening time >
lengthening time; P < 0.05; Fig. 3 C). However, the am-
plitude was unaffected by a change in stimulation fre-
quency, which is consistent with the finding in a previous
study with rat adult cardiomyocytes placed under the
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isometric condition by using carbon fibers (Peterson
etal., 2013).

Time to peak FI significantly decreased as frequency
increased (Fig. S8), as previously demonstrated in adult
mouse cardiomyocytes (Werdich et al., 2008). It is like-
wise important to note that diastolic FI significantly in-
creased in a frequency-dependent manner (P < 0.05 at
3 Hz and higher; Fig. 3 D; Serizawa et al., 2011), despite
the fact that these experiments were conducted at 36 +
0.5°C. Thus, given high heartbeat frequencies in neona-
tal rats (~~240 bpm on day 0 and ~300 bpm on day 1;
Smotherman et al., 1991), it is considered that diastolic
[Ca®']; is elevated in physiological settings, presumably
as a result of insufficient SR Ca®* pump activities (Serizawa
etal., 2011 and references therein).

We previously reported that by using QD-treated iso-
lated adult cardiomyocytes, a sarcomeric contraction
cycle consisted of shortening followed by slow lengthen-
ing at a low frequency of 1 Hz, and a phase shift oc-
curred upon an increase in stimulation frequency, in
that the cycle consisted of shortening followed by quick
lengthening at physiologically high frequencies (Serizawa
etal,, 2011). However, in the present study, shortening
time was longer over the range of frequencies tested
(Fig. 3 C). We consider that the difference in the wave-
form at a low frequency in the previous study (Serizawa
et al,, 2011) and the present study results primarily
from the difference in the experimental condition (iso-
tonic vs. isometric), rather than from the difference in
the preparation (adult vs. neonatal).

Then, to further investigate the capability of SL nano-
metry under conditions in which the highest spatial
resolution is obtained (i.e., with no interference of [Ca?'],
changes), we analyzed sarcomeric waveform properties
during SPOCs in ionomycin (Kauffman et al., 1980;
Morgan and Jacob, 1994)-treated neonatal cardiomyo-
cytes with SR functions blocked by ryanodine (Sutko
etal., 1997) and thapsigargin (Davidson and Varhol, 1995;
Treiman etal., 1998). Fig. 4 A shows an epi-illumination
image of an a-actinin—AcGFP-expressing cardiomyocyte
(left) and the waveforms of SPOC at two different time
phases (right; Video 10; also see Video 11 for cell-SPOC
with a low frequency of ~1 Hz). Despite different mag-
nitudes of Z-disc movement (at time phases 1 and 2), the
amplitude of sarcomeric oscillation was similar (Fig. 4 A).
As previously reported in studies on adult cardiac mus-
cles of various animals (Sasaki et al., 2006; Ishiwata
etal., 2011; Serizawa et al., 2011), cell-SPOC waves con-
sisted of slow shortening followed by quick lengthening.
In contrast to the situation in skinned adult cardiomy-
ocytes in which the SPOC frequencies are relatively con-
stant (and varies according to animal species; Sasaki
et al., 2006; Ishiwata et al., 2011; Serizawa et al., 2011),
relatively large cell-to-cell variations were observed (i.e.,
from ~1 to ~4.5 Hz; 2.08 + 0.11 Hz on average from
31 myocytes) in ionomycin-treated neonatal myocytes,
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with the amplitude inversely correlated with frequency
(Fig. 4 B). Likewise, the shortening time/lengthen-
ing time ratio decreased with an increase in frequency
(Fig. 4 C) as a result of a frequency-dependent de-
crease in shortening time with no significant change
in lengthening time (Fig. S9). It should be stressed that
at a physiologically relevant frequency of 4 Hz, the val-
ues in the relationships in Fig. 4 (B and C) became
statistically indistinguishable between electric field stim-
ulation and cell-SPOC, suggesting that the sawtooth
waveform is intrinsic to sarcomeres themselves, with and
without changes in [Ca%] (Sasaki et al., 2006; Ishiwata
et al., 2011). When converted to velocity, it was found
that shortening velocity increased and lengthening ve-
locity decreased, both in a linear fashion, with an in-
crease in frequency (Fig. 4 D). The present findings
suggest that sarcomeric auto-oscillatory properties may
operate physiologically upon relaxation by facilitating
relaxation (lengthening) to adjacent sarcomeres (Stehle
etal., 2006). However, care should be taken in the inter-
pretation of the data; because the stiffness of the glass is
higher than that of cardiac tissue, the sarcomere dy-
namics observed in the present study may reflect the
properties of a cardiomyocyte attached to the glass sur-
face rather than that under physiological situations
(i.e., in the heart).

Here, it should be noted that although cell-SPOC oc-
curs at partial activation (pCa 5.75 in the present study)
and its waveform properties are similar to those obtained
under electric field stimulation (compare with Fig. 4),
cell-SPOC should be regarded as a useful experimental
system that reveals important characteristics of sarcomere
dynamics (e.g., shortening and lengthening properties,
oscillation frequency, and the magnitude of contraction
[Z-disc amplitude]) in living cardiomyocytes. Future
studies are needed to conduct SL nanometry in the beat-
ing heart in vivo to investigate whether or not sarcomeric
auto-oscillations indeed occur under physiological con-
ditions at various developmental stages.

Recently, we constructed a mathematical model of
SPOC (Ishiwata et al., 2011; Sato et al., 2011, 2013). In the
model analysis, we demonstrated that an increase in
the myosin attachment rate («) results in an increase in
amplitude and a decrease in frequency via an increase
in shortening time. We therefore consider that a vari-
ance of regional [Ca*]; around myofilaments in neona-
tal myocytes (and thus a variance in o; see Ishiwata
etal., 2011; Sato etal., 2011, 2013 for effects of Ca* on the
myosin attachment rate), albeit by a small magnitude,
modulates the properties of cell-SPOC. Consistent with
this interpretation, at frequencies <1.5 Hz, the values of
SL at peak shortening became <1.6 pm (i.e., shorter
than the A-band length; Fig. 4 E), indicating that sub-
stantial actomyosin-based force was generated upon
shortening. With an increase in frequency, maximal SL
decreased and minimal SL increased, both in a linear
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Figure 4. Cell-SPOC in neonatal cardio-
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fashion, which is consistent with the notion that inter-
nal load along myofibrils is reduced as frequency in-
creases (coupled with a decrease in o).

Finally, to explore whether SL nanometry can be used
for the analysis of pharmacological actions of cardiac
drugs, we investigated the effects of the actomyosin acti-
vator OM (Malik et al., 2011) on cell-SPOC. It has been
reported that OM specifically targets and activates myo-
cardial ATPase and improves energy utilization (Malik
et al.,, 2011). In the present study, 0.6 pM OM did not

Frequency (Hz)

1.598 (R=0.315; P < 0.002) for minimal
SLand Y= —0.090X+ 2.480 (R=0.539;
P < 0.0001) for maximal SL. Note that
minimal SL is <1.6 pm (1.58 pm; Luther
et al., 2008); i.e., the length of the
cardiac A band. Error bars indicate
means + SEM.

affect amplitude of sarcomeric oscillations; rather, it sig-
nificantly enhanced the Z-disc motion along myofibrils
and shifted the relationship of SL amplitude versus Z-disc
motion upward (Fig. 5 A and Video 12). The enhanced
Z-disc amplitude likely results from an increase in acto-
myosin-based force along myofibrils and can be used as
an index of contractility (as predicted by our SPOC
model; Sato et al., 2011). OM increased (decreased)
shortening time (shortening velocity; Fig. 5 B), but it
did not significantly affect the lengthening properties
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(Fig. 5 C), thereby decreasing the cell-SPOC frequency
(i.e., 1.63 + 0.16 Hz on average from eight myocytes; P <
0.05 compared with the value obtained in the absence
of OM, 2.08 = 0.11 Hz). These experimental findings
can be qualitatively explained by our SPOC model,
which takes into account the “molecular friction” (i.e.,
the friction between actin and myosin; n [~~1/3, where
B is the crossbridge detachment rate] in our SPOC
model; Sato et al., 2011) in addition to o (myosin at-
tachment rate). Table 1 summarizes the possible effects
of OM on a and m and ensuing changes in cell-SPOC
properties. If OM, as an actomyosin activator, increases
o and decreases 3, then m will be increased, resulting in
a decrease in shortening velocity (and hence frequency),
as found in the present study (Fig. 5 and Fig. S10). Our

indicate means + SEM.

model likewise predicts that an increase in m decreases
amplitude (Sato et al., 2011), and, accordingly, this ef-
fect will offset the increase in amplitude coupled with
an increase in a (see Fig. 5 A for no significant effect of
OM on cell-SPOC amplitude).

In conclusion, we developed a novel experimental
system with cardiomyocytes allowing for nanoimaging
of sarcomeric dynamic properties. This system is use-
ful for analyzing cardiac excitation—contraction cou-
pling at nanometer precision and for determining the
changes in health and disease during development in
future studies.

We thank Dr. Yuta Shimamoto for critical reading of the
manuscript.

TABLE 1
Summary of cell-SPOC parameters used for the discussion on the experimental findings of OM
Parameter Physiological meaning +OM
Parameter change Amplitude Frequency
a Crossbridge attachment rate ) 1 |
n Molecular frictional constant for crossbridge formation 1 | |

Our mathematical model (Sato et al., 2011) predicts that OM decreases frequency via an increase in « and an increase in m, but the compound hardly

changes amplitude because the effect of an increase in « is offset by that of an increase in m (see Results and discussion). Amplitude, cell-SPOC amplitude;

frequency, cell-SPOC frequency. Arrows, directions of change.
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