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Abstract

Background: The differentiation of an extracellular matrix (ECM) at the apical side of epithelial cells implies massive
polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity
for a correct and efficient ECM formation.

Principal Findings: We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form
their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors
haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal
luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and
Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus.

Conclusion: Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM
formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on
the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that
COPII vesicles constitute a central hub for these processes.
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Introduction

Epithelia produce apical extracellular matrices (aECM) that are

essential for their function as barriers. For this purpose, epithelial

aECMs often adopt a tissue-specific and elaborate architecture. A

central element of aECM formation is the apical plasma

membrane that serves as an interface of aECM material delivery

and as a platform for aECM organisation. Hence, along with

deposition of aECM components into the extracellular space, the

apical plasma membrane has to be equipped with factors that

mediate its function during aECM differentiation. Both processes

conceivably require concerted and polarised secretion and

membrane trafficking.

Generally, secretion and membrane trafficking engage the

basic secretory route running from the ER via coatamer protein

complex II (COPII) coated vesicles to the Golgi apparatus, and

from the Golgi apparatus via adaptor protein (AP)-clathrin-

coated vesicles to the plasma membrane. This anterograde

transport is usually counterbalanced by the retrograde transport

of membranes from the plasma membrane to endosomes and the

Golgi apparatus via AP-clathrin-coated vesicles, and from the

Golgi apparatus back to the ER via COPI-coated vesicles.

Selective docking of vesicles with their target membranes and

their subsequent fusion both employ the activity of membrane-

specific SNARE proteins [1]. These generic mechanisms are

probably not sufficient to explain directionality of secretion. In

polarised cells, directionality of vesicle transport depends on the

cytoskeleton that is organised by subunits of protein complexes

arranged along the apical and lateral plasma membrane [2,3].

The evolutionary conserved transmembrane protein Crumbs

(Crb) has an influence on the organisation of the actin

cytoskeleton at the apical portion of the cell through the

interaction with the actin-binding factor b-heavy spectrin [4,5].

The stability of microtubules is regulated by the atypical protein

kinase C (aPKC), which additionally manipulates the function of

Crb [6,7]. The cytoskeleton in turn stabilises the protein complex

that constitutes the adherens junctions, which being basal to the

subapical Crb-complex contribute to the tautness of epithelia.

Finally, positioning and function of the Crb-complex is also

regulated by the exocyst complex subunit Exo84 and by

membrane recycling driven by the endosomal small GTPase

Rab11 [8,9].
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While both the mechanisms of polarised secretion and the

histology of various aECMs have been studied in detail, a link

between polarised secretion in epithelia and aECM production

is almost unexplored. An amenable tissue allowing detailed

molecular and cellular analysis of aECM differentiation is the

larval skin of the fruit fly Drosophila melanogaster. It consists of the

epidermis and the apical cuticle that is an aECM deposited

during embryogenesis. The Drosophila larval cuticle is a typical

arthropod cuticle that adopts a stereotypic layered architecture

composed of the polysaccharide chitin, lipids and proteins [10].

Several factors playing essential roles during Drosophila larval

skin differentiation have been genetically identified and

phenotypically characterised in the past few years. Most of

these factors act within the apical plasma membrane. These are

the Zona Pellucida (ZP) proteins Piopio (Pio) and Papillote (Pot)

that mediate the contact between the aECM and the surface of

the epidermal cells [11], and Retroactive (Rtv) and Knickkopf

(Knk) that are required for the organisation of the chitin

microfibril in the aECM, the molecular functions of which,

however, are unknown [12,13]. Mutations in the genes coding

for these factors cause the detachment of the macroscopically

normal-looking cuticle from the epidermis. A second group of

mutations provokes a thin and pale cuticle suggesting a

fundamental function of the affected genes in cuticle deposition.

Some of these genes code for enzymes catalysing the synthesis

of the steroid hormone ecdysone [14], while others encode

factors involved in basic cellular processes related to secretion.

One of these factors is Mummy (Mmy), the Drosophila

UDP-GlcNAc pyrophosphorylase producing UDP-GlcNAc,

which is an important component of N-glycans and the

monomer of chitin [15,16,17]. Another genetically charac-

terised factor that is crucial for secretion is the Drosophila

Syntaxin1A (Syx1A), the SNARE of the apical plasma

membrane [18]. Interestingly, mutations in syx1A abrogate

the shape of the apical plasma membrane and the secretion of

cuticle proteins, but not chitin synthesis that occurs at the

plasma membrane suggesting that a second apical SNARE is

needed for full aECM production.

Many of the same genes have been shown to be required for

embryonic morphogenesis of the respiratory organ (trachea), a

network of fine epithelial tubes that spans the organism. Newly

formed tracheal tubes have a narrow lumen diameter that must

expand several-fold before becoming functional. The widening of

the tracheal lumen requires apical cell secretion [19,20], and

uniform diameter expansion depends on a transient chitinous

luminal matrix [21,22]. Both Knk and Rtv are needed for the

organization of luminal chitin matrix, as later of the tracheal

cuticle, and loss of mmy abolishes chitin production for either

matrix [13,15,16].

For an advanced understanding of the molecular mechanisms

governing aECM differentiation in polarised epithelial cells,

identification and characterisation of additional factors is

needed. Two genetically defined genes ghost (gho) and haunted

(hau) are excellent candidates for this goal, as larvae suffering

mutations in these genes display a phenotype similar to that of

syx1A and mmy mutant larvae [23,24]. In the present work, we

show that hau and gho code for the Drosophila COPII components

Sec24 and Sec23, respectively. We demonstrate that Hau

and Gho function to maintain correct localisation of cell polarity

markers in the tracheae and the epidermis while they support

deposition of tracheal luminal and cuticle material.

These findings underline that the secretory pathway is an

important motor for the differentiation of the tracheae and the

epidermis.

Materials and Methods

Fly work
Flies were kept in cages on apple juice agar plates at 25uC to

collect. Embryos were staged according to the time of develop-

ment at 25uC described in Hartenstein and Campos-Ortega [25].

Stocks used in this work are listed in table 1. Homozygous or

transheterozygous mutant embryos or larvae were unambiguously

and manually collected in a population of progeny segregating

GFP-positive (Kr-Gal4 and UAS-GFP harbouring balancer [26])

and GFP-negative (mutant) embryos.

Microscopy
For light and fluorescence microscopy, embryos were fixed

chemically (in 3,7% formaldehyde) or physically (by boiling)

according to standard protocols [27]. For immunohistochemical

detection of antigens, the following primary antibodies were used in

this study: the tracheal luminal specific mouse IgM monoclonal

antibody 2A12 (1:10, Developmental Studies Hybridoma Bank,

DSHB), mouse IgG monoclonal anti-GM130 (1:500, Abcam),

mouse IgG monoclonal anti-KDEL (1:400, Stressgen Bioreagents,

Figure 9 or 1:500, KR-10, Abcam, Figure 8), rabbit anti-Rab5

(1:1000, [28]), rabbit anti-Rab11 (1:8000, [28]), rabbit polyclonal

anti-Verm (1:300), and rabbit polyclonal anti-Knk (1:1500,

preabsorbed against wild-type embryos before use). A fluorescein-

conjugated chitin-binding probe was used to detect chitin (CBP,

1:500, New England Biolabs). For visualisation, secondary fluores-

cent antibodies from Molecular Probes (1:500) were used: Alexa 488

goat anti-mouse IgM, Alexa 568 goat anti-mouse IgG, Alexa 568

goat anti-mouse IgG2a, Alexa 488 goat anti-rabbit IgG, Alexa 555

goat anti-rabbit IgG and Alexa 568 goat anti-mouse IgG1. A Nikon

eclipse E1000 microscope was used for Nomarski and fluorescence

imaging and Bio-Rad Radiance 2000 for confocal imaging.

Embryos and first instar larvae were prepared for electron

microscopy following previously described protocols [29].

Molecular biology
For identification of hau and gho (PCR & sequencing), molecular

experiments were performed following standard protocols for

Table 1. Fly stocks used in this work.

genotype origin

Samarkand (wild-type) Bloomington

hau9G14 [23]

hauCK [35]

Df(3R)ED5187 Bloomington

ghoIB104 [24]

ghoIP107 [24]

Df(2L)BSC688 Bloomington

Df(2L)Exel7010 Bloomington

sar1#28 [44]

Stocks of flies segregating the hau9G14 and both gho mutations were obtained
from the Tübingen Stock Collection (http://www.eb.tuebingen.mpg.de/
departments/3-genetics/drosophila/drosophila-stock-collection/drosophila-
stock-collection). The hauCK segregating flies were generated by Kay Giesen in
the laboratory of Christian Klämbt (Münster University). The sar1 stock was a
kind gift of Christos Samakovlis (Stockholm University). Flies that segregate
deficiencies in the hau or gho chromosomic region were obtained from the
Bloomington Stock Center (Indiana University, Bloomington, USA). All mutant
stocks were kept over respective balancers carrying Kr-Gal4 and UAS-GFP [26].
doi:10.1371/journal.pone.0010802.t001
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molecular biology. For Western blot analysis, larvae were

homogenized for protein isolation in PLC buffer containing

protease inhibitors. Protein amounts were estimated by spectrom-

etry at 280 nm [30]. Following SDS-polyacrylamide gel electro-

phoresis (SDS-PAGE, 7.5%), proteins were transferred to a

nitrocellulose membrane (Whatman) by the semi-dry method.

Proteins were detected using the Odyssey infrared dual-colour

detection system (LI-CORH Biosciences). For immunodetection of

Knk and Serp on Western blots, specific primary antibodies were

used at the dilutions of 1:1000 and 1:300, respectively.

Results

Mutations in hau and gho affect cuticle differentiation
The wild-type first instar larval cuticle lines the body of the

animal, structures its head, and stabilizes the air-filled trachea

(Figure 1A,A’). Embryos mutant for either haunted (hau) or ghost (gho)

produce only a discontinuous or thin larval cuticle and the

tracheae do not become air-filled and are barely visible, whereas

their head skeleton albeit less melanised, has a normal morphology

(Figure 1B,B’ and C,C’). These animals die at the first instar larval

stage within the egg case. Specialised cuticular structures such as

the ventral denticles and the dorsal hairs are missing in hau and gho

mutant larvae (Figure 1D–F). To test whether the epidermis and

the trachea nevertheless produce chitin, we detected chitin with a

FITC-coupled chitin-binding protein (CBP) in stage 17 wild-type

and mutant embryos (Figure 1G–I). Mutations in either hau or gho

cause reduced chitin in the epidermis and the trachea. Overall, the

gho phenotype is stronger than the hau phenotype. Of note, larvae

homozygous for any hau (9G14 and CK) or gho (IB104 and IP107)

mutation or carrying the mutation in trans over each other or over

respective deficiencies (see below) exhibit the same defects. We can

therefore neglect the possibility that additional mutations on the

chromosomes carrying hau or gho contribute to the strength of the

Figure 1. Larvae carrying mutations in hau and gho have a thin and pale cuticle. Wild-type larvae ready to hatch have a body cuticle that
shrouds the inner organs (A). The head skeleton (*) and the air-filled dorsal trunk (arrow) are nevertheless discernable. By Nomarski microscopy, light
refraction reveals the body cuticle of wild-type larvae within the egg case fixed in Hoyer’s medium (A’). Due to a thin cuticle, the inner organs, such as
the Malpighian tubules and the digestive system (arrowheads) of larvae mutant for hau and gho are well visible (B and C). Probably due to the failure
to air-fill, their dorsal trunk is not identifiable at this magnification (compare to Figure 7). As seen in Hoyer’s fixed hau and gho larvae, the mutant
cuticle only weakly refracts light in Nomarski optics (B’ and C’). The head skeleton of these larvae seems to have a correct morphology but is less
tanned. The ventral side of the wild-type larval body is decorated by belts of denticles, while more filigree hairs cover the dorsal side (D and D’). The
ventral and dorsal sides of hau and gho mutant larvae, by contrast, are naked (E–F’). The surface of both mutant larvae is, however, not smooth but
wrinkly, and in gho mutant larvae, epidermal cells at both sides appear to round up and leave the epithelium (see Figure 3). The epidermis, the dorsal
trunk (arrow) and the head skeleton of wild-type stage 17 embryos are lined by chitin as detected with the FITC-conjugated chitin-binding probe
(green, G). The chitin signal in the head skeleton and the body of hau and gho mutant stage 17 embryos is weaker than in wild-type embryos (H and
I). Moreover, their dorsal trunk (arrow) is narrower than the wild-type one. (A–F’) Nomarski light microscopy of wild-type, hau and gho mutant larvae
within the egg case. (G–I) Fluorescence microscopy of heat fixed stage 17 embryos. Scale bar in (D) is 50mm and applies to (D–F’).
doi:10.1371/journal.pone.0010802.g001
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phenotypes described. Taken together, hau and gho are required for

correct deployment of cuticle melanisation and chitin deposition.

To understand the cellular defects caused by mutations in hau

and gho, we examined the ultrastructure of epidermal cells in hau

and gho mutant embryos and larvae. In the wild-type larva the

cuticle consists of three biochemically distinct horizontal layers

(Figure 2A). The outermost layer is the envelope that is composed

of alternating electron-dense and electron-lucid films. The middle

epicuticle is a bipartite proteinaceous layer with an upper electron-

lucid and a lower electron-dense sublayer. An ordered chitin-

protein matrix constitutes the innermost procuticle. The cuticle of

hau mutant larvae has a reduced epicuticle, and the chitin-protein

organisation is lost in the procuticle, while the envelope has a

normal appearance (Figure 2B). The cuticle of gho mutant larvae is

very thin and fragmented and lacks the epicuticle (Figure 2C).

Organisation of the procuticle is supposedly controlled by the

apical plasma membrane that forms longitudinal corrugations

called apical undulae during chitin synthesis that run perpendicular

to the anterior-posterior axis of the developing embryo (Figure 2D)

[29]. The epidermal cells of hau and gho mutant embryos usually

do not establish apical undulae (Figure 2E,F). In rare cases, the

apical plasma membrane of the epidermis of hau mutant embryos

forms apical undulae close to the apical cell-cell junctions. In

summary, hau and gho are needed for cuticle formation and

shaping the epidermal apical plasma membrane.

Hau and gho are needed for epidermal cell shape and
polarity

The epidermis of larvae mutant for hau and gho eventually

disintegrates and single cells leave the tissue (Figure 3A–C). To

have a more detailed understanding of this defect, we studied the

morphology of the epidermal cells by electron microscopy. The

wild-type larval epidermal cells are flat and contact their

neighbours via a meandering lateral membrane that is mainly

characterised by the apical adherens junctions and the basolateral

septate junctions (Figure 3D,F). The gho or hau larval epidermal

cells are cuboidal and their lateral membrane does not meander

(Figure 3E,G,H). The adherens junctions of hau and gho mutant

larval epidermal cells look loose and the basolateral septate

junctions appear to be less complex. Especially in gho mutant

larvae, the lateral cell-cell contacts are effaced (Figure 3H). At the

onset of cuticle differentiation, at stage 15 cell shapes in hau, gho

and wild-type embryos are indistinguishable (data not shown).

As in many epithelia, the basal side of wild-type epidermal cells

is covered by the basement membrane (Figure 4A). The basal side

of hau and gho mutant epidermal cells is, by contrast, naked

(Fig 4B,C). Defects at this side of hau and gho mutant epidermal

cells have a more drastic effect in the muscle attachment sites, the

apodemes (Figure 4D–F’). Muscles contact the jagged basal plasma

membrane of apodemal cells by specialised junctions, the basal

hemidesmosomes in wild-type larvae and a complex intracellular

ECM (Figure 4D). In hau and gho mutant apodemes the basal

plasma membrane is smooth (Figure 4E–F’), and the muscle often

detaches from the epidermis (Figure 4F,F’).

The ultrastructural studies indicate that cell polarity is

compromised in hau and gho mutant larvae. To verify whether

cell polarity may already be perturbed during the time of massive

cuticle production, we performed immunohistochemical experi-

ments in stage 15–17 embryos using antibodies against factors that

mark different domains of the lateral plasma membrane. Crumbs

(Crb) is a transmembrane protein and localises to a lateral position

of the apical plasma membrane of epidermal cells in stage 15 and

16 wild-type embryos (Figure 5A,C) [4]. Crb localisation is normal

in stage 15 hau mutant embryos (Figure 5B). In stage 16 gho mutant

embryos, in addition to a variable but occasionally normal

localisation at the apico-lateral membrane, the Crb signal

accumulates within the cell (Figure 5D). Fasciclin 3 (Fas3) is a

component of the lateral membrane strongly marking the apical

position of the lateral membrane underneath the Crb-domain

(Figure 5E). Fas3 amounts gradually decrease towards the basal

end of the lateral membrane. In hau and gho mutant embryos the

Fas3 localisation is not concentrated at the apico-lateral domain

(Figure 5F,G). In conclusion, cell polarity is impaired only slightly

during cuticle differentiation, and worsens until the end of

embryogenesis.

Figure 2. Hau and Gho are required for full cuticle differentiation. The wild-type larval cuticle is a stratified extracellular matrix (A). Based on
the molecular composition, it is subdivided into three layers. The envelope (env) is the outermost layer, separated by the bipartite epicuticle (epi)
from the innermost procuticle (pro). The cuticle of hau mutant larvae is disorganised (B). The electron-dense basal sublayer of the epicuticle often
contacts the envelope and the chitin matrix has lost its tight packaging. In gho mutant larvae, the cuticle is fragmented and thin (C). Between late
stage 16 and mid-stage 17 the apical plasma membrane of epidermal cells forms regular corrugations called apical undulae (au), at the tip of which
chitin synthesis takes place, while secretion occurs at the valley between the corrugations (D). The epidermal cells of hau and gho mutant embryos
fail to form repeated corrugations (E and F). (A–F) Electronmicrographs of ultrathinsections. Scale bar in (A) is 500nm and applies to (B) and (C). Scale
bar in (D) is 500nm and applies to (E) and (F).
doi:10.1371/journal.pone.0010802.g002
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Both hau and gho mutations cause defects in membrane shape.

To learn to what extent membrane trafficking is abrogated by

these mutations, we investigated the behaviour of small GTPases

such as Rab5 and Rab11 in stage 16 and 17 hau and gho mutant

embryos. Rab11 is involved in endocytic membrane recycling,

whereas Rab5 regulates the fusion of endocytic vesicles with early

endosomes [31,32]. Both proteins are localised to the cytoplasm of

wild-type epidermal cells with a slight accumulation to the apical

portion of the cell (Figure 5A,C). In hau and gho mutant embryos

the distribution of Rab5 and Rab11 is normal (Figure 5B,D).

The tracheae of hau and gho mutant larvae
The tracheal cuticle covers the apical (luminal) surface of the

tracheal epithelium, and forms a specialized spiral-like structure

called the taenidiae. The taenidiae are chitin-containing cuticular

folds that are thought to support an open lumen while allowing

flexibility along the tubular axis (Figure 6A,B). Detection of chitin

by CBP highlights remnants of the taenidiae in hau mutant

embryos, whereas gho mutant embryos seem not to form these

structures (Figure 6C and E). Ultrastructural analysis of the

trachea confirms the presence of taenidiae in hau mutant larvae

(Figure 6D), however, their size is variable and their spacing is

irregular. In gho mutant larvae traces of shallow taenidia can be

distinguished at the ultrastructural level (Figure 6F).

Detection of cuticular chitin also reveals that the main tracheal

branches, the dorsal trunks, of hau and gho mutant larvae have a

much smaller lumen diameter than those of the wild-type

(Figure 6A, C and E). Such narrow lumens are also obvious in

living animals (Figure 7A,B). Since lumen diameter growth is

found to depend on an intact secretory pathway, and substantial

apical secretion is noted in tracheal tubes during stage 15 [19], we

investigated whether the narrower dorsal trunks in hau and gho

mutant embryos correlate with defects in secretion. The tracheal

lumen-specific antibody 2A12, recognizes a secreted product that

fills the tracheal lumen from stage 14. The 2A12 signal is detected

in the lumen of hau and gho mutant embryos at late stage 15, but in

the mutants, there is also a strong cytoplasmic signal in the

perinuclear area (Figure 7C–E). Another luminal protein,

Figure 3. Hau and Gho are involved in shaping the larval epidermal cell. The cuticle (arrow) lines the apical side of the epidermis (bracket,
A). The cuticle of hau and gho mutant larvae is thinner and discontinuous (arrows, B and C). Their epidermal cells (bracket) are cuboidal (B) or round
and may lose contact to their neighbours (C, see also Figure 1F,F’). The wild-type larval epidermal cell is flat with large apical surface covered by the
cuticle (cu, D). Epidermal cells of hau mutant larvae are cuboidal and their lateral membranes are straight (E). Epidermal cells of gho mutant larvae
display the same phenotype (not shown). The wild-type epidermal cell contacts its neighbours with its meandering lateral membrane (F).
Histologically, the two obvious contact features are the subapical adherens junctions (aj) and the lateral septate junctions (sj). The lateral membranes
of epidermal cells of hau mutant larvae are straight and the junctions appear less prominent (G). Epidermal cells of gho mutant larvae show a similar
phenotype (not shown). Occasionally and especially in the gho mutant larval epidermis, the cell-cell contacts are lost (H). (A–C) Light-microscopy of
living wild-type, hau and gho mutant larvae within the egg case (x). (D–H) Electronmicrographs of ultrathinsections. Scale bar in (A–C) is 25mm. Scale
bars in (D and E) are 1 mm. Scale bar in (F) is 500 nm and applies also to (G). Scale bar in (H) is 500 nm.
doi:10.1371/journal.pone.0010802.g003
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Vermiform (Verm), is a chitin-modifying enzyme detected in the

dorsal trunk lumen from stage 13 [33,34]. In addition to its

detection in the lumen, the Verm signal also accumulates within

the mutant tracheal cells similar to the 2A12-signal (Figure 7C–H).

The secretory pathway is also responsible for the correct

localisation of membrane-inserted factors. To consider this aspect,

we studied the membrane factors Fas3 and Crb in stage 16

embryos (Figure 7I–N). Localisation of the apical membrane

marker Crb appears normal in tracheal cells of both mutants

(Figure 7I–K), but the membrane staining for Fas3 is reduced in

the mutants. In wild type tracheal cells, Fas3 accumulates within

the apical third of the lateral membrane (Figure 7L), whereas in

hau mutants, this apical Fas3-staining is reduced and Fas3 is also

detected in the cytoplasm (Figure 7M). In gho mutants Fas3 levels

appear even more reduced, and Fas3 is only weakly detected at the

apical domain of the lateral membrane (Figure 7N).

In summary, Hau and Gho function is important for the

secretion of some tracheal luminal factors and for the stable

localisation of certain membrane-inserted proteins.

ER morphology is aberrant in the epidermal and tracheal
cells of hau and gho mutant embryos

In electron micrographs, we noticed that the ER of hau and gho

mutant epidermal and tracheal cells consists of large spherical

compartments instead of tubules as observed in respective wild-

type cells (Figure 2, 3, 6 and 7). Figures 8A and B show a

Figure 4. Hau and Gho conduct basement membrane production. The basal side of the wild-type larval epidermal cells (cell) separated by
the lateral plasma membrane (lm) is underlain by the extracellular basement membrane (arrow, A). The basement membrane is missing in hau and
gho mutant larval epidermal cells (B and C). The basal ECM (*) of wild-type larval apodemal cells (apo) is mediating the contact to muscles (mus)
attached to the epidermis (D,D’). At the inner side of the apodemal cell and muscles electron-dense junctional material accumulates (arrows). The hau
mutant larval apodemes have a normal-looking basal ECM, the muscular intracellular junctional material, however, is less abundant (E,E’). The gho
mutant larval apodemal basal ECM is disrupted, and muscles detach from the epidermis (F,F’). No junctional material is detected at the inner side of
the apodemal cell of these larvae. The red dashed rectangle in (D–F) is enlarged in (D’–F’). (A–F’) Electron micrographs of ultrathinsections. Scale bars
in (A–C) are 1mm. Scale bar in (D) is 500nm and applies also to (E) and (F). Scale bar in (D’) is (500nm and applies also to (E’) and (F’).
doi:10.1371/journal.pone.0010802.g004
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magnification of the ER compartments in the epidermis of wild-

type and hau mutant larvae, respectively, and a magnification of

the ER in hau and gho mutant tracheal cells is shown in Figure S1.

The perinuclear ER of these cells is affected as well (Figure S2).

The epidermal and tracheal rounded ER phenotype caused by

mutations in hau and gho can be traced back to stage 15, when

cuticle differentiation is initiated in the epidermis (Figure 8C,D).

The tracheal ER of these embryos appears to be less affected than

in the epidermis (data not shown).

To study whether the aberrant morphology of the hau and gho

mutant ER reflects a loss of ER function and identity, we

performed immunohistochemical experiments to detect ER

resident proteins using an antibody against the KDEL signature

(Figure 8E–G). In wild-type epidermal cells of stage 16 embryos

KDEL is detected as dots within the cell. KDEL detection is

normal in epidermal cells of hau and gho mutant stage 16 embryos.

To test whether a possible abrogated ER function may have an

influence on Golgi function, we used the antibody against the

Golgi organising protein GM130 to visualise the Golgi apparatus

in wild-type, hau and gho mutant stage 16 embryos (Figure 8H–J).

GM130 is distributed in wild-type epidermal cells as large and

small dots. The GM130 signal is greatly reduced in hau and gho

mutant epidermal cells. In tracheal cells of stage 16 embryos, the

impact of hau and gho mutations on ER integrity is more dramatic

(Figure 9). Compared to the situation in wild-type, the KDEL

signal is reduced in both gho and hau mutant tracheal cells

(Figure 9A–F). These experiments demonstrate that the organisa-

tion and identity of the ER and the Golgi apparatus are

compromised in hau and gho embryos.

To test whether the disrupted organisation of the ER and the

Golgi apparatus in hau and gho embryos may affect correct

modification of proteins running through the secretory pathway,

we performed Western blot experiments using antibodies against

the membrane-bound Knickkopf (Knk) protein, or the secreted

Serp protein (Figure 10). The size of Knk, that we have previously

shown to be glycosylated at three sites [13,15], is unchanged in hau

and gho mutant embryos (10A). The migration of the extracellular

Serp protein with three putative N-glycosylation sites (Asp246,

Asp276, Asp298) is also normal in these embryos (10B). Hence, ER

and Golgi organisation but not their function as compartments of

N-glycosylation are compromised by mutations in hau or gho.

hau and gho encode factors of the COPII complex
To understand the molecular roles of hau and gho in cuticle

differentiation, we identified the genomic location and the

sequence of both genes. Mutations in hau had previously been

mapped to the right arm of chromosome 3 (cytological location

85D) [35], and mutations in gho had been localised to the right arm

of chromosome 2 (recombination map position 68) [24]. By

deficiency mapping, we localised hau to the cytological interval

between 83B7 and 83B8 uncovered by the deficiency

Df(3R)ED5187 on the right arm of chromosome 3 (Figure 11A),

and gho to the cytological interval between 22D4 and 22D6

defined by the overlapping region of the deficiencies Df(2L)Ex-

cel7010 and Df(2L)BSC688 on the left arm of chromosome 2

(Figure 11C). Thus, the mapping data in [24] and [35] are

inaccurate. The hau-containing interval harbours two genes, one of

which is CG1250 that encodes the only Drosophila Sec23 ortholog,

that, as a COPII component, is involved in vesicle budding from

the ER [36]. We sequenced the sec23 genomic DNA of embryos

homozygous mutant for hau and detected a point mutation in each

of our alleles (Figure 11B). A transition of the C643 to T resulting in

Figure 5. Hau and Gho stabilise epidermal cell polarity. The transmembrane protein Crb (red) localises to the apico-lateral region of wild-type
stage 15 embryonic epidermal lateral plasma membrane (A). The small GTPase Rab5 (green) is distributed in the cytoplasm. Localisation of Crb and
Rab5 is normal in hau mutant embryonic epidermal cells (B). At stage 16, Crb continues to localise to the apico-lateral region of the lateral plasma
membrane (C). The small GTPase Rab11 (green) is distributed in the cytoplasm with a considerable accumulation at the apical portion of the cell. The
Crb signal is detected also in the cytoplasm of gho mutant embryonic cells, while Rab11 distribution is normal (D). The lateral plasma membrane of
wild-type embryos – here stage 16 - is marked by proteins like Fas3 (red) constituting the septate junctions (E). The Fas3 signal gradually decreases
from the apical to the basal end of the lateral plasma membrane. The nuclei (blue) of these cells locate to the basal side of the columnar cell. In hau
and gho embryonic mutant epidermal cells the Fas3 signal is homogeneously distributed along the lateral plasma membrane (F and G). The
epidermal cells are cuboidal and the nuclei are lie in the middle of the cell. Images from confocal microscopy.
doi:10.1371/journal.pone.0010802.g005
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a nonsense mutation changing Gln215 to amber (TAG) was detected

in the hau9G14 allele. This mutation disrupts the Sec23/24 or von

Willebrand factor type A (vWFA)-like domain in the first half of

the protein and deletes all consecutive domains. The P-element

induced allele [35] has a deletion of G2076 of the coding sequence

causing a frame shift that changes the peptide sequence after

Lys692. This mutation leads to the elimination of Arg722, which is

essential for the interaction of Sec23 with Sar1, the GTPase that

triggers vesicle budding from the ER [37,38]. The Drosophila Sec23

protein is over its entire length 73% identical and 85% similar to

the human Sec23 protein (isoform A).

A gene coding for a Drosophila Sec24-like protein, which

interacts with Sec23 [38], is located in the gho-containing

interval (CG10882) enclosing 16 genes (Figure 11C). Due to the

phenotypic resemblance of hau and gho mutant embryos, we

considered this gene as a candidate to be mutated in gho mutant

embryos. We sequenced the respective genomic DNA and

identified base-pair changes in both gho EMS alleles

(Figure 11D). The 50th codon in IP107 (CAG) is mutated to

an amber nonsense codon and the respective protein stops after

Gln49. The mutation therefore results in a short protein that

lacks the functional domain of the Sec24-like protein. Because

of an amber nonsense mutation of codon 362 (CAG), the IB104

protein ends at residue Pro361. This protein lacks the complete

domain set common to Sec23/Sec24 proteins, including the

Sec23/24 (vWFA-like) domain, and only consists of a region

which is specific to this Sec24 paralog and which is predicted to

be unstructured. Besides CG10882 the Drosophila genome

harbours another gene (CG1472) encoding a Sec24-like

protein, which is actually annotated as the Drosophila Sec24

ortholog. The two Drosophila Sec24 proteins correspond to four

human orthologs. The Drosophila Sec24 protein CG10882 is

rather similar to the human orthologs Sec24C and D than to

Sec24A and B, which share high similarity to CG1472 (Figure

S2). Following these findings, we consider CG10882 as the

Drosophila Sec24CD and CG1472 as the Drosophila Sec24AB

paralogs.

The mutations in the Drosophila sec23 (hau) and sec24cd (gho)

genes most probably disrupt protein function resulting in

embryo lethality. We therefore conclude that hau and gho code

for Sec23 and one of the Drosophila Sec24 paralogs, respectively,

both being components of the COPII complex. In a recent

article, Förster and colleagues reported on the role of CG10882,

named Stenosis (Sten) during tracheal development [39].

Consistently, mutations in sten fail to complement mutations in

gho (data not shown). Since mutations in gho were identified

earlier [24], we continue denoting CG10882 gho. Despite the

evident importance of both factors for cell viability, animals

mutant for either factor die rather late during embryogenesis

(Figure 1); this observation can be explained by the presence of

maternally provided function supporting development until the

end of embryogenesis [39,40].

Figure 6. Hau and Gho are needed for the formation of the tracheal cuticle. In the wild-type tracheal cuticle of the dorsal trunk and the
primary branches of late stage 17 embryos, chitin is organised in a spiral running perpendicular to the length of the tube (A). Remnants of the
luminal chitin are visible (arrow). These chitin cables constitute the taenidial folds (tae), which are bulges of the larval cuticle (B). At the larval stage,
the lumen (lum) of the tracheal tubes does not contain any solid material. In hau late stage 17 mutant embryos, the chitin cables of the dorsal
trunk and the primary branches are properly formed (C). The tracheal lumen, however, is much narrower compared to the wild-type lumen. The
hau larval tracheal cuticle dilates and the taenidial folds are sloppy (D). The lumen of the hau mutant larval tracheae is not completely cleared. In
gho stage 17 mutant embryos, chitin cables are largely disorganised and often absent (E). The tracheal tubes have an irregular diameter. The gho
mutant larval tracheae have shallow taenidiae and their lumen fails to be cleared (F). (B,D,F) Electronmicrographs. Scale bars are 500nm. (A,C,E)
Fluorescence microscopy.
doi:10.1371/journal.pone.0010802.g006
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Mutations in genes encoding COPII components cause
similar phenotypes

Sec23 and Sec24 form a complex with Sar1, a GTPase that

triggers membrane budding from the ER [41,42]. Mutations in the

Drosophila sar1 have been reported to abrogate secretion in tracheal

and epidermal cells [19,43]. Macroscopically, larvae with a deletion

of the first four exons of the sar1 gene [44] display a weaker phenotype

than larvae mutant for hau and gho (Figs. 1 and 12). For a detailed

comparison of sar1, hau and gho phenotypes, we examined the

ultrastructure of the epidermis of sar1 mutant larvae that are

characterised by a pale cuticle (Figure 12A). A stratified cuticle is

formed in sar1 mutant larvae, which is however thinner than the wild-

type cuticle (Figure 12B). As in hau and gho mutant larvae and

consistent with recently published data [19], the ER of the epidermal

cells of sar1 mutant larvae is spherical. Apical undulae formation is

unaffected by sar1 mutations (Figure 12C). Moreover, the taenidia of

the sar1 mutant tracheae are normal (Figure 12D). In summary, the

sar1 mutation causes a weak COPII-deficient phenotype.

Figure 7. Apical secretion in tracheal cells utilizes Hau and Gho function. At early stage 17, the wild-type dorsal trunk has attained its final
diameter of around 12 microns (white line, A). The early stage 17 dorsal trunks of hau and gho mutant embryos are narrower (B). During tracheal tube
diameter expansion, the luminal marker 2A12 is secreted into the lumen of the tracheae (C). Most of the 2A12 signal remains within the tracheal cells
of hau and gho mutant embryos during tube diameter expansion (D,E). The luminal chitin deacteylase Verm is involved in modifying the tracheal
luminal chitin cable that participates in lumen diameter regulation (F). In hau and gho mutant tracheae large amounts of Verm fail to be secreted
(G,H). Crb marks the apical plasma membrane in wild-type tracheal cells (I). In the tracheal cells of hau and gho mutant stage 16 embryos the
localisation of Crb is unchanged (J,K). The membrane protein Fas3 lines the lateral membrane of wild-type stage 16 tracheal cells (L). In hau mutant
embryos, some Fas3 signal is cytoplasmic (M). In gho mutant embryos, Fas3 localisation is as in the wild-type tracheal cells, the signal levels, however,
seem to be reduced (N). Images from Confocal microscopy.
doi:10.1371/journal.pone.0010802.g007
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Discussion

Epithelia are composed of polarised cells and possess extracel-

lular matrices at their apical and basal sides. In this article, we

show that in the Drosophila embryonic epidermis and tracheal

epithelium the COPII components Sec23 and Sec24 stabilise cell

polarity, are needed for tracheal tube diameter growth and

mediate formation of the apical and basal ECMs.

hau and gho code for the COPII components Sec23 and
Sec24CD

Hau and Gho represent the only Drosophila Sec23 and one of the

two Drosophila Sec24 proteins, respectively, which are components

of the COPII complex that coats vesicles transporting ER products

to the Golgi apparatus [45]. Sec24 is responsible for specific cargo

recognition and binding. In yeast, for instance, several Sec24-like

proteins such as Iss1p and Lst1p act in parallel to ensure correct

delivery of cargo proteins to their destination [46]. Sec23 is a

central molecule of the COPII complex [36]. Through the

interaction with Sec24, Sec23 links cargo recognition to vesicle

budding [47], and through binding to dynactin it links vesicle

budding to vesicle transport [48]. Sec23 and Sec24 are essential

proteins in eukaryotic cells from yeast to humans [49]. In yeast,

depletion of Sec23 blocks protein transport [50]. A hypomorph

mutation in the human Sec23A-coding gene has been shown to

cause craniofacial morphological abnormalities termed Cranio-

lenticulo-sutural dysplasia (CLSD) [49,51]. Consistently, zebrafish

embryos carrying mutations in bulldog that codes for the Sec24D

paralog, suffer skeletal dysmorphologies caused by the failure to

secret ECM material [52]. In a recent article, Förster and

colleagues reported on the requirement of Drosophila Sec24CD,

which they call Stenosis (Sten), for tracheal cell shape changes and

tube expansion in a cell-autonomous manner [39].

Besides Sec23 and Sec24, the inner coat of COPII vesicles also

harbours the small GTPase Sar1 that initiates vesicle formation.

Mutations in sar1 cause a similar albeit weaker, phenotype

compared to those caused by hau and gho mutations. Indeed,

regarding the cuticle, we observe a phenotypic series from strong

defects in gho mutant larvae, over moderate defects in hau mutant

larvae to weak defects seen in sar1 mutant larvae. The differences

in consequences of presumably null mutations in all three genes

derive probably from the stability and endurance of the respective

Figure 8. ER morphology and Golgi identity require Hau and Gho function. The wild-type embryonic stage 17 ER in the epidermal cells is
tubular (A). The ER of epidermal cells in hau mutant stage 17 embryos has, by contrast, a bloated appearance (B). Compared to the wild-type tubular
ER at stage 15 (C), the dilated ER phenotype is apparent already before massive cuticle formation (D). ER residual proteins are detected by the
antibody directed against the KDEL sequence. In the wild-type stage 16 embryo the KDEL antibody recognises dots in the cytoplasm (E). In the
epidermis of hau and gho mutant embryos, the KDEL signal appears to be normal (F,G). The Golgi apparatus in the wild-type stage 16 epidermis is
recognised by the antibody against the Golgi-specific protein GM130 and appears as dots of different sizes (H). In the hau mutant stage 16 epidermis
the GM130 signal is weaker (I). The GM130 is barely detected in gho mutant stage 16 epidermal cells (J). (A–D) Electronmicroghraphs. Scale bar in (A)
is 500nm and applies also to (B–D). (E–J) Images from Confocal microscopy.
doi:10.1371/journal.pone.0010802.g008
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maternally provided gene product. In this view, the virtual absence

of the body cuticle in gho mutant larvae indicates that the function

of the Sec24CD protein is almost completely eliminated in late

embryonic stages and late secretion is utterly interrupted. One

may conclude that the two Drosophila Sec24 paralogs do not have

redundant functions in the epidermis and that the second Sec24-

like protein, i.e. Sec24AB, does not play any role in epidermal

cuticle formation.

Hau and Gho are needed for ER function and integrity
Blocking of COPII vesicle transport by mutations in sec23, sec24

and sar1 causes a stop of protein trafficking to the extracellular space

or to the plasma membrane, and concomitantly, the ER loses its

tubular shape and becomes spherical. This subcellular phenotype is

also observed in human SEC232/2 fibroblasts and in HeLa cells

deficient for Sec13, which is part of the COPII coat [36,53].

The loss of ER morphology may be due to the excess

accumulation of not transported proteins that may physically

destroy the molecular corset of the ER. This would imply that a

mechanism controlling the amount of proteins in the ER does not

exist. In other words, ER exit sites and ER loading complexes do

not seem to communicate.

Overloading of the ER may downgrade ER physiology, and

thereby interfere with the activity of ER specific enzymes. One

may speculate that this in turn may induce ER stress that leads to

the degradation of ER proteins [54]. Our data on this issue are

conflicting. On the one hand, the amounts of Serp and ER

residual proteins detected by the KDEL antibody seem to diminish

in hau and gho mutant embryos, which on the other hand have

Figure 9. Tracheal ER identity and secretion depend on Hau and Gho function. In wild-type tracheal cells at late stage 16, the KDEL signal (red) is
distributed within the cytoplasm (A,B). The membrane-associated protein Knk (green) localises to the apical plasma membrane in these cells (B). The green
signal in the tracheal lumen is unspecific background. The KDEL signal in hau and gho mutant tracheal cells is strongly reduced (C–F). In both mutant tracheal
cells, Knk fails to localise to the apical plasma membrane and accumulated within the cytoplasm (D,F). (A–F) Images from Confocal microscopy.
doi:10.1371/journal.pone.0010802.g009

Figure 10. ER function is not severely affected in hau and gho
mutant embryos. The migration behaviour of the membrane-
associated cuticle factor Knk (red, A) and the extracellular Serp (red, B)
is normal in hau and gho mutant larvae in western blot experiments. The
amount of Serp protein is reduced in the mutant protein extracts. By
contrast, the amounts of Knk are comparable in mutant and wild-type
protein extracts. Tubulin (green) was detected to control the amount of
protein blotted. The tubulin signal allows comparing the signal
intensities in wild-type and mutant protein extracts.
doi:10.1371/journal.pone.0010802.g010
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normal amounts of Knk although it does not reach the plasma

membrane. Hence, this type of ER dysfunction seems to elicit

degradation or exhaustion of selective target proteins, at the same

time sparing others.

COPII function is necessary and sufficient to drive cuticle
production

The defects provoked by reduction or elimination of Sec24CD

activity illustrate the COPII-deficient phenotype in the tracheae

and the epidermis. Hence, structuring of all three layers of the

cuticle depends on ER-to-Golgi transport via COPII coated

vesicles. The Sec24CD dependent COPII vesicles, thus, carry

cuticle components as diverse as for example the chitin synthase

producing the bulk of the procuticle, factors of the extracellular

melanisation pathway, and the yet unknown lipid-handling

enzymes of the envelope and epicuticle. Of course, this does not

exclude that COPII-independent routes are employed to modify

layer architecture. For instance, transcytosis of phenoloxidases

from the haemolymph to the cuticle [55] does not utilise the

canonical secretory pathway and therefore is probably not directly

affected by COPII-deficiency. It may well be, however, that

disruption or weakening of cell polarity induced by gho mutations

indirectly interferes also with alternative secretory routes [56,57].

How may a single secretory route accommodate asymmetric

distribution of factors within the plasma membrane and within the

extracellular space? From the conclusion that most, if not all,

cuticle factors are recruited by the ER-COPII-Golgi path for

delivery to the apical plasma membrane or extracellular space, it

follows that cargo divergence has somehow to occur within the

route itself. Indicated by the finding that the chitin synthase

complex localises to the apical plasma membrane independently

from the t-SNARE Syntaxin1A [18], one potential site of

divergence is the apical plasma membrane itself, where different

t-SNAREs may occupy different domains. Sorting is also a central

task of the Golgi apparatus, where vesicles with distinct cargos are

generated [58]. At the COPII level, cargo divergence possibly

engages p24 proteins, which in yeast have been reported to

recognise specific cargos [59]. A major endeavour in the near

future will be to elucidate the sorting mechanisms in the secretory

pathway that drive cuticle differentiation i.e. aECM formation.

Figure 11. Molecular identification of hau. The hau mutations were mapped to the deficiency Df(3R)ED5187 that uncovers two genes: sec23 and
elm (A). Sec23 is a component of the COPII complex. The elm gene plays a role in memory formation and ethanol sensitivity, and mutations in this
gene are not lethal [66]. A nonsense mutation was identified in the sec23-coding region of the 9G14 allele, and a frame shift mutation was identified
in the same coding region of the CK allele (B). Sec23 is characterised by five motifs. From the N-terminus to the C-terminus, these are the Zn binding
domain, the Sec23/24 domain, which belongs to the von Willebrand factor type A (vWFA) domain family, a b-sandwich domain, a helical domain and
finally a Gelsolin domain. Molecular identification of gho. The gho mutations were mapped to the interval framed by the break points of the
deficiencies Df(2L)BSC688 and Df(2L)Excel7010 (C). Among the 16 genes in this region, one codes for a Sec24-like protein, CG10882 (D). In the coding
region of this gene, we identified one early nonsense mutation in each allele, IB104 and IP107.
doi:10.1371/journal.pone.0010802.g011
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Basement membrane formation requires COPII function
Concomitant with cuticle deposition and organisation the

basement membrane is produced during Drosophila embryogen-

esis [29]. Hence, in parallel to the coordination of apical

secretion, epithelial cells have to control basal secretion as well.

In hau and gho mutant embryos, the basement membrane is

practically missing, suggesting that a distinct population of

COPII vesicles is charged with basal ECM formation. The

handling of these vesicles is, however, not sufficient to form a

functional basement membrane, as in addition to the epithelial

contribution, some components of the basal ECM such as

collagen IV are supplied by macrophages [60]. Nevertheless,

epithelial cells appear to retain sovereignty over this process. For

example, Scarface (Scarf), a serine-protease-like protein and

Crag, a factor associated with the secretory pathway, have been

proposed to regulate the localisation of basement membrane

components and act within the epithelium itself [61,62]. The

loss of basal factors in hau and gho mutant embryos, could, in

agreement with the finding that the basal ECM is essential for

epithelial cell polarity [63,64], at least partially explain the loss

of epithelial character in these animals.

Plasma membrane topology in the epidermal cell
depends on Hau and Gho function

The Drosophila COPII components Sec23 and Sec24CD are not

only mediating cuticle deposition and basal ECM assembly, they

are also important for shaping the apical plasma membrane. In

contrast to the longitudinal corrugations, the apical undulae, that

are presumably essential for organising the cuticle in the wild-type

embryo [29], the apical plasma membrane of hau and gho mutant

embryos fails to corrugate. The epidermal apical membrane is flat

also in embryos mutant for the apical plasma membrane tSNARE

Syx1A [18]. Hence, the topology of the apical plasma membrane

requires the canonical secretory pathway running from the ER via

COPII vesicles to the Golgi apparatus and from the Golgi

apparatus to the apical plasma membrane where Syx1A is

controlling incorporation of membrane material.

Likewise, during cuticle differentiation, Sec23 and Sec24CD

serve for the maturation of the lateral plasma membrane from a

straight to a meandering structure where different protein

complexes assemble along its apico-basal domains, among others

enforcing cell-cell contacts [65]. The lateral plasma membrane of

hau and gho mutant larvae remains straight and, as suggested by

their less electron-dense appearance in electronmicrographs, the

SJs are depleted from proteins arguing that cell polarity is

perturbed. Weakened cell polarity supposedly corrupts the

arrangement of the cytoskeleton, in turn affecting polarised

secretion. At the end of such a vicious circle single naked

epidermal cells round up and leave the epithelium as observed

especially in gho mutant larvae. This finding is in agreement with

the recently formulated notion that cell polarity is not a stable

state of the cell but requires continuous recycling of Crb via a

Rab11-dependent mechanism [9]. Taken together, the secretion

pathway plays a central role during differentiation of the

Drosophila larval epidermis coordinating its primary task of cargo

transport and membrane trafficking with maintenance of cell

polarity.

Supporting Information

Figure S1 Hau and Gho function contributes to the morphology

of the ER of the tracheal cells. The ER of wild-type larval tracheal

cells is tubular (A). By contrast, the ER of hau and gho larval

tracheal cells is dilated (B,C). The ER enveloping the nucleus of

the wild-type larval epidermal cell is tightly following the shape of

the nucleus itself (D). In hau larvae, the perinuclear ER forms cysts

(E). In gho larvae, this phenotype is similar (not shown). (A–E)

Electron micrographs. Scale bar in (A,D,E) is 500 nm. The scale

bar in (A) applies also to (B) and (C).

Found at: doi:10.1371/journal.pone.0010802.s001 (2.47 MB TIF)

Figure S2 Schematic sequence comparison between Drosophila

and human Sec24 paralogs. Sequences were compared using

pairwise BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The

pairwise identity scores from BLAST are given in the colored

bars; the size of the bars illustrates the alignable sequence regions.

Alignable stretches of less than 30 residues were ignored. Clearly,

Drosophlia CG10882 (Gho) has higher local and global similarity

to human Sec24C, Cb (a splice variant of C) and D, while

Figure 12. Deletion of sar1 causes a weak secretion phenotype. Larvae having a deletion of the sar1 locus have a thin and pale cuticle (A). The
three histologically distinct layers, envelope (env), epicuticle (epi) and procuticle (pro) are established (B). The ER in the epidermal cells of sar1 mutant
larvae is bloated. The apical undulae (au, dotted line) of stage 16 sar1 mutant embryos are formed (C). Likewise, the taenidial folds (tae) are correctly
established in sar1 deficient larvae (D). (A–D) Electron micrographs. Scale bars in (B,C,D) are 500nm.
doi:10.1371/journal.pone.0010802.g012
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Drosophila CG1472 displays higher similarity to the human

Sec24A and B paralogs.

Found at: doi:10.1371/journal.pone.0010802.s002 (0.46 MB

EPS)
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