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Abstract: Non-small-cell lung cancer (NSCLC) represents a heterogeneous group of malignancies
that are the leading cause of cancer-related death worldwide. Although many NSCLC-related genes
and pathways have been identified, there remains an urgent need to mechanistically understand how
these genes and pathways drive NSCLC. Here, we propose a knowledge-guided and network-based
integration method, called the node and edge Prioritization-based Community Analysis, to identify
functional modules and their candidate targets in NSCLC. The protein–protein interaction network
was prioritized by performing a random walk with restart algorithm based on NSCLC seed genes
and the integrating edge weights, and then a “community network” was constructed by combining
Girvan–Newman and Label Propagation algorithms. This systems biology analysis revealed that
the CCNB1-mediated network in the largest community provides a modular biomarker, the second
community serves as a drug regulatory module, and the two are connected by some contextual
signaling motifs. Moreover, integrating structural information into the signaling network suggested
novel protein–protein interactions with therapeutic significance, such as interactions between GNG11
and CXCR2, CXCL3, and PPBP. This study provides new mechanistic insights into the landscape of
cellular functions in the context of modular networks and will help in developing therapeutic targets
for NSCLC.

Keywords: non-small-cell lung cancer; protein-protein interactions; random walk with restart;
functional modules; signaling transduction

1. Introduction

Cancer is a heterogeneous disease that actually refers to a collection of vastly different
cellular states with dysregulated cell signaling and regulatory circuits [1]. Among them,
lung cancers are the leading cause of cancer-related deaths worldwide [2]. The prognosis
for lung cancer remains poor, although therapeutic developments including tyrosine kinase
inhibitors and immunotherapy have promise [3]. Non-small-cell lung cancer (NSCLC)
is the most common lung malignancy and is strongly related to gene aberrations and
environmental influences [4,5]. Current genomic hallmarks for NSCLC include somatic
mutations in PTPN11 (EGFR), SOS1 (KRAS), and STK11 (neutrophil degranulation) [6], and
future therapeutic decisions will be helped by an increased understanding of other NSCLC-
related pathways, such as EGFR, PI3K/AKT/mTOR, RAS/MAPK, and JAK/STAT [7].
Currently, there are efforts not only to elucidate the mutational and gene expression data,
but also to present the emerging proteomic landscape of NSCLC [8], which provides
a resource for the comprehensive elucidation of aberrant biological process, candidate
biomarkers, and therapeutic targets. An integrative proteomic analysis suggested some
prognosis-associated proteins and pathways in early stage NSCLC [9], while multi-omics
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clustering has also revealed that EGFR, KRAS, and STK11 are candidate drug targets for
NSCLC [10]. Although recent omics studies of NSCLC have advanced our understanding
of tumor biology and accelerated targeted therapy, the complex landscape of NSCLC,
particularly for cellular communications, remains largely open.

Most cellular signaling and surveillance circuits are physically maintained through a
dense network of protein–protein interactions (PPIs) [11,12]. Therefore, biological networks
are promising when trying to uncover the causes of complex diseases [13] such as cancers
and will help in the next phases of drug design [14]. This new paradigm reflects the fact
that human diseases are not caused by single molecular defects but are driven by complex
interactions among a variety of molecular mediators [15]. The network-based methods
have developed a plethora of topological parameters for discovering biomarkers [16],
disease-associated genes [17], and drug targets [18,19]. Hub genes with higher node degree
in PPI networks have been predicted to be diagnostic biomarkers for NSCLC and some
have been experimentally validated, such as NCAPH [4]. In addition to node prioritization,
edge-based topological parameters, such as shortest path, mutual neighbors, between and
cross communities, were also used to rank pair-wise interactions in cancer-related PPI
networks [20,21].

Network biology provides a quantitative tool to elucidate the structural and functional
architecture of the hidden higher-level organization of cellular communication. The com-
munity analysis of PPI networks is a process, in which networks are divided into several
topological modules. Proteins within the same community may serve as interacting molec-
ular machines, driving a common biological process [22]. PPI networks-based community
analysis allows us to ponder the heterogeneity of cancer [23], and reduces the complex-
ity of disease networks. Currently, several community analysis methods, such as Clus-
terONE [24], ModuLand [25], Molecular Complex Detection (MCODE) [26], MTGO [27],
and PS-MCL [28], have been successfully proposed to identify target proteins and drug
repurposing [29]. Combined with community analysis performed by MCODE, CCNB1 has
been predicted as a hub gene in a particular module of NSCLC [30], while FOXM1 and
MYBL2 are predicted to be “Key Regulators of Cell Proliferation” in NSCLC [31]. Addition-
ally, more key modules and genes in NSCLC have been identified by using co-expressed
modules and hub gene analysis from Weighted Gene Co-Expression Network Analysis
and PPI network analysis, respectively [32]. However, no matter what criterion is used,
different community identification approaches can reveal different functional modules.
A recent assessment revealed that top-performing community identification algorithms
could recover complementary trait-associated modules [33].

If the end goal is drug discovery, a systems-level approach including the identification
of key nodes, edges, and communities is not enough. The wealth of structural knowl-
edge in PPI networks can help to partially address this goal [34]. Therefore, by mapping
NSCLC-associated mutations on the interface regions of protein interactions may provide
structural and dynamical evidence for understanding cellar pathway transformation and
the genotype–phenotype relationship [35]. By mapping genomic profiles of driver gene
mutations onto the structure of epidermal growth factor receptor (EGFR), four druggable
mutations have been discovered that can be used to design personalized NSCLC treat-
ments [36]. Based on structural-based PPI networks [37], dynamics information can be
integrated to generate mutational hotspot communities, which significantly increases the
sensitivity of cancer driver genes [38]. Armed with these structural insights, the protein
binding poses and affinities bring breakthroughs toward understanding the molecular
basis of cell-cell communication [39].

In this study, we developed a knowledge-guided and network-based methodology
to understand the complex molecular mechanism among different NSCLC functional
modules; the complete methodology of this study is presented in Figure 1. First, the
random walk with restart (RWR) algorithm was used to rank and predict key genes based
on seed genes. Additionally, a new score was defined for edge prioritization to construct
the weighted core network that combined topological features and biological similarity
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of edges. Then, the Girvan–Newman (GN) algorithm and Label Propagation analysis
(LPA) were combined to generate “community networks”, which are molecular networks
connected by different functional modules. Along the pipeline, the functional significance
of different modules and key genes were further verified by published experimental data
and structural modeling. Accordingly, we hope that the detected “community networks”
could define the inner working of the cellular processes in lung cancer and highlight
potential therapeutic vulnerabilities of NSCLC and other complex diseases.
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Figure 1. The ne-PCA workflow, which contains four major parts: the construction of primary PPI
network, the prioritization of nodes and edges, the identification of robust communities, as well as
the function explorations of the “community network”.
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2. Materials and Methods
2.1. Data Sets

Two independent NSCLC expression microarray datasets based on the same platform
(GSE19804 [40] and GSE101929 [41]) were obtained from the NCBI Gene Expression Om-
nibus database (Table 1). In total, the datasets contained 186 samples, including 92 NSCLC
and 94 normal samples. Expression values of the predicted genes were selected from The
Cancer Genome Atlas (TCGA) [42], including 126 samples, with 67 NSCLC and 59 normal
samples. The NSCLC-related genes that were used as seed genes (Table 2) were collected
from three authoritative databases, including Kyoto Encyclopedia of Genes and Genomes
(KEGG) [43], Cancer Gene Census (CGC) [44] and DisGenet [45]. Limma package [46] in
R/Bioconductor software was applied to identify the differentially expressed genes (DEGs)
with p-values adjusted by the Benjamini–Hochberg method. Only genes with adjusted
p-values < 0.001 and |FC| >2 were chosen as DEGs.

Table 1. Information of expression microarray datasets.

Accessions Platform Samples (Cancer vs. Normal)

GSE19804 Affymetrix GPL570 60 vs. 60
GSE101929 Affymetrix GPL570 32 vs. 34

TCGA Illumina HiSeq 2000 67 vs. 59

Table 2. Collection of known NSCLC genes (seeds).

Database Inclusion Criteria Gene Counts URL

CGC only genes’ tumour types as
NSCLC were considered 42 https://cancer.sanger.ac.uk/census (January 2021)

KEGG genes in PATHWAY: map05223
were collected 81 https://www.kegg.jp/kegg/ (January 2021)

DisGeNET
only genes’ diseaseName as NSCLC
in curated gene-disease associations

were considered
158 https://www.disgenet.org/ (January 2021)

2.2. Network-Based Methodology

At the preprocessing stage, a PPI network of DEGs was constructed according to the
STRING database [47] with the score over 0.7 and all active interaction sources except text
mining. Then, seed genes associated with NSCLC were mapped onto the PPI network to
construct the seed-based PPI network. Given this network structure, we have developed
a novel algorithmic framework, termed node and edge Prioritization-based Community
Analysis (ne-PCA) to generate “community networks” in NSCLC. This process includes
three major steps: (1) node prioritization; (2) edge prioritization; and (3) community
identification. The code for our network-based algorithm can be found at Github repository
(https://github.com/CSB-SUDA/ne-PCA).

Step 1: Node prioritization. In this step, the RWR algorithm [48,49], which is a
classic ranking algorithm, was used for node prioritization; thus identifying key genes by
evaluating the proximity from seed genes in the primary PPI network. Starting from seed
genes, an iterative walker transitions from its current node to a randomly selected neighbor
starting at a given source node with restart of the walk at every time step at node s with
probability r. The associated iteration equation is defined as:

pt+1 = (1− r)W pt + rp0 (1)

where W is the column-normalized adjacency matrix of all nodes in the network; r is
the restart probability; p0 is the initial weight vector based on a certain seed, A; and pt

are the vectors in which ath walking holds the probability of being at node a at time t.

https://cancer.sanger.ac.uk/census
https://www.kegg.jp/kegg/
https://www.disgenet.org/
https://github.com/CSB-SUDA/ne-PCA
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Through multiple iterations, pt will approach a certain probability distribution, where
pt+1 is approximately equal to pt. As such, the RWR algorithm calculates the similarity or
closeness between seed gene i and each other node j, based on Equation (1), whereby all
possible paths between the two genes within the PPI network are taken into account. RWR
was performed under 0.8 restart probability via R package dnet [50], and pt was the RWR
score used for ranking nodes.

Step 2: Edge prioritization. Edge betweenness and Gene Ontology (GO, R package
GOSemSim version 2.8.0) semantic similarity analysis are two adapted parameters for
edge prioritizations that are used to evaluate the topological and biological importance of
edges. Edge betweenness [51] defines the number of shortest paths between all possible
pairs of vertices in a graph that pass through the edge. High edge betweenness is also
associated with pairs of residues that are important for communication within the PPI
network. To be more compatible with the conduction of functional signals in real biological
system, that is, the possibility of information spreading through a certain interaction, the
biological functions of the interactors need to be considered. It is generally believed that
if two interacting gene products (proteins) have more similar function such as more GO
annotations, then their interactions have higher confidence. Thus, GO semantic similarity
can be used as the weight of edges in PPI network, which is more biological meaning [20]. In
our work, the ‘Wang method’ [52] was used to study functional similarity as it determines
the semantic similarity of two GO terms based on both the locations of these terms in the
GO graph and their relations with their ancestor terms:

SA(t) =
{

1, t = A
max{we × SA(t′)|t′ ∈ children of (t)}, t 6= A

(2)

where we is the semantic contribution factor for edge e∈EA linking term t with its child
term t′. Term A contributes to itself and is defined as 1. After obtaining the S-values related
to term A, the semantic value of GO term A, SV(A), was calculated as:

SV(A) = ∑t∈TA
SA(t) (3)

Thus, given two GO terms A and B, the semantic similarity between them is defined as:

sim(A, B) =
∑t∈TA∩TB

SA(t) + SB(t)
SV(A) + SV(B)

(4)

where SA(t) is the S-value of GO term t related to term A, and SB(t) is the S-value of GO
term t related to term B.

Based on the ability and probability weight of information dissemination through PPIs,
a new score named Topological-Functional Connection (TFC) was proposed for ranking
PPIs. Mathematically, TFC is defined as

TFC = ∑N
n=1

T∗n + Fn

|T∗n + Fn − 2| ∗ 100 (5)

T∗n =
Tn −MinT

MaxT −MinT
(6)

where N represents the number of interactions, and Tn and Fn represent edge betweenness
and GO semantic similarity of interaction n. As such, the TFC score can be used to identify
key protein interactions by integrating network topology and biological characteristics,
which supplement missing functions in traditional network information flow.

Step 3: Identifying network communities. An integration method for the identifi-
cation of network modules was also proposed. First, the weighted core network (WCN)
was extracted from the PPI network according to the seed-based random walk score. In
this WCN, only the top 10% of scored genes and seeds with their neighborhoods were
chosen as nodes, which were connected by the edges weighted by TFC scores. Then, two
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common cluster methods were used to detect communities of WCN. To determine the
inherent module attributes in the core net, we use the weighted GN algorithm [53] to
achieve a top to down module discovery, which is the most classic community discovery
algorithm based on the use of the edge betweenness as the partitioning criterion. The GN
algorithm is a split-level hierarchical clustering algorithm, and the module was identified
by continuously deleting edges in the network. LPA was also performed to achieve down
to top module discovery by using the information of the prior seed genes [54]. An initial
label was given to the seed gene in advance, and the gene with the largest labeling of
neighboring nodes was used as its label in each iteration. The TFC score was set as the
weight of the edges and the modularity Q could be optimized automatically. Modularity Q
is the quality function of the network division:

Q = ∑m
i=1

(
eii − ai

2
)

(7)

where eii is the fraction of edges between modules i and j, and ai is the fraction of edges
connected to the nodes in module i. This modular structure is found by maximizing the
modularity in an iterative manner. All nodes in the network were assigned to independent
modules in the beginning, and the algorithm progressively merged two communities
that best increased the modularity of the resulting network. Merging nodes and modules
continued until there was no further increase in the modularity of the network. Lastly, a
hypergeometric test was performed for each pair of modules to integrate the similarity
part in different model results. The common parts of modules with significant p-values
(p < 0.01) were screened out as robust modules.

2.3. Functional and Pathway Enrichment Analyses

R package clusterProfiler [55] was used for GO and KEGG pathway enrichment
analysis. Terms with corrected p value < 0.05 were selected as significantly enriched terms.

2.4. Performance of Candidate Biomarkers and Validating Predicted Genes

To evaluate the performance of the predicted genes as prognostic biomarkers, Kaplan–
Meier analyses with log-rank tests were performed for 994 TCGA NSCLC samples includ-
ing patients’ clinical information and RNA expression from the pathology atlas in Human
Protein Atlas [56]. The best expression cut off for survival analysis in Human Protein Atlas
was used for sample grouping.

2.5. Permutation Test for Community Network and Comparison with Other Methods

Permutation test for final community network from ne-PCA was performed according
to significance in module score W based on Markov random field (MRF). The detail of
this method can be found in the recent work [57]. The module score W of network M was
defined as:

W(M) =
1√
m ∑i∈C1

fi −
1
k ∑u,v∈C2

(
fu√
du
− fv√

dv

)2
MI(u, v) (8)

where m is the number of nodes in M, k is the number of interactions in M, C1 and C2
are the set of seed genes and non-seed genes in M, fu and fv are expression differences
(negative logarithm of p value) assessed by t-test between tumor and normal samples from
GSE101929, du and dv are the degree of non-seed genes u and v in primary PPI network,
and MI(u, v) is the mutual information of non-seed genes u and v from expression profile,
respectively. In our work, we performed 10,000 random experiments with the same number
of samples as the community network under test. Scores significantly greater than the
random ones (p < 0.05) were considered significant.

In addition, some commonly used network-based methods were also performed for
the PPI network analysis to compare with ne-PCA. Degree, betweenness, closeness, and
clustering coefficient were calculated for node prioritization [58]; edge betweenness for
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edge prioritization [20]; and four network clustered methods including ClusterOne [24],
Moduland [25], MCODE [26], and MCL [28], for community analysis.

2.6. Constructing the Target-Drug Network

The drug targets in Module 2 and corresponding drugs screened from Drugbank [59]
and Therapeutic Target Database [60] were used as nodes. Their interactions were used
to construct a target-drug network. The network was constructed and visualized using
Cytoscape [61].

2.7. Structural Modeling of PPIs

The structural modeling of sub-networks and PPIs was performed by PRISM [62,63],
which is a powerful template-based algorithm that has prior interface knowledge of known
3D structures of PPI complexes to predict structural interactions of target proteins. If the
experimental 3D structure of the target protein was missing from the PDB, we built models
of that protein by exploiting the I-TASSER server [64]. For the modeled protein complex,
binding energies were calculated using FoldX [65] to measure stability. Druggabilities of
PPIs were evaluated by druggability scores (DS) calculated by Fpocket [66]. The score
chosen was the highest score of each structure and classified as: 0.0–0.5: non-druggable;
0.5–0.7: druggable; and 0.7–1.0: highly druggable.

3. Results
3.1. Knowledge-Guided Construction of a WCN Based on Seed Genes

Statistical analysis of NSCLC and adjacent normal lung tissue samples identified DEGs
that were significantly abnormally expressed in tumor tissues. In total, 258 up-regulated
and 580 down-regulated DEGs were identified from GSE19804, and 295 up-regulated and
626 down-regulated DEGs were identified from GSE101929. Figure 2a shows volcano plots
reflect the distribution of DEGs according to Fold Change and FDR. The Venn diagram
of 588 overlapping DEGs between the two GEO datasets were found in Figure 2b and
include 155 up-regulated and 433 down-regulated DEGs. Additionally, 12 known NSCLC-
related genes were found among the overlapping DEGs from three curated databases of
KEGG, CGC, and DisGenet, including MMP1, MMP9, MMP11, KDR, CDH13, BIRC5, EGF,
ADAMTS1, FOXM1, ATF3, GNG11, and GADD45B. After applying the interaction score
and source filter in the STRING database, the primary PPI network was constructed by
overlapping DEGs. Thus, 12 NSCLC-related genes were defined as seeds and mapped
into the primary PPI network to construct the seed-based PPI networks. Accordingly, the
NSCLC PPI network that contains 190 nodes and 1128 edges was obtained (Figure 2c),
while 12 NSCLC-related seed genes are highlighted in orange. The distribution of degree
of such PPI network is shown in Figure S1a. KEGG pathway enrichment analysis indicated
that the seed-based PPI network involved tumor-related signal transduction pathways,
such as extracellular matrix (ECM) receptor interaction, PI3K/Akt signaling, TNF signaling,
as well as some basic biological processes, such as protein digestion and absorption, cell
cycle progression, and cytokine–cytokine receptor interaction (Figure S2).

Nodes of PPI network were prioritized by performing RWR, which used the knowl-
edge from collected seed genes. Some genes that were highly related to seeds were
identified according to the node prioritization (Figure 2d). In particular, the top 10 ranked
genes were MMP7, CDH5, CDH3, FOS, WASF3, TIMP3, PECAM1, ITGA1, CFP, CCNB1,
ADAMTS8, ADAMTSL3, SEMA5A, THBS2, FGF2, EDN1, PPBP, and IGFBP3. Then, the un-
weighted core network for NSCLC was constructed by extracting the 12 seed genes and the
top 10% genes from node prioritization. For comparison, some commonly used topological
metrics including degree, closeness, betweenness, and clustering coefficient of the whole
PPI network were calculated, and the genes ranked by each parameter are shown in Table
S1. By investigating the topological parameters of seed genes, their distributions show that
their biological importance cannot been predicted by their top ranked values. As shown in
the scatter plot (Figure S3), only BIRC5 shows large values for all topological parameters.
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Figure 2. The construction of Weighted Core Network (WCN). (a) Volcano plot of DEGs in two datasets of NSCLC. The
horizontal line at false discovery rate (FDR) = 0.001; vertical line at |log2FC| = 1. (b) Venn diagram shows the overlap
of DEGs in two datasets, while the numbers of overlapping DEGs include both up- and down-regulated genes. Twelve
NSCLC-related genes found in the overlap DEG sets are also listed. (c) The primary seed-based NSCLC PPI network, in
which orange nodes represent seeds and blue nodes, represent candidates. (d) Network node prioritization by the RWR
scores. (e) Network edge prioritization by the TFC scores, whose values are defined based on edge betweenness and GO
semantic similarity. (f) The topology of WCN, in which the seeds were represented by orange nodes. Node sizes are denoted
by RWR scores and edge thickness by TFC scores.
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Additionally, a new score named TFC was defined as an edge parameter and was
obtained by integrating edge betweenness and GO semantic similarity of interactions. As
such, by mapping TFC onto each interaction in the core network, a knowledge-guided
WCN was constructed (Figure 2f). The WCN contains 130 nodes and 245 edges, while the
distribution of degree shows that it retains the scale-free property of primary PPI network
(Figure S1b). Additionally, the final WCN not only considered network topology, but also
contained biological information of gene function. Edges in the WCN were also prioritized
by the newly defined TFC score, and important interactions have been predicted. The
distribution of TFC scores is relatively even, while the BIRC5–ITGA1 and PPBP–P2RY14
interactions represent the two edges with highest TFC values (Figure 2e). By only using
edge betweeness, some high ranked PPIs can also be predicted, for example, BIRC5-ITGA1
has the highest edge betweeness. The comparison results between edge betweeness and
TFC are shown in Figure S4. Although some topological important interactions can be
predicted by edge betweeness (Figure S4a), the potential biological important interactions
consisting of G Protein Subunit Gamma 11 (GNG11) cannot be captured, which are all
ranked in the top list of TFC (Figure S4b). This interesting finding suggests a key role of
GNG11, as it may be involved in key interactions that need further investigation.

3.2. Defining the Community Network for the NSCLC

In this section, a global community identification was conducted for the WCN, and
six communities were found with the GN model and eight communities were detected
with the LPA model (Figure S5). Their divisions were on the same level, while the mod-
ularity Q of GN and LPA were 0.65 and 0.62, respectively. The communities tended to
be consistent overall across two models, however, there were slight differences in some
aspects, indicating that these regions were not totally robust. The cluster of ITGA1 con-
nected with collagen genes (COL1A1, COL1A2, COL5A1, COL5A2, COL6A6) belonged to
the largest community in LPA, while it was classified into an individual community in GN.
There were also some specific modules detected exclusively by different methods, such
as HBB/MMP9/PTX3/TIMP3 in GN, and CDH3/CDH5/CDH13 and IGFBP3/WFS1/CHRD-
L1/CP/CYR61/GOLM1/SPARCL1 in LPA. A hypergeometric test of each pair of communities
from the two models was further performed to determine robust communities with high
correlation (Figure 3a). Ultimately, the WCN was partitioned into eight robust communi-
ties, including two large communities and six small communities, forming a “community
network” (Figure 3b). According to the size (node numbers) of the communities, we called
the top two communities as module 1 (M1, red community) and module 2 (M2, green
community). The community network revealed a functional map of the cell in which
genes of similar biological processes clustered in each community. For example, GO enrich-
ment analysis showed that the biological process of the modules 1 and 2 corresponded to
“mitosis” and “G protein-coupled receptor signaling pathway”, respectively.

Within the community network framework, there are several small communities
whose deletion will destroy the information transmission of the entire network. These
are defined as connected motifs. The violet community (M4) was centered on the proto-
oncogene c-Fos (FOS), which is a regulator of cell proliferation, differentiation, and trans-
formation, and was related to “stress reaction”. The blue motif (M6) centered with In-
sulin Like Growth Factor Binding Protein (IGFBP3), primarily involves “post-translational
protein modification”. The light blue motif (M7) contains the Matrix Metallopeptidase
(MMP) protein family, which is involved in breaking down extracellular matrix in normal
physiological processes. Additionally, the three branch communities included (M3) A
disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) protein family,
(M5) vascular endothelial growth factor receptor (KDR), and (M8) the cadherin superfamily,
which were clustered together, and corresponded to the biological processes “complement
activation and neutrophil degranulation”, “endothelial cell migration”, and “adherens
junction”, respectively.
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To investigate the performance of our cluster method, large-scale random test based on
MRF was carried out. The main result of the test from cumulative experiments showed that
the community network of NSCLC was significant in module score W (p < 0.05, Figure 3c),
which means that the community network was independent from random network under
MRF. We specifically make use of seed genes to generate the final community network, a
specific sub-network of NSCLC compared to the random division (normal distribution) on
the primary network. Additionally, our results were also compared with four other state-
of-the-art module detection algorithms (Figure S6 and Table S2). Overall, the core parts of
these modules among these methods are consistent. We compare our results with them
practically by focusing on modules 1 and 2. Although module 1 in MCL and ClusterOne
include more nodes with smaller RWR score, some seed genes cannot be detected by other
algorithms, such as GADD45B and EGF. For module 2, ne-PCA can detect more genes
than it can in MCODE, moduland, and ClusterOne. We suppose the reason is that other
algorithms are based only on topological properties, and then some biological similar genes
cannot be clustered with low topological similarity.

To primarily investigate the topological and functional diversity of these modules
and motifs, we further evaluated the distributions of edge weights, prognostic genes,
and drug targets among communities. As shown in Figure 4a, module 2 and the MMP
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motif (M7) showed higher TFC scores than other communities, which meant that those
communities contained denser edges that may contribute to greater signal transmission
in the topological view. In comparison with other small motifs, module 1 and 2 are the
two largest communities that consist of genes with similar biological functions, which
are of extreme importance. For their functional diversities (Figure 4b), module 1 contains
the most prognostic genes (34/44), while module 2 (Figure 4c) includes the most drug
targets (26/36). Therefore, we suggested that these two modules have different biological
implications, i.e., module 1 is a disease-related module and module 2 belongs to a drug
target module. The community network not only divided the PPI network into individual
functional modules, but could also decipher complex regulatory relations from the global
network level. The fact that the MMP motif not only has the highest average TFC scores,
but also consists of the highest percentage of drug targets, suggests its regulatory role. In
our community network, MMP9 serves as a bottleneck that connects module 1 and the
MMP motif. Accordingly, our community network together with the skeleton, bottlenecks,
and bridges, allowed us to define a module space for performing biological functions.
As such, the biological roles of module 1 and module 2 will be explored in detail in the
following sections.
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3.3. Module 1 Represents a Significant Prognostic Module Biomarker

Module 1 is the largest robust community, containing 44 nodes, 3 seed genes (BIRC5,
FOXM1, and GADD45B), and 106 interactions (Figure 5a). Interestingly, genes of the largest
community were almost all up-regulated in NSCLC except for the seed gene GADD45B. Up-
regulated overall expression of the largest community may be related to tumor biology at
the systems level. To gain topological insights into module 1, we examined both RWR score
and degree for each node (Figure 5b). The comparison showed that CCNB1 had both the
highest degree and RWR score among the predicted genes. As a hub gene, CCNB1 connects
with many other genes, among which CEP55, PCR1, HJURP, KIG14, and KIF4A had the
highest RWR scores and relatively high degrees. This suggests that CCNB1 and these five
connected genes comprise a critical sub-network for module 1 (Figure 5c). Additionally,
pathway enrichment analysis showed that module 1 was enriched in six KEGG pathways
(FDR < 0.05, Figure 5d and Figure S7). The top three pathways were response to cell cycle,
cellular senescence, and p53 signaling pathway, which are basic biological processes that
participate in various disease mechanisms, especially the occurrence and development of
tumors. Thus, the key role of CCNB1 in this NSCLC-related module was affirmed, as it is
involved in all of these pathways.

Then, we conducted a prognostic analysis using TCGA data. Kaplan–Meier analysis
with the log-rank test was performed on 994 NSCLC samples, including patients’ clinical
information and RNA expression from the pathology atlas in Human Protein Atlas. The
best expression cut off for survival analysis in Human Protein Atlas was used for sample
grouping. As described above, most of the genes in module 1 were prognostic, with
high expression unfavorable in NSCLC (p < 0.01). Survival curves of the genes in the
CCNB1-centered sub-module are shown in Figure 5e. High expression of the six genes
was associated with poor survival. The remaining curves are available in Figure S8. In
total, 16 genes had extreme prognostic significance (p < 0.001): BIRC5, FOXM1, CEP55,
NEK2, CDKN3, HMMR, TOP2A, TK1, HJURP, ANLN, CCNA2, TPX2, MELK, KIF11, and
CCNB1. Moreover, based on the immunohistochemical staining results in Human Protein
Atlas, protein levels of genes in the CCNB1-centered sub-module were consistent with their
mRNA expression, i.e., their protein levels were also higher in NSCLC compared with
normal samples (Figure 5f).

3.4. Module 2 Suggests Potential Drug Targets for NSCLC Treatment

The second most robust community was module 2, which contained 36 nodes, three
seed genes (EGF, NMU, and KISS1R), and 65 interactions (Figure 6a). In contrast to
the largest community, the second module was mostly a community of down-regulated
genes, which means that their expression was significantly decreased in NSCLC tissues
compared with normal tissues. To comprehensively elucidate the mechanism of this
community, three levels of analysis were performed. By screening out the Drugbank and
TDD databases, we found that most nodes of this community corresponded to known drug
targets (Table S3), including two seed genes (EGF and KISS1R). The target-drug network
contained 26 targets and 479 drugs. Among them, the target pair ADBR1 and ADBR2 share
63 drugs. Other examples include AGTR1-AGTR2, RAMP2-RAMP3, and F8-PPBP, which
share some common drugs (Figure 6b). Additionally, F8-PPBP comprises an edge with
high a TFC score in module 2. In fact, interactions in the second module had the highest
TFC scores among other communities, while two interactions between know drug targets
(P2RY14-PPBP and EDN1-KISS1R) were ranked as the top two highest TFC scores. As such,
most genes that consist of module 2 are known drug targets, highlighting the importance
of these core modules as therapeutic opportunities.



Cells 2021, 10, 402 13 of 22Cells 2021, 10, x 15 of 25 
 

 

 
Figure 5. Clinical function of module 1. (a) The topological representation of Module 1. (b) A scatterplot showing the 
distribution of degree and RWR score. (c) CCNB1-centered sub-module. (d) Pathway enrichment analysis for genes in 
module 1, sorting by FDR in ascending order, while CCNB1 was involved in all top three pathways. (e) Survival analysis 
for genes in CCNB1-centered sub-module. Red lines represent sample groups with high gene expression, while green lines 
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distribution of degree and RWR score. (c) CCNB1-centered sub-module. (d) Pathway enrichment analysis for genes
in module 1, sorting by FDR in ascending order, while CCNB1 was involved in all top three pathways. (e) Survival
analysis for genes in CCNB1-centered sub-module. Red lines represent sample groups with high gene expression, while
green lines represent sample groups with low gene expression. (f) The protein level expression of the genes in CCNB1-
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Atoms of interface residues are represented with balls.

Next, pathway enrichment analysis showed that module 2 performed its biological
functions mainly through various signal transduction pathways (Figure S5). Among
them, the two most significant pathways were neuroactive ligand–receptor interaction and
chemokine signaling. A recent genome-wide association study showed that the neuroactive
ligand-receptor pathway was significantly related to risk of lung cancer [67]. Here, our
interest is the chemokine signaling pathway, which is guided by interactions between
GNG11 and chemokines, such as CXCL3, PPBP, CX3CL1, CXCR2, and CXCL13 (Figure 6c).
Except for PPBP, none of these genes were drug targets. Additionally, the low druggability
values for GNG11 show that this gene cannot served as a potential target. As possible
therapeutic alternatives, we suggest that key PPIs between GNG11 and chemokines are
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not only key regulators of the chemokine signaling pathway, but also provide druggable
possibilities due to their high TFC scores.

GNG11 is a membrane-bound receptor that can be activated by chemokines via
formation of a signaling complex [68]. To illustrate how the pathway is mediated by
GNG11, a follow-up structural modeling of PPIs of GNG11-chemokines complexes was
performed. Among the five predicted complexes, GNG11 formed stable interactions with
PPBP, CXCL3, and CXCR2, with binding energies of −19.87 kcal/mol, −128.16 kcal/mol,
and −80.39 kcal/mol, respectively (Figure 6d). Structural modeling shows that GNG11
binds to chemokine partners through the same or overlapping interfaces (Table S4), but
adapted different conformations, either with long chain or curled forms. Accordingly, we
provide a structural overview of GNG11 signaling in terms of its competitive binding and
consequences to other signaling pathways and regulatory process by forming transient
interactions with chemokines. The dynamic shift of binding conformation may allow the
intricacy of the cellular network and the heterogeneity of regulatory mechanisms [69].

Through these levels of analysis, we have demonstrated that module 2 provides a
molecular space for interpreting chemical–protein interactions and drug target identifi-
cation, suggesting that the chemokine signaling pathway and several GNG11 involved
interactions are potential therapeutic targets for NSCLC.

3.5. The Overall Network Reveals Critical Signaling Hubs and Regulatory Mechanisms

The overall community network consisted of two major communities (modules 1 and
2) and six small communities, including three connected and branched motifs that were
also detected. GO analysis showed that these small motifs contributed to special biological
functions. In addition to these isolated communities, two bottleneck genes (ITGA1 and
MMP9) were detected as a bridge that connected the entire community network. MMP9
was the seed gene that connected module 1 and the MMP family-related motif. MMPs
degrade various ECM components, destroy the histological barrier for tumor cell invasion,
and play a key role in tumor invasion and metastasis [70]. As mentioned above, the MMP
motif has the highest average TFC score, while MMP7-MMP11 was the highest weighted
edge among all small communities, suggesting it may act as a regulatory motif. Our result
is agreement with a recent proteogenomics study of NSCLC, which showed that high
MMP11 and MMP7 expression were significantly associated with poor overall survival [8].
In our community network, the MMP motif together with the adjacent motif drive ECM
remodeling. These findings likely reflect modulation of the tumor microenvironment, with
MMPs functioning as key players.

Most important was the bottleneck gene (Integrin alpha-1, ITGA1) between two of the
major communities, which is a pre-malignant biomarker that promotes treatment resistance
and metastasis potential in pancreatic cancer [71]. From the network perspective, ITGA1
connects with three seed genes (EGF, BIRC5, and KDR) from different communities. In
particular, the ITGA1–BIRC5 interaction is the most important, as it was predicted with the
highest TFC; the ITGA1-EGF and ITGA1–KDR interactions showed relatively high TFCs.
By remodeling the ITGA1-related network by extracting all neighbors of ITGA1 and their
interactions from the WCN (Figure 2f), a new community that contained an additional six
ITGA1–collagen interactions was obtained (Figure 7a). Similar to the MMPs motif, these
ITGA1–collagen interactions may also involve tumor microenvironment and effect cellular
behaviors and signal transduction pathways in NSCLC. Further structural modeling sug-
gested that all interactions with ITGA1 could be modeled, which distinguished two kinds
of PPIs. One is that ITGA1 forms two stable interactions with BIRC5 in module 1 and EGF in
module 2 that establish macromolecular complexes, connecting the two major communities.
ITGA1 uses different recognition regions when interacting with EGF and BIRC5 (Figure 7b),
generally binding with EGF by interfacial resides (such as ASN160, ALA163, and LYS170),
while it binds BIRC5 through another lager interfacial region. The other is that ITGA1
forms transient interactions with several collagens. There is a competitive relationship
between these transient interactions, with ITGA1-COL6A6 being the most competitive
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(having the lowest binding energy: −42.63 kcal/mol), and they usually are involved in
ECM-cell communication.
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By investigating the role of ITGA1 in connecting the two functional models, we
proposed a regulatory mechanism based on the global architecture of the community
network of NSCLC (Figure 7c). There are two fundamental assumptions that suggest
the biological functions underlying the two major communities. Module 1 is related to
some basic biological processes of carcinogenesis and NSCLC development, and thus can
serve as the disease module. This module may play its biological functions by regulation
of module 2. Activation of the chemokine signaling pathway starts by targeting several
GNG11–chemokine interactions. Therefore, such module–module interactions may enable
effective control of the regulatory mechanism via the high ‘control centrality’ of ITGA1 and
its bottleneck interactions.

4. Discussion

All cancers (including NSCLC) are caused by loss of mitotic control, which is gov-
erned by an intricate signaling network. Therefore, a systems-level understanding of the
altered molecular mechanisms and cellular communications in cancer is still badly needed.
In this study, we presented ne-PCA, an algorithm to build and analyze a “community
network” based on high-throughput gene expression and PPI data from NSCLC. First, a
seed-and-extend strategy was used to rank PPI network nodes as potential NSCLC-related
genes. Second, a new edge-based score was introduced to measure the importance of PPI
network edges that leveraged both topological information and GO knowledge. Third,
we use GN algorithm and LPA-derived “community networks” to detect different func-
tional modules and understand their underlying regulatory mechanisms. Compared with
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other cluster methods for PPI network analysis, there are two major advantages of our
computational methods: (1) our approach adopted the complementary properties of two
commonly used community detected methods, the GN algorithm, which use a “top-down”
approach starting at the network level, and LPA uses a “bottom-up” approach starting
at the protein level, to detect more robust communities. (2) in addition to community
analysis, our computational framework included network prioritization for both nodes
and edges in the PPI network. Node ranking was based on prior knowledge of the seed
genes. For edge ranking, we defined a new measure, which not only considered network
topology but also involved the intrinsic biology of protein pairs, to prioritize key regulators
in NSCLC. Thus, our computational method is knowledge-guided and performed random
work based on knowledge of seed genes and community detection based on GO similarity.
The community network and underlying regulatory mechanisms provide a molecular
understanding of how communications occur between different functional modules. Addi-
tionally, incorporating structural data to the community network gave the atomic insights
into the signaling network and will help target PPIs for NSCLC therapy in the future [72].

After applying our method to two NSCLC expression microarray datasets, the final
community network contained eight communities with different biological functions,
revealing functional homogeneity of each community. Among them, the two largest
communities, defined as module 1 and module 2, were found to control two distinct
aspects of NSCLC. Module 1 contains 44 nodes, with 43 up-regulated genes involved in
cell proliferation and NSCLC tumorigenesis. According to RWR scores, several important
genes were predicted, including CCNB1, which had the highest RWR score. Cyclin B1
(CCNB1) binds to specific cyclin-dependent kinases, and these interactions play crucial
roles in the cell cycle regulation [73]. It is well known that CCNB1 is highly expressed in
NSCLC and is a potential biomarker for both lung adenocarcinoma [74] and lung squamous
cell carcinoma [75], belonging to two subtypes of NSCLC. Constructing the CCNB1-related
subnetwork revealed that PRC1, CEP55, KIF14, KIF4A, and HJURP had the highest RWR
scores. Alongside CCNB1, this sub-network presents a list of additional candidate genes
with a strong survival association in NSCLC. We suggest that module 1 could serve as
a disease module, as it is functionally enriched in the basic tumorigenic processes and
could distinguish between lung tumors and normal samples with higher accuracy than the
seed genes.

Compared with module 1, module 2 contained more down-regulated nodes, but
most of the genes are known drug targets, highlighting the importance of this module
for therapeutic opportunities. We have concluded that chemokine signaling pathway and
GNG11–chemokine interactions may provide more promising drug targets for NSCLC
from three levels of analysis: (1) the functional enrichment analysis showed that module
2 was functionally enriched for tumor-related signal transduction pathways, especially
chemokine signaling. This pathway is of particular important and needs further inves-
tigation, because it has been reported as a biomarker for lung cancer [76]. (2) By using
TFC scores to predict key PPIs in module 2, we have also found that GNG11–chemokine
interactions are key regulators of the dysregulation of this pathway. Membrane-bound
forms of chemokines allow communication with their receptors through direct cell-cell con-
tact, which influences multiple fundamental biological processes and disease conditions,
including cancer [77]. C-X-C chemokine receptor 2 (CXCR2) is a key chemokine receptors
that has been shown to promote NSCLC cell proliferation, invasion, and stemness while
suppressing apoptosis and chemosensitivity, via activating JAK2/STAT3 signaling [78]. (3)
The structural modeling showed that both GNG11 and chemokines in chemokine signaling
pathway are not druggable, but GNG11 could form stable physical interactions with CXCR2
(DS = 0.834), CXCL3 (DS = 0.721), and PPBP (DS = 0.85) by a series of interfacial residues,
which may offer more promising hotspots for drug targeting.

The community network for NSCLC not only included functional modules as iso-
lated entities that were responsible for specific cellular processes, but also included two
connection nodes (MMP9 and ITGA1), which are involved in processes that influence
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other nodes to accomplish higher-level cellular functions. Although they regulate different
processes, MMP9 and ITGA1 are ECM regulatory proteins that directly participates in
ECM assembly and turnover. Other metalloproteinases including MMP1 and MMP7, have
been proposed as prognostic biomarkers for NSCLC because high circulating levels of
both proteins are associated with poor prognosis in NSCLC patients [79]. ITGA1 is a
typical adhesion molecule in cancer cells that mediates cancer cell behaviors, especially
when combined with collagen [80]. Here, we emphasize novel functions, determinants of
context dependency, and mechanistic-based therapeutic opportunities related to ITGA1.
We suggest that the connected motifs include ITGA1- and MMP-mediated remodeling
of the tumor microenvironment, which controls tumor development and metastasis [81].
Together, our findings suggest that targeting the ECM network, including ITGA1- and
MMP-involved interactions, has potential therapeutic value.

It is widely accepted that cells are composed of different types of interacting modules,
whose function is not played independently, but regulated with each other by both physical
interactions and association networks. The landscape of the “community network” is based
on global topology of the whole network, and intrinsic functions of each module define
the mechanistic nature of the altered cellular communications in NSCLC. In line with our
community network, we hypothesized two levels of communication: (1) intra-modular
communication that is activated by targeting regulatory pathways and their key PPIs,
which are the drug targets enriched in module 2; (2) inter-modular communications from
module 2 that act as a signal transduction module to module 1 (the disease-related module)
through small motifs. Our proposed regulatory mechanism is more or less similar to the
allo-network model [82,83], which was proposed to study protein allosteric communication
transmitted by PPIs within the cell. However, the community network based on PPIs only
provides a simple framework for studying regulatory mechanisms; more regulators and
their detailed molecular mechanism are needed to be considered, such as how miRNAs
regulate PPIs, leading to tumor invasion and metastasis [84,85].

5. Conclusions

We have presented ne-PCA, an algorithm that identifies functional modules based
on gene expression and PPI data. By applying ne-PCA to NSCLC, we generated a “com-
munity network” that was used to understand the molecular mechanisms of cancer. The
“community network” identified a CCNB1-mediated network in the largest community as
a modular biomarker, and interactions between GNG11 and CXCR2, CXCL3, and PPBP in
the second community provide potential druggable targets. Further structural modeling
of PPIs in module 2 and the connected motif gives the complete in-depth functional land-
scape of NSCLC. We hope that this study provided insights into the molecular mechanism
and biological functions that are altered in complex diseases both at the systems and
molecular levels.
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and M2 detected by ne-PCA, MCODE, MCL, CLusterOne, and Moduland; Table S3: Drug target
and Drug information for proteins in module 2; Table S4: Interacting residues for GNG11-CXCR2,
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