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The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been
synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was
produced by the mechanochemical polymerization under vacuum and room temperature.The fraction of pHEMA inMCC-block-
pHEMAproduced by themechanochemical polymerization increased up to 21mol%with increasing fracture time (∼6 h).Then, the
tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical
polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity.

1. Introduction

Cellulose is the most abundant biological resource on the
earth, which has been applied to composite materials, textile,
drug delivery systems, personal care products, and so forth
[1]. Therefore, making efficient use of cellulose would show
superiority compared to other synthetic polymers in terms of
ecological and environmental properties. The glycosylation
of cellulose has been well studied for a long time and all
over the world, by which energy and food problems are
hoped to be solved. However, cellulose is structured by
robust 𝛽-1,4-glycosidic linkages, so that the effectively and
safety techniques have not been established. On the other
hand, chemical modification techniques of cellulose have
been developed to provide further functions. For instance,
celluloid (cellulose nitrate) is the earliest modified cellulose,
which had thermoplasticity as additional function.The recent
advances of cellulose modifications are expanding from
esterification of cellulose (e.g., cellulose nitrate and cellulose
acetate) to graft copolymerization of cellulose [1]. Note that
almost all of those modified cellulose are graft polymer using
hydroxyl group of cellulose.

The mechanochemical reaction has been known to be
classical procedure for synthesizing linear block copolymer

[2].The reaction processes are initially triggered by end-chain
radicals (called mechanoradicals) produced by mechanical
fracture of polymer, and the mechanism is provided in
Figure 4.

Indeed, the mechanochemical reaction was applied to
synthesize block and graft copolymers of cellulose and
vinyl monomers, resulted in the block copolymers being
produced by the mechanical fracture [2]. Furthermore,
such mechanoradicals provide us information of molecular
motion of chain by using electron spin resonance (ESR) [3–
6].

Sakaguchi et al. have revealed the scission of the 𝛽-
1,4-glycosidic linkages of bacterial cellulose (BC) fractured
mechanically under vacuum at 77K from the ESR spectra
[7, 8]. In addition, diblock copolymer of BC and poly(methyl
methacrylate) was produced by the mechanical fracture,
indicating that mechanoradicals behave like radical polymer-
ization initiator. The greatest benefit of mechanoradicals will
be a polymerization procedure with ultimate low environ-
mental burden. However, the potentiality of mechanoradical
polymerization including the adaptivity and versatility has
been unsure at present, so that further investigations are
needed to reveal the characterization. In the current study,
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Figure 1: FT-IR spectra of the MCC-block-pHEMA produced by
mechanochemical polymerization for (a) 0 h, (b) 1 h, (c) 3 h, and (d)
6 h.

we synthesize novel diblock copolymer of accessible and low-
cost cellulose, MCC, and biocompatible materials, HEMA,
by mechanical fracture at room temperature and report the
function of MCC on the polymerization.

2. Experimental

2.1. Synthesis of MCC-Block-pHEMA. The diblock copoly-
mers of MCC and pHEMA (MCC-block-pHEMA) were
produced as follows: HEMA (50mg, Wako Pure Chemicals,
Osaka, Japan) purified by freeze-pump-thaw method was
introduced into handmade glass vessel (50mL) containing
prevacuum-dried MMC (50mg, Aldrich, USA) and alumina
ball (10 g, 2mm in diameter), and the glass vessel was sealed
off from the vacuum line, set to shaker (shaking speed:
300 rpm, amplitude: 40mm, SA-300, Yamato Scientific Co.,
Ltd. Tokyo, Japan) andmilled in vacuumat room temperature
for predetermined time (∼6 h). After that, all products were
sequentially washed by Soxhlet extraction with methanol for
16 h to remove unreacted HEMA, and the resultant residue
was dried in oven at 80∘C for 12 h.

2.2. Acetylation. The acetylation of MCC and MCC-block-
pHEMA synthesized was performed to be analyzed by 1H-
NMR. A mixture of acetic acid (0.57mol) and trifluoroacetic
acid anhydride (0.436mol) was held at 50∘C for 20min.Then,
MCC or MCC-block-pHEMA was introduced and the solu-
tion was acetylated at 50∘C for 12 h. The acetylated product
was precipitated with methanol, followed by filtration. After
that, the precipitate was washed by methanol again and was
dried in oven at 80∘C for 12 h.
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Figure 2: 1H-NMR spectra of the acetylated MCC (A) as control
and acetylated MCC-block-pHEMA produced by mechanochemi-
cal polymerization for (B) 1 h and (C) 6 h.

2.3. Analyses. The chemical structures of MCC and MCC-
block-pHEMA produced were analyzed by FT-IR and 1H-
NMR. FT-IR spectra were observed on a FT-IR 8400 (Shi-
madzu, Kyoto, Japan) using solid KBr pellets. 1H-NMR
spectrawere recorded on a JNM-BEX270NMRspectrometer
at 270MHz (JEOL, Tokyo, Japan) in CDCl

3
. TMS was used

as the internal reference. The number and weight average
molecular weights (𝑀

𝑛
and𝑀

𝑤
) of samples were estimated

by using GPC system (Waters 600E) with column Shodex
GPC K-805L in chloroform at 40∘C and 0.8mL/min of flow
rate. A calibration curve was obtained using polystyrene
standards.

3. Results and Discussion

It has been widely investigated that mechanical destruction
of cellulose results in the scission of the polymer main-chain,
followed by the production of radicals even under room
temperature [9–11]. This fact implies that cellulose fractured
mechanically is possible to react as radical initiator. Here,
we performed the production of novel diblock copolymer
of cellulose (MCC) and pHEMA using mechanochemi-
cal polymerization. Figure 1 shows the FT-IR spectra of
MCC-block-pHEMA obtained by each reaction time of the
mechanochemical polymerization. Peak at 1,710 cm−1 for
C=O group of pHEMA was observed in all reactants, but not
for samples for 0 h and without alumina ball. Sakaguchi and
Sohma indicated that material with low molecular weights
(∼100) has no function in mechanochemical polymerization
[12], so that current polymerization will be attributed to the
scission of MCC, but not to self-polymerization of HEMA.
In addition, the intensity of peaks obviously increased with
an increase of reaction time from 1 h to 6 h (see Figure 2).
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Table 1: Characteristics of MCC-block-pHEMA produced by mechanochemical polymerization.

Run Time (h) pHEMA (mol%) pHEMA DPa Molecular weight Tacticity (%)b

𝑀

𝑛

(×103) 𝑀

𝑤

/𝑀

𝑛

mm mr rr
1 0 — — 46 1.5 — — —
2 1 7 23 54 1.4 39.1 13.1 47.8
3 3 30 52 30 1.6 41.1 17.1 41.8
4 6 37 69 32 1.6 14.5 38.2 47.3
aDP: degree of polymerization.
bmm: isotactic; rm: atactic; rr: syndiotactic.
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Figure 3: Reaction scheme of MCC-block-pHEMA production initiated by MCC mechanoradical and sequentially reacted with HEMA.
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Indeed, the molar ratios of pHEMA in MCC-block-pHEMA
calculated by 1H-NMR increased from 7mol% for 1 h to
37mol% for 6 h (Figure 3), and those degrees of polymer-
ization (DP) of pHEMA calculated from corresponding𝑀

𝑛

values of the copolymer chains also increased from 23 to
69, respectively (Table 1). These facts indicate that radical
polymerization ofHEMAproceeded successfully fromchain-
end-type radicals of MCC cleaved by mechanically fracture.
The putative reaction scheme is shown in Figure 3. On the
other hand, 𝑀

𝑛
and 𝑀

𝑤
/𝑀
𝑛
of the MCC-block-pHEMA

were somewhat consistent regardless of the reaction time
(Table 1). It is suggested that polymerization of HEMA and
mechanical destruction of solid MCC could also occur
simultaneously in the process.

As one of function of cellulose posing, it has been known
to be chiral recognition, that is, act as chiral adsorbent
[13]. So, we next investigated the tacticity of pHEMA in
theMCC-block-pHEMA produced by the mechanochemical
reaction using 1H-NMR (Figure 3). At earlier stage (1 h) of
the reaction, molar ratios of isotactic (mm), atactic (mr),
and syndiotactic (rr) pHEMA were 39, 13, and 48mol%,
respectively (Table 1). For 3-hour reaction, those character-
istics of tacticity were somewhat consistent with copolymer
obtained for 1 h. At the latter stage (6 h), however, molar
ratio of the isotactic unit decreased to 15mol%, whereas
molar ratio of the atactic unit increased to 38mol%, and

constant for syndiotactic fraction (Table 1). These results
suggest that radical chain-end of cellulose surface bared by
mechanochemical reaction has an ability of stereoregularity
in the initial stage of radical polymerization; therefore, the
ability could decay with progression of polymerization.

In this manner, the mechanochemical reaction indicates
the possible presence of ecofriendly, simple, and func-
tional polymerization to future generations.TheMCC-block-
pHEMA will be expected to application of the fields of not
only ecologically friendly products (e.g., dispersant, builder,
etc.) but also biocompatible materials. Further investigations
will be needed to reveal the potential.
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