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Abstract o-Synuclein (AS)-positive inclusions are the
pathological hallmark of Parkinson’s disease (PD), dementia
with Lewy bodies (DLB) and multiple system atrophy (MSA),
all belonging to the category of x-synucleinopathies. o-
Synucleinopathies represent progressive neurodegenerative
disorders characterised by increasing incidences in the popu-
lation over the age of 65. The relevance of glial reactivity
and dysfunction in o-synucleinopathies is highlighted
by numerous experimental evidences. Glial AS inclusion
pathology is prominent in oligodendroglia of MSA (gli-
al cytoplasmic inclusions) and is a common finding in
astroglial cells of PD and DLB, resulting in specific
dysfunctional responses. Involvement of AS-dependent
astroglial and microglial activation in neurodegenerative
mechanisms, and therefore in disease initiation and pro-
gression, has been suggested. The aim of this review is
to summarise and discuss the multifaceted responses of
glial cells in «-synucleinopathies. The beneficial, as
well as detrimental, effects of glial cells on neuronal
viability are taken into consideration to draw an inte-
grated picture of glial roles in «-synucleinopathies. Fur-
thermore, an overview on therapeutic approaches
outlines the difficulties of translating promising experi-
mental studies into successful clinical trials targeting
candidate glial pathomechanisms.
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General Background

«-Synuclein (AS) belongs to a distinct protein family in-
cluding -, - and y-synuclein. It is natively unfolded and
consists of 140 amino acids. Its importance in synaptic
structure and presynaptic terminal size was recently demon-
strated in o3y-knockout mice [1]. Furthermore, AS plays
an important role in the mechanisms of folding and re-
folding of synaptic proteins, acting in close connection with
cysteine string protein-& and SNARE proteins [2].

The term «-synucleinopathies comprises progressive, neu-
rodegenerative diseases including Parkinson’s disease (PD),
dementia with Lewy bodies (DLB) and multiple system atro-
phy (MSA) with the major pathological hallmark of AS-
positive inclusions in neuronal and glial cells. Neuronal inclu-
sions, Lewy bodies (LBs) and Lewy neurites (LNs) are char-
acteristic for PD and DLB, while AS-positive glial cytoplasmic
inclusions (GCIs) are distinctive in MSA and occur predomi-
nantly in oligodendroglial cells [3,4]. Astroglial AS-positive
inclusions may also occur in PD [5,6]. PD pathology has been
partly related to point mutations [7,8] or duplications [9] and
triplications [10,11] of the SNCA gene. Moreover, SNCA
variants can increase the risk of developing PD and MSA
[12,13]. AS inclusion formation may be related to posttransla-
tional modifications of AS (nitration, ubiquitination and phos-
phorylation) which can lead to pathological accumulation of
AS and enhance the progression of x-synucleinopathies
[14-16]. Involvement of impaired AS clearance through
autophagy pathways is also suggested to be involved in the
generation of AS inclusions in PD and DLB [17,18]. A corre-
lation between the aggregation of AS and neuronal cell loss
and disease progression respectively was demonstrated in
MSA [19] and also suggested in PD/DLB according to Braak
staging [20]. Moreover, prion-like cell-to-cell propagation of
AS has been proposed recently as a major contributor to
disease progression in o-synucleinopathies [21-23].
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Since the first description of glial cells (glia meaning glue)
by Rudolf Virchow in 1864, the view of glial cells as mere
substrate for neurons has changed by evidence, indicating the
role of glial cells in the support of neuronal survival, synaptic
function and local immunity [24,25]. Furthermore, the impor-
tance of glial cells is now extended towards a crucial role in
the initiation and progression of different diseases of the CNS,
including «-synucleinopathies [26-29]. Glial dysfunction in
«-synucleinopathies not only comprises the above-mentioned
AS-positive inclusion pathology in glia but also an over-
activated state of microglial and astroglial cells, termed reac-
tive microgliosis and astrogliosis. On different stimuli, e.g.
injury or infection, microglial and astroglial cells get activated
[30,31]. Activation is associated with morphological changes,
release of trophic and inflammatory factors and, in regard to
microglia, also clearance of dead or damaged cells [30-34].
These changes can be crucial for neuronal survival [32-34].
However, regarding chronic disease conditions of the CNS
like neurodegenerative diseases, astroglia and microglia can
get over activated. Reactive microgliosis and astrogliosis can
lead to neurotoxicity and increased tissue damage after the
release of (pro-)inflammatory cytokines, reactive oxygen spe-
cies (ROS) and nitric oxide (NO) [35-40]. Alternatively,
oligodendroglial cells show an increased vulnerability to ox-
idative stress and cytokines, resulting in demyelination, di-
minished trophic support, cellular dysfunction and cell death
which affect neuronal survival [41,42].

Neuronal -Synucleinopathies

a-Synucleinopathies show frequent incidences among the
population over the age of 65. PD affects about 3 % of the
general population over the age of 65 and, therefore, is the
most common neurodegenerative movement disorder [43].
Furthermore, it is characterised by relentless disease progres-
sion [44]. DLB has a frequency of 20 % regarding all cases
of dementia analysed by autopsy [45]. PD and DLB show
various degrees of neurodegeneration of dopaminergic neu-
rons in substantia nigra pars compacta (SNpc) and dopami-
nergic terminals in the striatum, as well as degeneration of
extra-nigral structures including noradrenergic system, cho-
linergic system, serotonergic system, limbic structures and
cerebral cortex [46—48]. The aggregation of AS in neuronal
cells is the major pathological hallmark of PD and DLB,
including LBs and LNs [4,49]. PD also features abnormal
aggregations of AS in astroglial cells [5,6]. LB pathology is
mostly present at the sites of neuronal loss [48]. However,
evidence shows that the occurrence of LBs in the SNpc must
not necessarily lead to neuronal death and a high number of
neurons undergo apoptosis without the occurrence of AS
aggregates [50,51]. This leads to the assumption that other
factors may have a major influence on neuronal degeneration
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and, therefore, on the progression of these diseases. Hence,
the role of microglial [28,52,53] and astroglial [5] activation
in PD and DLB progression comes into consideration. How-
ever, the role of both cell types, microglia and astroglia, is
still unclear in PD and DLB because of their controversial
beneficial and toxic effects on neurons [54,55]. Furthermore,
AS-positive inclusions were shown in oligodendroglial cells
of PD brains [6]; however, in contrast to MSA, oligoden-
droglial cells seem to play an inferior role in the initiation of
PD and DLB but may have a possible involvement in the late
stages of disease progression [29].

Astroglial cells have been shown to get activated in PD
and DLB. Different reports exist on astroglial activation,
claiming no or mild astrogliosis [56,57] in contrast to mas-
sive astrogliosis [58] in post-mortem PD brains. Further-
more, astroglial cells show AS-positive inclusion pathology
[6], which may lead to a different reactivity pattern in PD
and DLB [5,19]. AS overexpression in murine astroglial
cells leads to neuroinflammation and microglial activation,
and in consequence to oxidative stress [59], providing a
major link of AS astroglial pathology with neuroinflamma-
tion/microgliosis and oxidative stress that may also promote
neurodegeneration. A possible explanation for the AS-
positive inclusions in astroglial cells in PD brains was
provided by Lee and colleagues [23]. They show that astro-
glial cells can endocytose AS released from neurons and
form inclusions similar to LBs in a time-dependent manner.
Importantly, the transfer of AS from neurons to astroglia
leads to increased production of tumour necrosis factor o
(TNF-«) and chemokine ligand 1 by astroglial cells, and
results in enhanced neurodegeneration [23].

An upregulation of interferon-y (IFN-y) receptor on
astroglia in PD post-mortem brains suggested a neurotoxic
reaction after INF-y activation [54,60]. Furthermore, astro-
glial cells in the ventral midbrain of PD brains show an
enhanced expression of myeloperoxidase (MPO), a key
enzyme related to oxidative stress during inflammation
[61]. However, astroglial cells also seem to function in a
contrary direction by the production of anti-oxidative and
anti-inflammatory agents. A beneficial function of astroglial
cells in PD and DLB seems to be the release of neurotrophic
factors, e.g. brain-derived neurotrophic factor [55]. More-
over, the activity of glutathione peroxidase (GPx), a crucial
protective enzyme against oxidative damage, has been as-
sociated with astrocytic proliferation and showed an en-
hancement of 30 % in the substantia nigra (SN) of PD
brains [62]. Enhanced levels of glial fibrillary acidic protein
were associated with increased GPx activity in PD brains
[63], suggesting a fundamental role of astroglia in neuronal
protection against oxidative stress.

Experimental models of PD reveal further the involvement
of astrocytes not only in neurotoxicity but also in neuronal
protection. Astroglial cells in Parkinsonian monkeys,
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intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), show an upregulated expression of the IFN-y recep-
tor similar to human post-mortem brains. Moreover, TNF-«
immunoreactivity was observed almost exclusively in astro-
glial cells, associated with an increased number of astrocytes
even years after the MPTP intoxication, suggesting a role in
neurodegeneration [64]. Selective astroglial expression of mu-
tant AS3T AS in an inducible mouse model led to rapidly
progressive paralysis most likely caused by widespread astro-
gliosis, degeneration of spinal cord motor and dopaminergic
neurons [59]. An alternative pathogenic pathway of astroglia-
mediated neurotoxicity could be related to morphological and
functional alterations in astroglial mitochondria and a dis-
turbed secretion of factors crucial for neuronal differentiation
as demonstrated in a genetic mouse model overexpressing
mutant AS [65]. In a recent study, cerebrospinal fluid of PD
patients was added to an astroglial cell culture, and a decrease
in proliferation rate as well as increased contents of AS on day
7 was observed [66]. Upregulated expression of interleukine-6
(IL-6) by astroglial cells upon AS treatment has been shown in
vitro, supporting the evidence of astroglia-triggered neuroin-
flammatory response [67]. However, astroglial release of glial
cell line-derived neurotrophic factor (GDNF) may favour neu-
ronal protection in SNpc [68]. Glutathione, another agent
reported to have an antioxidant character with beneficial func-
tions in PD, was demonstrated to be released by astroglial cells
activated by 6-OHDA-injured dopaminergic neurons [69].
Hydrogen sulphide, a potential anti-inflammatory and neuro-
protective agent produced by astroglial cells, was found down-
regulated upon inflammatory activation of astroglia or
microglia, suggesting a possible mechanism relevant to PD
pathogenesis [70].

In summary, it is speculated that astroglia may play a
dominant role at least in the initiation of PD related to
astroglial AS inclusion pathology [29]. Later on, astroglia
may mediate the progression, releasing inflammatory agents
and recruiting microglial cells (see Fig. 1). On the other
hand, astroglia-mediated secretion of trophic and antioxi-
dant factors should also be taken into account, even though
there are insufficient data regarding AS-dependent astroglial
neuroprotection. Considering the neuroprotective features of
astroglial cells in oxidative stress situations, possible thera-
peutic options to regulate the astroglial response to AS and
chronic disease conditions may be of major interest.

Microglial cells have been shown to be activated in all «-
synucleinopathies. In PD, different studies report an accu-
mulation of reactive microglia around AS-positive LBs us-
ing in vivo imaging techniques [28] or post-mortem brain
analysis [53,71]. In DLB as well, a correlation between
microglial activation and LBs in different brain regions has
been demonstrated [52]. Microglial activation is shown in
different brain regions of PD end-stage cases, including SN,
putamen, hippocampus, transentorhinal, cingulated and

temporal cortex [72], in all areas of the limbic system, in
particular, the dentate gyrus and the CA2/3 region of the
hippocampus [73]. To clarify if there is an involvement of
microgliosis in PD initiation, Ouchi and colleagues [74]
used ['C](R)-PK 11195 PET scans to image microglial ac-
tivation in early-stage drug-naive PD patients [74]. They
demonstrated that enhanced microglial activation in mid-
brain correlates with the loss of dopaminergic terminals in
PD. The re-scan of some patients in a follow-up study
presented a more prevalent distribution of microgliosis, also
affecting extra-striatal regions of the brain [74].

The observations in PD/DLB patients support the recently
suggested hypothesis that microglial activation, stimulated by
extracellular AS or astroglia, occurs before neurodegeneration
in SNpc and is therefore a major participant in the initiation of
PD and DLB [29,75]. Furthermore, microglia are suggested to
be crucial in the ongoing progression of PD and DLB includ-
ing, e.g. the secretion of different pro-inflammatory agents
[75-78]. Therefore, different experimental models character-
ise microglial activation by AS and modified forms of AS.
The overexpression of wild-type AS in mice presented early
microglial activation [78]. The neuronal overexpression of
mutant AS forms (A53T and A30P homozygous double
mutants) may even enhance microgliosis [75]. In a rat PD
model with rAAV-based overexpression of AS in the mid-
brain, the cell number of microglia increased with the level of
AS expression [79]. In addition, dopaminergic cell death
influenced the AS-induced microglial activation: Occurrence
of dopaminergic cell death lead to a delayed and long-lasting
microglial activation, whereas the absence of dopaminergic
cell death induced an early and transient activation. Further-
more, the activation profile upon AS overexpression was
related to four different types of microglial activation associ-
ated with different stages of progression of the neurodegener-
ative process [79]. In a PD-like mouse model with rAAV-
based overexpression of human AS, microglia and the adap-
tive immune system were activated due to AS alone [80]. AS
led to NF-kB/p65 expression, release of pro-inflammatory
cytokines and neurodegeneration triggered by microglial
cells. The microglial activation was attenuated by the lack of
the Fc gamma receptor, suggesting an important role of the
adaptive immune system in AS-mediated microglial activa-
tion and neurodegeneration [81].

Cell culture models demonstrated that microglial-
conditioned release of pro-inflammatory cytokines upon
AS treatment was dose-dependent [76,78]. Moreover,
microglia treated with mutant (A30P, E46K and A53T) AS
resulted in an enhanced microglial activation with increased
release of cytokines (IL-6 and IL-10) and chemokines
(RANTES and MCP-1) compared to wild-type AS treat-
ment [77]. Wild-type and mutant AS released by neurons
led to an enhanced pro-inflammatory response of the mouse
microglia cell line BV2 [82], and mutant AS-overexpressing
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Fig. 1 Characteristic cellular changes in the CNS during disease initia-
tion and progression in neuronal (PD/DLB) and oligodendroglial (MSA)
a-synucleinopathies. In the healthy brain, microglial cells (red) are pres-
ent in a quiescent or resting state. Their main task is to scan the environ-
ment for injury or infection. Astroglial cells (green) are involved in
synaptic transmission support, nutrient support and control of extracellu-
lar homeostasis, thereby crucial for neuronal viability. Neurotrophic
support is also provided by microglial, astroglial and oligodendroglial
(myelinating and non-myelinating) cells. Myelinating oligodendroglia
(blue) are essentially involved in maintaining the myelin sheet and trophic
support of myelinated neurites. Neuronal c-synucleinopathies: Early in
disease, AS aggregations (vellow) in neurons (grey) and astroglial cells
occur, leading to a decreased neuronal viability. Moreover, astroglial cells
get activated, resulting in an enhanced release of neurotoxic pro-
inflammatory factors. The recruitment of microglial cells starts even
before neuronal cell loss occurs, and their arrival at the site of AS
accumulation facilitates the production of pro-inflammatory cytokines,
as well as oxidative stress. However, beneficial phagocytic microglial
activity may be involved in the early clearance of extracellular AS. Later
in disease progression, full-blown neuronal inclusion pathology develops,

BV2 cells showed an increased release of inflammatory
cytokines (e.g. TNF-«, IL-6) [83]. Oxidative stress is an-
other neurotoxic event that occurs after AS-induced micro-
glial activation and may play a crucial role in PD and DLB
disease progression. The activation of NADPH oxidase and
the production of ROS by AS stimulated microglia led to
dopaminergic neuronal loss [84]. Furthermore, mutant AS-
overexpressing BV2 cells produced an increased amount of
NO [83]. Aggregated and nitrated forms of AS not only led
to inflammatory events and oxidative stress but also to
enhanced neuronal cell death, as shown in mesencephalic
neuron—microglia co-cultures [84,85].

However, activated microglial cells are not only involved
in the neuroinflammation and neurodegeneration processes in
PD and DLB, they may also play a fundamental role in the
clearance of damaged or dead cells and AS [32,84,86], there-
by supporting neuronal survival. Microglial cells show an
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Oligodendroglial a-synucleinopathy

including the formation of LBs and LNs. The build-up of AS in astroglia
leads to dysfunctionality and increased neurotoxic activity. The phago-
cytic microglia appears inefficient to clear extracellular AS and to stop
disease progression. Accumulation of AS may even occur in non-
myelinating oligodendroglial cells late in disease. All these dramatic
changes in the CNS lead to chronic overactivation of glial cells and an
enhanced neuronal cell loss. Oligodendroglial a-synucleinopathies: At
the beginning of MSA, oligodendroglial cells start to accumulate AS in
the cytoplasm (origin is still unresolved). Demyelination, oligodendrog-
lial and neuronal degeneration are initiated. Again, activated microglia
and astroglia are attracted to the sites of GCI accumulation, and through
the release of pro-inflammatory cytokines and oxidative stress, promote
the disease. However, microglial phagocytic activity may provide an
effort to reduce extracellular AS levels in the CNS. Final stage MSA is
presented by AS-positive GCls, massive oligodendroglial dysfunction
(demyelination and disturbed trophic support) and prominent reactive
gliosis. Moreover, accumulation of AS in the cytoplasm and nucleus of
neurons is frequent. In consequence of all these cellular changes, secondary
axonal degeneration and neuronal cell death occur

enhanced phagocytic activity when treated with monomeric
AS; on the contrary, aggregated AS inhibits microglial phago-
cytosis in vitro [86]. Microglial cells are capable of fast AS
degradation with an intracellular AS half-life of about 4 h,
compared to astroglial and neuronal degradation comprising
less than half of the degradation time [87]. Regarding micro-
glial phagocytosis of AS, Toll-like receptors (TLRs) seem to
play an important part in recognition and internalisation of
AS. The pattern-recognition receptors TLR2 and TLR4 were
identified as important players in microglial activation
[88,89]. Recently, it was demonstrated that TLR4 ablation
leads to a disturbed clearance of AS by microglia [89].

To summarise, microglia plays a fundamental but dual role in
neuronal a-synucleinopathies. On the one hand, microglial cells
recognise extracellular AS released by damaged neurons; more-
over, they are crucial in the clearance of this protein [86,87]. On
the other hand, AS may trigger microglial overactivation and,
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further, this can lead to the production of pro-inflammatory
agents and to oxidative stress and as a consequence to enhanced
neurodegeneration and neuronal cell death [84].

The role of oligodendroglial pathology in PD and DLB
does not seem to be a leading one. Occasional oligodendrog-
lial AS-positive inclusions have been reported in clinically
overt PD cases [6,90]. Moreover, complement-activated oli-
godendroglial cells were found in some brain regions of PD
and DLB cases [91,92]. Oligodendrocytes show a higher
susceptibility in PD and DLB regarding the lack or decrease
of myelinated axons of AS-affected neurons [93,94]. These
data indicate that oligodendroglial cells could be involved in
the late disease progression of PD and DLB. However, an
involvement of oligodendroglial pathology in disease initia-
tion and/or progression in neuronal o-synucleinopathies lacks
sufficient evidence at present [29].

Oligodendroglial x-Synucleinopathy

MSA is a progressive neurodegenerative disease of un-
known aetiology with a prevalence of about 4.4 new cases
per 100,000 year ' [95], and the mean age at onset of first
symptoms is 52—57 years [96,97]. The term MSA was first
used by Graham and Oppenheimer in 1969 to merge the
variable diagnoses of striatonigral degeneration, olivopon-
tocerebellar ataxia, Shy—Drager syndrome and orthostatic
hypotension [98,99]. Now, two major clinical subtypes are
defined: (1) the MSA-C subtype presents with predominant
cerebellar ataxia and (2) the MSA-P subtype shows preva-
lent Parkinsonism [100]. Progressive autonomic failure is
present in both motor subtypes correlating with neuronal
degeneration in autonomic brainstem centres, intermedio-
lateral cell columns and Onuf’s nucleus in the spinal cord
[19,101]. The main pathological and diagnostic hallmark of
MSA are AS-positive GClIs present in oligodendroglial cells
and involving different areas of the brain, including pons,
medulla, putamen, SN, cerebellum and preganglionic auto-
nomic structures [3,102—-105]. Moreover, astrogliosis and
microgliosis were found to be involved in this presumably
primary oligodendrogliopathy [19,27,106].

Similar to PD and DLB, the role of astroglial and micro-
glial activation in MSA is not entirely resolved, taking neuro-
protective and neurotoxic functions into account. Extensive
astrogliosis in MSA brains was reported by Ozawa and col-
leagues [19] and by Jellinger et al. [107]. Astroglia in MSA
brains undergo pathological changes regarding their morphol-
ogy featuring enlarged cell bodies and distorted processes
[108]. However, in contrast to PD and DLB, AS accumulation
in astroglia does not seem to occur in MSA. Experimental
MSA models provide further evidence on the involvement of
astrogliosis in MSA-like neurodegeneration. Overexpression
of human AS in oligodendroglia under the control of the

murine myelin basic protein (MBP) promoter triggered neuro-
degeneration and prominent astrogliosis detected at 6 months
of'age [109]. Exposure to 3-nitropropionic acid in a transgenic
mouse model overexpressing human AS in oligodendroglial
cells under the control of the proteolipid protein (PLP) pro-
moter not only lead to striatonigral degeneration and olivo-
pontocerebellar atrophy but also to widespread astrogliosis
accompanying the neurodegeneration [110]. Most of the in
vitro data on astroglia and AS referenced for PD/DLB, as
described above, may be also relevant for MSA. In MSA,
astrocytes show high reactivity, and astrogliosis may lead to
oxidative stress and neurotoxicity, similar to PD/DLB. How-
ever, insufficient data on astroglial activation and its mecha-
nisms in MSA allow only speculations on the role of astroglial
cells. Further studies would be very valuable for a complete
understanding of the astroglial role in MSA.

Microglial activation in MSA is a common finding. In
MSA patients, Gerhard and colleagues reported microglial
activation in the dorsolateral prefrontal cortex, putamen,
pallidum, pons and SN using [''C](R)-PK 11195 PET imag-
ing [27]. Moreover, an enhanced microgliosis was found in
motor-related brain structures associated with GCI patholo-
gy, including cerebellar input, extrapyramidal motor and
pyramidal motor structures [111]. Microglial activation
was reproduced in the transgenic MSA mouse model over-
expressing AS under a PLP promoter in oligodendroglial
cells [110]. The progressive upregulation of microglial acti-
vation in this MSA transgenic mouse model resulted in
neuroinflammation and oxidative stress correlating with do-
paminergic neuronal loss in SNpc [112]. Moreover, the
microglial activation was associated with an upregulation
of TLR4 in these mice, as also detected in human MSA
[112]. In double transgenic mice with oligodendroglial over-
expression of AS and lack of functional TLR4, the efficien-
cy of microglial AS clearance was diminished and resulted
in enhanced nigral dopaminergic neurodegeneration [89].
These data suggest that TLR4 is a crucial mediator of micro-
glial AS clearance, and the enhanced expression of this
receptor in post-mortem brains may represent an augmented
effort of AS clearance by microglial cells in MSA. In vitro
data confirm that AS activates microglial cells, triggers the
release of pro-inflammatory agents [76,82], increases oxi-
dative stress through the release of ROS [84] and may be of
equal relevance to the disease progression in PD and DLB as
well as MSA. In summary, similar to PD and DLB, microglial
cells in MSA display positive (phagocytosis) and negative
(oxidative stress and inflammation) features, and further studies
are warranted to elucidate the complete spectrum of microglial
activation in disease initiation and progression.

It is considered that oligodendroglial cells play a leading
role in MSA, due to the AS inclusions present in these cells.
Oligodendrocytes seem to be initiators of the disease as
regarded to the distribution of GCIs [106,113], which may
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even represent the primary injury in MSA [106,114]. GClIs are
distributed throughout large proportions of the CNS
[3,102—104]. However, the source of AS accumulation, the
main component of GCls, in oligodendroglial cells is not
resolved yet. The prevalent assumption is that oligodendrog-
lial cells actively incorporate and accumulate AS released by
neighbouring neurons [115]. This hypothesis becomes highly
relevant regarding the data on cell-to-cell propagation of AS in
different studies [21-23]. Furthermore, the release of AS by
neuronal cells into the extracellular space was confirmed
recently [22,116]. Primary oligodendroglial dysfunction relat-
ed to abnormal endocytic activity as suggested by the ectopic
expression of Rab5 and Rabaptin-5 in GClIs [117] may repre-
sent an early event in MSA pathogenesis preceding patholog-
ical uptake and accumulation of AS in oligodendroglia.
However, there are currently no studies demonstrating AS
propagation to oligodendroglia [22,118]. Another possibility
of AS aggregation in oligodendroglia could be an enhanced
expression of AS, and further, a defective degradation mech-
anism could lead to accumulation of AS in the cell [119,120].
Yet, no mRNA expression of AS could be found in human
oligodendroglial cells of MSA brains [113,121]. However, AS
is a major trigger of oligodendroglial protein inclusion forma-
tion, and the absence of AS prevents accumulation of tau and
aB-crystallin, further components of GCIs [122]. The oligo-
dendroglial phosphoprotein p25« (tubulin polymerization
promoting protein) induces AS aggregation in vitro [123];
furthermore, in MSA, p25x may relocate to oligodendroglial
soma, suggesting an involvement of early oligodendroglial
dysfunction in MSA initiation and GCI formation [124]. In
support of these data, co-expression of human AS and p25« in
rat oligodendroglia led to disorganisation of the microtubular
cytoskeleton and apoptosis [125]. Inhibition of AS-Ser129
phosphorylation abolished these effects, suggesting an impor-
tant role for Ser129 phosphorylation in the formation of AS
oligomers and oligodendroglial apoptosis [125]. Recently, the
cytoplasmic enzyme histone deacetylase 6 (HDAC6) was
found in over 98 % of all GCIs of MSA post-mortem brains
[126]. The exact role of HDACG in the pathogenic cascade of
MSA is currently unclear. HDACG is identified to regulate the
transport of ubiquitinated misfolded proteins, the formation of
aggresomes [127] and aggresome degradation [128] as well as
the control of autophagy pathways [129], and its accumulation
in MSA may represent another sign of oligodendroglial injury.

Different studies demonstrate that GCls affect oligoden-
droglial function and viability, suggesting an important role
in MSA progression. Cell culture experiments, using glial
cells overexpressing AS, revealed increased susceptibility to
oxidative stress and TNF-o« which may represent further
events in the pathogenesis of MSA [130,131]. Overexpres-
sion of AS in oligodendroglial cells reduced the adhesion to
fibronectin, leading to impaired cell-extracellular matrix
interactions [132]. Oligodendroglial overexpression of AS
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in transgenic mice resulted in neurodegeneration in different
brain areas including SNpc, locus coeruleus, nucleus am-
biguous, pedunculopontine tegmental nucleus, laterodorsal
tegmental nucleus and Onuf’s nucleus [110,133]. Moreover,
MSA transgenic mouse models demonstrated that oligoden-
droglial AS inclusions may cause myelin disruption and
mitochondrial dysfunction [109,112,134]. The expression
of neurotrophic factors, especially GDNF, was decreased
in the MBP-AS mouse model, but not in transgenic mice
with neuronal overexpression of AS, suggesting MSA-
specific oligodendroglial dysfunction, related to reduced
trophic support of neurons [135].

In conclusion, oligodendroglial cells may play a major
role in the initiation and progression of MSA (see Fig. 1).
The accumulation of AS in these cells leads to altered
oligodendroglial function including reduced trophic support
and demyelination and in consequence to neurodegenera-
tion. However, the source of AS in GClIs and the mecha-
nisms of GCI formation in oligodendroglia remain unclear
and need further elucidation to gain a deeper insight into
MSA disease mechanisms.

Therapeutic Approaches Targeting Glial Dysfunction
in a-Synucleinopathies: Where Are We Now?

Increasing body of evidence confirms the relevance of glial
dysfunction in the pathogenesis of o-synucleinopathies.
However, the broad spectrum of activation profiles of
microglial and astroglial cells makes it still difficult to
obtain a clear-cut overall picture of all glial features and
their mode of action in these diseases. The wide variety of
glial functions offers diverse therapeutic targets. Yet, due to
the insufficient knowledge on the exact chronology and
relevance of the beneficial and detrimental roles of glia in
«-synucleinopathies, researchers are currently confronted
with discrepancies between findings on neuroprotection in
experimental setups and clinical settings.
Neuroinflammatory responses and oxidative stress medi-
ated by microglial or astroglial cells are prior targets in
therapeutic approaches regarding neuroprotection in o-
synucleinopathies. Non-steroidal anti-inflammatory drugs
(NSAIDs) showed neuroprotective effects in toxin-induced
PD-like neurodegeneration in rodents [136,137] and, fur-
thermore, resulted in a decreased AS aggregation in vitro
[138]. Recently, eicosanyl-5-hydroxytryptamide treatment
lead to a repressed astro- and microglial activation and
inducible nitric oxide synthase (iNOS) expression in AS-
overexpressing mice [139]. Moreover, different strategies on
the inhibition of micro- and astroglial activation were followed
in various experimental approaches leading to neuroprotection,
including iNOS and NADPH oxidase inhibition [140,141],
suppression of the peroxisome proliferator-activated receptor
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vy pathway via pioglitazone [142—-144] or inhibition of the
enzyme MPO, which is involved in ROS production and
upregulated in PD and MSA [61,145]. Minocycline, a tetracy-
cline derivative known for its antimicrobial activity and
the inhibition of protein synthesis, revealed additional anti-
neuroinflammatory and anti-apoptotic efficacy [146]. In differ-
ent experimental studies of PD and MSA, minocycline had
various neuroprotective effects probably dependent on the
timing of therapy onset within the course of neurodegeneration
[112,147-149]. The modulation of TLR4-dependent micro-
glial activation through a TLR4 antagonist naloxone has been
suggested to prevent microgliosis-associated dopaminergic
neurodegeneration [150,151]. However, in light of the recent
finding that TLR4 is also an important modulator of AS
clearance by microglia [89], caution and further studies are
needed to justify such a therapeutic approach in «-
synucleinopathies. Anti-neuroinflammatory strategies with
the goal of modifying glial responses towards neuroprotection
currently fail to translate into successful clinical trials. The
application of NSAIDs in PD resulted in contradictory out-
comes. In an epidemiological study, NSAID treatment was
associated with decreased risk of PD [152]; however, in a
recent study using a UK cohort of PD cases and controls [153]
and in observational studies using meta-analysis [154,155],
these results were not confirmed. A similar conflicting out-
come was obtained after minocycline therapy in PD and MSA
patients [156,157]. Minocycline treatment of MSA patients in
a prospective, randomised, double-blind clinical trial lead to a
significant downregulation of microglial activation after 24
weeks of therapy; however, no effect on disease progression
was demonstrated, suggesting that an early therapy onset may
be preferable [156].

Alternative therapeutic strategies, like immunomodulation,
AS-reducing strategies and neurotrophic factor delivery and
modulation, targeting glial dysfunction have been approached.
In an experimental immunisation study, the adoptive transfer of
copolymer-1 immune cells resulted in decreased microglial
activation and enhanced local expression of astroglia-
associated GDNF amongst other effects [158,159]. However,
transfer of T cells from nitrated AS-immunised mice lead to
neuroinflammation in correlation with neuronal loss [160]. In
contrast, AS vaccination in a PD mouse model yielded a
decrease in microglial and astroglial activation and enhanced
neuroprotection, as well as reduced AS inclusion pathology
[161]. The strategy of using AS-reducing agents for the therapy
of a-synucleinopathies was further expanded by the applica-
tion of rifampicin in a transgenic mouse model of MSA. The
results indicated that the successful lowering of AS levels in the
brain of MBP-AS mice resulted in neuroprotection associated
with suppressed astroglial activation [162]. Clinical proof of
concept is currently awaited for the efficacy of these strategies.
Finally, the delivery of neurotrophic factors is a relevant ap-
proach related to glial dysfunction in «-synucleinopathies.

Genetically modified macrophages were used for the delivery
of GDNF inducing neuroprotection in the MPTP model of PD
[163]. However, AAV gene delivery of a GDNF analogue in the
putamen of PD patients failed to exert beneficial effects [164].

In conclusion, the divergence between the clinical and the
experimental outcomes on therapies targeting glial dysfunc-
tion in x-synucleinopathies may be resolved only by further
in-depth studies on the role of glial cells in disease initiation
and progression. The role of glia should be further analysed in
association with the basic changes that occur in CNS related to
normal ageing, which may play a crucial predisposing/pro-
moting role in AS-related neurodegeneration.
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