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1  | INTRODUC TION

Pulsed focused ultrasound (pFUS) has been increasingly studied 
as a non-invasive technique that can serve as an adjunct to en-
hance cellular therapy in treatment of disease.1-3 The mechano-
transductive effect of pFUS has been shown to induce transient 
local molecular changes in expression of cytokines, chemokines 

and trophic factors (CCTF), as well as cell adhesion molecules 
(CAMs) without damage to the targeted tissue.4-8 The micro-
environmental changes in CCTF and CAM following pFUS have 
been demonstrated to increase homing of mesenchymal stromal 
cells (MSC) to a variety of normal and diseased tissues.4-6,8-13 
Furthermore, delivery of MSC represents a promising therapy 
for a variety of cardiac pathologies, especially infarcted myocar-
dium14,15; however, the infusion of these cells often demonstrates 
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Abstract
Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can 
increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to 
sonicated tissues. MSC have shown promise for cardiac regenerative medicine strat-
egies but can be hampered by inefficient homing to the myocardium. This study soni-
cated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided 
pFUS and examined both proteomic responses and subsequent MSC tropism to 
treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. 
pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and 
trophic factors and cell adhesion molecules in the myocardial microenvironment for 
up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriu-
retic peptide were elevated in the serum and myocardium. Immunohistochemistry 
revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. 
Myocardial tropism of IV-infused human MSC following pFUS increased twofold-
threefold compared with controls. Proteomic and histological changes in myocardium 
following pFUS suggested a reversible inflammatory and hypoxic response leading to 
increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality 
to improve MSC therapies for cardiac regenerative medicine approaches.
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inefficient myocardial homing and requires invasive techniques 
for adequate delivery.

pFUS has been applied for various cardiac applications such as 
treating cardiac arrhythmias, as a cardiac pacing tool, as a contusion 
model and as a method to mitigate cardiac diseases.16-19 The current 
study investigates whether pFUS could be used to modify the myo-
cardial microenvironment and increase tropism of IV-injected MSC. 
Ultrasound exposures have previously demonstrated increased stem 
cell homing to myocardium, but these indications coupled with in-
travenous microbubble (MB) infusion can cause ultrasound-targeted 
MB destruction (UTMB).17-19 UTMB has been shown to cause some 
molecular changes that are necessary to induce MSC tropism, but 
UTMB often results in tissue damage making the approaches less 
attractive as a regenerative medicine technique.

In this study, pFUS without MB was administered to the left 
ventricle at parameters previously shown not to damage other tis-
sues. We investigated whether pFUS could generate cellular and 
molecular changes in the heart to ultimately enhance permeability 
and retention of human mesenchymal stromal cells (MSC) in treated 
myocardium. The pFUS treatments presented here could provide 
clear benefit to non-invasively increasing MSC homing to myocar-
dium without causing tissue damage associated with UTMD.

2  | MATERIAL S AND METHODS

2.1 | Animals

All animal experiments were approved by the Animal Care and Use 
Committee at the NIH Clinical Center and were performed in ac-
cordance with the National Research Council's Guide for the Care 
and Use of Laboratory.20 Eight-to-ten-week-old female Sprague 
Dawley rats (Charles River Laboratories, Wilmington, MA) were pro-
vided free access to food and water during the study. The hair on the 
chest was removed with depilatory cream prior to pFUS treatment, 
and the average weight of rats was 230.2 ± 9.7 g.

2.2 | MR-guided pFUS and MRI

Rats (n = 87) were placed on a pre-clinical MR-compatible image-
guided high intensity focused ultrasound (HIFU) system (RK-100, 
FUS instruments, Ontario, Canada). The left side of the chest sub-
merged in degassed H2O maintained at 37°C in order to place the 
heart perpendicular to the ultrasonic transducer (Figure 1A). The 
rats were anesthetized with 1.5% of isoflurane in 100% O2 during 
the pFUS treatment (Figure 1).

MR images performed with multi-slice fast field echo 
(FFE) sequences with repetition time (TR) = 8.9 ms, echo time 
(TE) = 4.5 ms, flip angle (FA) = 45° and a slice thickness of 1 mm 
with an in-plane resolution of 0.14 × 0.14 mm2 of the heart were 
acquired using a clinical 3T scanner with a radiofrequency re-
ceive coil (Achieva, Philips Healthcare, USA) without cardiac 

or respiratory gating. A focused ultrasound transducer with a 
centre frequency = 1.1 MHz, focal length = 60 mm, transducer 
diameter = 75 mm (F = 0.8) and electro-acoustic conversion ef-
ficiency = 75.9% was used at 3 MPa of peak negative pressure 
(PNP). The focal dimensions of pFUS beam had a full width half 
max diameter = 1.15 mm and length = 8.4 mm. Sonication bursts 
were 10 ms in length with a pulse repetition time of approximately 
0.33 Hz depending on number and location of treatment spots 
determined during treatment planning. Sonications generated 
3 MPa of peak negative pressure (PNP) measured in degassed 
water, which corresponded to ultrasound intensities of 660 W/
cm2 spatial-average temporal-peak intensity [ISATP], and approxi-
mately 2.2 W/cm2 spatial-average temporal-average [ISATA] based 
on typical repetition times. Transducer positioning was controlled 
using an LP100 (FUS Instruments, Toronto, Canada). Under the 
MRI guidance, approximately 40 sites up to 4mm from the heart 
apex covering the left ventricle were sonicated with each focal 
spot receiving 100 pulses (Figure 1C-J).

2.3 | Proteomic analysis of myocardium and serum 
following pFUS

The pFUS-targeted myocardium and blood were harvested (n = 5-10 
rats/time point) at post-0 (SHAM (SH) or Baseline (BL)), 0.25, 1, 3, 
6, 12, 18, 24, 36, 48 and 96 hours. The harvested myocardium was 
frozen immediately in liquid nitrogen. The blood was also harvested 
to analyse the cardiac injury marker expression following pFUS with 
centrifugation at speed 500g  (3,000 rpm) for 10 minutes to isolate 
the serum, which was stored in −80°C for further analysis. The SH 
group was treated with pFUS with 0 watts (PNP = 0 MPa) to the 
transducer and was termed as 0 hour. The frozen tissues were then 
homogenized in cell lysis buffer containing a protease inhibitor cock-
tail (S8820-2TAB; Sigma-Aldrich, St. Louis, MO), and the total amount 
of proteins in the homogenates was determined by bicinchoninic 
acid assay (23227; Thermo Fisher Scientific, Waltham, MA). The ho-
mogenates (2 mg/mL total protein) were analysed by rat Cytokine/
Chemokine Magnetic Bead Panel Multiplexed Immunoassay Assay kit 
(RECYMAG65K27PMX; EMD Millipore, MA), as well as single ELISA 
kits for cTnI (LS-F23616, LSBio Inc, Seattle, WA), NT-proBNP (LS-
F23593, LSBio Inc), TNF-α (AB46070, Abcam, Cambridge, MA) and 
IL-1 alpha (IL1-α) (AB113350, Abcam) according to the manufacturer's 
protocols. Multiplex assays were read on a BioPlex 200 (Bio-Rad, 
Hercules, CA), and singleplex assays were read on a spectrophotomet-
ric plate reader (Spectra Max M5, Molecular Devices, Sunnyvale, CA).

2.4 | MSC culture and administration

Human MSC (provided and characterized by Bone Marrow Stromal 
Cells Transplantation Center at our institution) were obtained from 
volunteers undergoing bone marrow biopsy under an approved in-
stitutional review board protocol at our institution (www.clini caltr 
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ials.gov, NCT01071577). MSCs were cultured in a minimum essen-
tial medium (a-MEM) supplemented with 2 mmol/L l-glutamine, 
100 U/mL penicillin, 100 µg/mL streptomycin sulphate (Biofluids, 
Rockville, MD) and 20% foetal bovine serum (Equitech-Bio, 
Kerrville, TX) at 37°C, under an atmosphere containing 5% CO2 
and 1% O2. Early passages of MSC [1-5] were used for this study. 
Cell viability was determined by trypan blue exclusion, and cell 
surface expressions of standard human MSC markers were previ-
ously reported.21

Approximately 2 hours after pFUS exposures, rats were given 
an IV injection of sodium nitroprusside (1 mg/kg; Roche) [4] fol-
lowed immediately by 3 × 106 human MSC in 300 μL of Hanks’ 
balanced saline solution (HBSS) containing 10 U/mL of sodium 
heparin.

2.5 | Histological analyses

For histologic and immunohistochemical (IHC) evaluation, rats 
were perfused with 4% paraformaldehyde (PFA) in 1× phosphate-
buffered saline (PBS) following euthanasia and equilibrated in 30% 
sucrose following overnight fixation in 4% PFA. To identify the 
pFUS-induced ischaemia, pimonidazole (60 mg/kg) (Hypoxyprobe, 
HPI Inc, MA) was intravenously infused 90 minutes before eutha-
nasia. Frozen tissue was sectioned (10µm) and permeabilized with 
0.1% Tween-20 in 1X PBS (TPBS) followed by antigen retrieval using 
proteinase-K solution (Life Technologies, Frederick, MD). Tissue 
sections were blocked with SuperBlock (Thermo Fisher Scientific, 
Waltham, MA) and were incubated with a primary antibody (10 µg/
mL): anti-rat albumin (Abcam), anti-HIS48 (Bio-Rad), CD68) (Abcam), 

anti-pimonidazole (HPI Inc) or anti-human mitochondria (Abcam) 
for 1 hour at room temperature. Slides were cover-slipped using a 
mounting media containing DAPI and were scanned using a fluores-
cence slide scanner (Aperio FL, Leica Biosystem Inc, Buffalo Grove, 
IL). The fluorescent IHC (fIHC) was quantified by evaluating the 
pixel intensity in randomly selected multiple location within pFUS-
targeted region using ImageJ (National Institutes of Health) (5 sec-
tions/animal, n = 3). Haematoxylin and eosin (H&E) stain was also 
performed to evaluate macroscopic changes such as tissue abnor-
mities and microhaemorrhage following sonication, and the tissue 
slides were scanned with a bright field scanner (Aperio SC2, Leica 
Biosystem Inc).

2.6 | Statistical analyses

All data are presented as mean ± standard deviation, and data analy-
ses were performed with Prism (version 7, GraphPad Software, Inc 
La Jolla, CA). One-way analysis of variance (ANOVA) with Dunnett 
post hoc tests were used for multiple comparisons. Means were com-
pared with two-tailed unpaired t test. The P-value less than 0.05 was 
considered as statistical significance.

3  | RESULTS

3.1 | MR-guided pFUS

Rats were placed approximately 90 degree rotated to the left on the 
MR-compatible pre-clinical FUS system in order to pose the heart 

F I G U R E  1   MR-guided pFUS. A, Rats placed on a MR-compatible pre-clinical focused ultrasound system. F, Illustration of experimental 
setup of pFUS treatment to the rat heart. Left side of the rat chest was submerged in degassed water to pose the heart perpendicular to 
the focused ultrasound transducer. B-E, Sequential T2w coronal MR images were acquired at 1 mm slice thickness for pFUS to target the 
left ventricle of the rat heart. Blue outline area represents the left ventricle, and red outline area represents the right ventricle. G-J, pFUS 
targeting spots in red circle based on the MR guidance images

A B C D E
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perpendicular to the ultrasonic transducer that could minimize the 
sonication to the lungs (Figure 1A and F). Under MR guidance, the left 
ventricle was sonicated with 3 MPa of PNP, which is approximately 
1.6 MPa intramyocardially (equivalent to a MI = 1.7) as a result of 
attenuation at rat chest wall.22 Following pFUS treatment, no macro-
scopic and microscopic evidence of pulmonary damage was observed 
as has been previously reported at sonications at PNP = 6 MPa.22

3.2 | Molecular responses following pFUS 
to the heart

Following pFUS at 3 MPa (n ≥ 5 rats per group), animals were eutha-
nized at 0.25, 1, 3, 6, 12, 18, 24, 36, 48 and 96 hours. Sham-sonicated 
(transducer power = 0 W) rats were euthanized and presented as the 
'0 hour' time point. Significant increases in CCTF were detectable 
starting at 6 hour post-pFUS with increased expression of inter-
leukin (IL)-1β (P < .05, ANOVA) (Figure 2A and B). Between 12 and 

24 hours post-pFUS, significant (P < .05, ANOVA) increases in the 
expression of IL-1α, IL-2, IL-5, IL-12, IL-17, monocyte chemoattract-
ant protein-1 (MCP-1), interferon (IFN)-γ, granulocyte macrophage 
colony-stimulating factor (GM-CSF) and TNF-α were observed. 
During the time period, there was also significant increased expres-
sion of anti-inflammatory cytokines such as IL-4 and IL-10 (Figure 2A 
and B). Vascular endothelial growth factor (VEGF) was significantly 
elevated (P < .05, ANOVA) at post-48 hours of pFUS. All of soni-
cation-induced CCTF elevation returned to similar levels as sham-
treated controls by 48 hours.

The cardiac injury markers, cTnI and NT-proBNP, were also evalu-
ated in serum and tissue homogenates. In serum, significant (P < .05) 
increases in cTnI and NT-proBNP were observed at 1 and 18 hours, 
respectively. Levels of both markers returned to the baseline levels 
by 36 hours post-pFUS. In comparison, myocardial levels of both cTnI 
and NT-proBNP were significantly increased (P < .05) between 6 and 
36 hours following pFUS and returned to baseline levels by 48 hours 
(Figure 2A and B).

F I G U R E  2   Molecular analysis of myocardial lysate and blood following pFUS to the heart (n = 4-10/group). A, Time course activation 
of CCTFs and cardiac markers following pFUS treatment. The x axes represent the time [hour] post-pFUS, and the y axes represent the 
concentration of CCTFs and cardiac markers in myocardium [pg/mg]. B, Heatmap (fold changes) of proteomic changes in pFUS-treated 
myocardium over time. The levels of markers were quantified by ELISA and were normalized to SHAM control. Asterisks represent the 
statistical significance set at P < .05 based on ANOVA
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3.3 | Histological analysis

To evaluate the morphologic changes in pFUS-targeted myocardium, 
H&E staining was performed on hearts harvested at various time 
points of post-pFUS. There were no discernable differences between 
sham-treated controls and pFUS-treated hearts on H&E sections 
over 120 hours post-sonication. There was no evidence of oedema 
or microhaemorrhage in the myocardium at any time point (Figure 3). 
IHC analyses revealed significant infiltration (P < .05) of neutrophils 
(HIS48+ cells) and macrophages (CD68+ cells) in treated myocar-
dium compared with sham-treated hearts (Figure 4). Increases in 
both neutrophils (Figure 4) and macrophages (Figure 5) were de-
tected within the first 12 hours following sonication and cleared by 
24 hours. IHC staining for pimonidazole, which was infused prior to 
euthanasia, revealed increased areas of hypoxic myocardium in the 
sonicated hearts at 24 hours (Figure 6) post-sonication compared 
with sham-treated control animals. Another cohort of rats (n = 3 per 
group) was treated with pFUS followed by IV infusions of human 
MSC 2 hours post-pFUS (Figure 7). At 24 hours post-pFUS, animals 
were euthanized and IHC for MSCs (human mitochondria+ cells) 

revealed a 2.5-fold increase in MSC residing in sonicated myocar-
dium compared with sham-treated rats.

4  | DISCUSSION

MR-guided pFUS is a non-invasive tool for modulating tissue micro-
environments and has potential clinical translational in the treatment 
of cardiac diseases. In this study, pFUS mechanotransductive effects 
were evaluated based on the molecular changes in the myocar-
dium and the ability to enhance homing permeability and retention 
(EHPR) of infused MSC to targeted regions.5-8,17-19,23 MRI guidance 
for pFUS provided the ability for accurate targeting to the volumes 
of interest (VOI) in the myocardium that ultimately resulted in the 
induced molecular responses consistent with increased expression 
of pro- and anti-inflammatory CCTF between 6 and 36 hours.4-8,22,24 
In comparison with the current study, we previously reported that 
targeted pFUS to rat myocardial septum with higher PNP of 6 MPa 
induced immediate (within 0.17 hour) increases in pro-inflammatory 
CCTF that were not associated with changes in cardiac biomarkers 

F I G U R E  3   Time course of histologic evaluation of cardiac tissue following pFUS treatment (n = 3/group). A and B, Long axis LV 
sections of H&E staining in SHAM and 24 h post-pFUS shows no detectable morphologic changes. Black boxes represent the regions of 
magnification. C-H, Time course of morphologic analysis by H&E staining revealed that pFUS treatment did not result in macroscopic 
damages in apical myocardium. Scale bar = 2 mm (A-B) and 100 µm (C-H). C-H represents Sham (p0), post-6 (p6), post-12 (p12), post-24 (p24), 
post-48 (p48) and post-120 (p120) hrs at post-pFUS, respectively

A

B

C D

E F

G H



     |  13283JANG et Al.

or evidence of myocardial damage. However, pFUS at 6 MPa was 
associated with substantial pulmonary haemorrhage.22 As a result 
of this observation, we decreased pFUS PNP of 3 MPa in an effort 
to reduce lung damage. pFUS targeted to the myocardium at lower 
intensities resulted in a delayed proteomic response in increased 
expression of CCTF starting at ~6 hours without evidence of pul-
monary haemorrhage. The delayed molecular responses in the soni-
cated heart was associated with increased IL-1β and peaked in the 
number of significant CCTF occurring at 24 hours. The increase 
in IL-1β at 6 hours could suggest transient cardio-myofibril dam-
age associated with sterile inflammation through an NF-κB path-
way.25 Moreover, significant increases in pro-inflammatory factors 
such as TNF-α, IFN-γ, IL-1α, IL-1β, IL-2 and MCP-1 occurred within 
24 hours. The activation of TNF-α, IL-1β and other chemotactic fac-
tors (GM-CSF and MCP-1) could also be associated with intrinsic 

self-remodelling of myocardium responding to mechanical stretch 
induced by pFUS.26-28 Significant increases in IL-4 and IL-10 were 
also detected and could have been responsible for the lack of inflam-
matory damage in the myocardium. The increase in VEGF at 48 hours 
could also contribute the repair to vascular disruptions and be driven 
by the transient ischaemic response following pFUS. Interestingly, 
the CCTF responses in myocardium were similar to those previously 
observed in kidney and skeletal muscle.4-8,10,29

There are several reports evaluating the expression of cardiac 
biomarkers, such as creatine kinase MB, heart-type fatty acid-bind-
ing protein (H-FABP), TNF-a, cTnI and NT-proBNP from the blood 
following cardiac contusion.30-33 However, there are few reports 
examining the cardiac biomarker expression directly in the myocar-
dium. We performed a serial time course to evaluate the cardiac bio-
markers, cTnI and NT-proBNP, in both pFUS-targeted myocardium 

F I G U R E  4   fIHCs of neutrophil infiltration in the pFUS-targeted myocardium (n = 3/group). A and B, Long axis LV section of the fIHC in 
SHAM and post-pFUS shows the significantly higher number of neutrophils (HIS48+ cells) was observed at post-12 h compared with the 
SHAM. White box represents the region of interest in the heart. C-G, Time course of neutrophil infiltration revealed that pFUS treatment 
resulted in significant number of neutrophils in pFUS-targeted region at post-12 h. H, Quantification of neutrophil positive staining in the 
ROI at difference time points. C-G represents Sham (p0), post-3 (p3), post-12 (p12), post-24 (p24) and post-48 (p48) hours at post-pFUS, 
respectively. Red colour represents the neutrophils (HIS48+ cells). Asterisks represent the statistical significance set at P < .05 based on 
ANOVA. Scale bar = 2 mm (A) and 100 µm (D-M)
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and serum. The findings of increased cTnI and NT-proBNP suggest 
pFUS in this study probably resulted in mild mechanical stress to the 
LV as it has been associated with regular exercise, which has been 
shown to elevate cardiac injury markers.34

Histological examination of the pFUS-targeted myocardium re-
vealed no macroscopic or microscopic changes on H&E staining over 
120 hours. Consistent with the observed molecular changes in the 
myocardial microenvironment, neutrophil and macrophage infiltra-
tion into the extracellular spaces at 12 hours post-pFUS would fur-
ther support the presence of an inflammatory response within the 
myocardium. The transient increase presences of inflammatory cells 
in the sonicated myocardium coincided with significant increases 
in pro-inflammatory CCTF (eg sTNFα, IL1α, IL1β, IL5, INFγ) and the 
presence of cTnI.

Pimonidazole staining to detect hypoxia revealed only in the tar-
geted regions at 24 hours post-pFUS and returned to baseline levels 

by 168 hours. These results suggest that pFUS induced transient 
areas of hypoxia that coincided with the peak increased expres-
sion of pro-inflammatory CCTF in the myocardium. Tissue hypoxia 
was not investigated in previous reports. However, even mild and 
transient hypoxia drives numerous molecular signalling pathways in 
tissues that could contribute to the EHPR effect of pFUS on MSC 
tropism to targeted tissues. Further investigation into oxygen sta-
tus of tissues following pFUS should be undertaken whether it in-
fluenced the increased MSC tropism to the myocardium as a result 
of hypoxia and molecular signalling cascades.35-38 Moreover, the 
effects of pFUS to induce a sterile inflammatory response in the tar-
geted myocardium does not lead to persistent tissue damage require 
further examination.39,40

There are several studies demonstrating the potential use of ultra-
sound (both focused and unfocused) to the heart coupled with MB in-
fusion that generated molecular changes in the myocardium increased 

F I G U R E  5   fIHC staining for CD68+ macrophages in the pFUS-targeted myocardium (n = 3/group). A and B, Long axis LV section of fIHC 
in SHAM and post-pFUS shows the significantly higher number of Macrophage (CD68+ cells) was observed at post-12 h compared with the 
SHAM. White box represents the region of interest in the heart. C-G, Time course of macrophage infiltration revealed that pFUS treatment 
resulted in significant number of macrophages in pFUS-targeted region at post-12 h. (H) There was a quantitative increase in fluorescence 
detected at 12 h post-pFUS for macrophages. C-G represents Sham (p0), post-3 (p3), post-12 (p12), post-24 (p24) and post-48 (p48) hours at 
post-pFUS, respectively. Red colour represents the macrophage (CD68+ cells). Asterisks represent the statistical significance set at P < .05 
based on ANOVA. Scale bar = 2 mm (A) and 100 µm (D-M)

A C D

E F

G H

B



     |  13285JANG et Al.

tropism of systemically infused stem cells.16-18 It has been reported 
that pFUS + MB followed by infusion of endothelial progenitor cells 
in a model of chronic cardiomyopathy in the guinea pig resulted in im-
provement in LVEF and myocardial perfusion at 20 weeks post-soni-
cation.19 In acute myocardial infarction rat model, the combination of 
pFUS + MB results in increased expression of IL-1β, 4, 6, MCP-1 and 
TNF-α within 15 minutes post-sonication.17 In that study, intracoro-
nary artery infusion of MSC resulted in increased homing of cells to 
infarcted myocardium. These studies reported between 2 and 5 times 
more stem cells in the sonicated myocardium at euthanasia. However, 
these studies intentionally employ UTMD to mediate bioeffects. MB 
destruction is well known to cause profound tissue damage and may be 
unsuitable for regenerative medicine strategies. Although the two dif-
ferent sources of mechanical forces, either from UTMD or direct pFUS, 
would not be directly compared, we believe that the underlying mo-
lecular mechanism that attracts the MSC homing would be similar. In 
the current study, pFUS induced an EHPR effect on IV-infused human 

MSC that led the significantly increased numbers of human cells hom-
ing to the targeted regions by 24 hours. These results are similar to our 
previous findings17,18 in which the increased tropism to murine skele-
tal muscle and kidney in response to the release of chemoattractants 
(ie MCP1, GM-CSF) following pFUS at 4 MPa.4-8,16-20,22,24-28,30-33,39,40 
These results are consistent with previous observation, which demon-
strated the ability of pFUS to induce changes in the tissue microenvi-
ronment that would EHPR of infused stem cells into targeted regions 
of hypoxia.13 We speculate that MSC homing plays a major role in para-
crine signalling rather than in differentiation to myocardium muscle. 
Future investigations would be necessary to understand whether the 
induced MSC homing and hypoxia in the pFUS-targeted region mod-
ulate the inflammatory responses through the paracrine signalling in 
areas of myocardial infarction that potentially can result in improved 
clinical outcomes.

There are several limitations of this study that need to be ad-
dressed. MR-guided pFUS was performed without cardiac or 

F I G U R E  6   fIHCs of hypoxia staining (n = 3/group). A and B, Long axis LV section of fIHC staining. White boxes represent the ROI in 
SHAM (A) and post-pFUS at 24 h (B). (C-F) There was a heterogenous uptake of the hypoxia probe at 24 h post-pFUS (E) compared with 
SHAM (C) and returned to baseline after 168 h (F). White box represents the region of interest in the heart. C-F, Time course of hypoxia in 
the pFUS-targeted myocardium. G, Quantification of areas of hypoxia staining in the multiple pFUS-targeted region. C-F represents Sham 
(p0), post-6 (p6), post-24 (p24) and post-168 (p168) hours at post-pFUS, respectively. Red colour represents the hypoxia (Hypoxyprobe+ 
cells). Asterisks represent the statistical significance set at P < .05 based on ANOVA. Scale bar = 2 mm (A and B) and 100 µm (C-H)
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respiratory gating, as a result of the technical limitations interfacing 
the MRI and focused ultrasound instrumentation. As a result, the 
pFUS-targeted area in the myocardium may have been larger than in-
tended and we cannot account for off target effects or placing the US 
beam within the ventricular cavity during parts of the cardiac cycle. 
Moreover, the MSC that were used in this study were expanded from 
volunteers who had bone marrow biopsies. However, it is possible 
that more efficient homing and survival capacity may be achieved 
by using stem cells derived from rats that would obfuscate an im-
mune response and result in prolonged in vivo lifespan of MSC.41,42 
Moreover, we did not examine the possible changes in cellular metab-
olism such as functional changes by mitochondria induced by pFUS.18 
Future studies will assess cardiac functional changes following pFUS 
including optimization of sonication parameters to induce necessary 
MSC tropism without elevating injury biomarkers. The results of this 
study provide a basis for additional investigation of treatment param-
eters that could be translatable as part of a regenerative medicine 
strategy in the treatment of cardiac injury or disease.
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