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Abstract

Outcome regressed on class labels identified by unsupervised clustering is custom in many applications. However, it is
common to ignore the misclassification of class labels caused by the learning algorithm, which potentially leads to serious
bias of the estimated effect parameters. Due to their generality we suggest to address the problem by use of regression
calibration or the misclassification simulation and extrapolation method. Performance is illustrated by simulated data from
Gaussian mixture models, documenting a reduced bias and improved coverage of confidence intervals when adjusting for
misclassification with either method. Finally, we apply our method to data from a previous study, which regressed overall
survival on class labels derived from unsupervised clustering of gene expression data from bone marrow samples of
multiple myeloma patients.
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Introduction
In biomarker studies it is popular to perform an unsupervised
clustering of high-dimensional variables like genome-wide
screens of Single Nucleotide Polymorphisms (SNPs), gene
expressions and protein data and regress for example treatment
response, patient recorded outcome measures, time to disease
progression or overall survival on these potentially mislabeled
clusters. It is well known from the statistical literature that
errors in continuous and categorical covariates can lead to loss

of important information about effects on outcome [1]. However,
to our surprise this is often ignored when regressing outcome on
classes identified by unsupervised learning, which might lead
to important clinical effect measures being overlooked [2–6].

We suggest to cast the problem as a covariate misclassi-
fication problem. This leaves us with a concourse of possible
modeling and analysis options, see for example the book by
Carroll et al. [1] or the recent review by Brakenhoff et al. [7]. A gen-
eral approach, with good statistical properties, is to maximize
the likelihood of a latent variable model joining the regression
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and classification models [8, 9]. Drawbacks to this approach
are the following: (i) this process does not mimic the workflow
of the biologists, for whom the basic question is to identify
important biological processes and next to relate the clusters
to clinical consequences; (ii) upon parameter estimation cluster
membership needs post hoc to be estimated by e.g. the maxi-
mum a posteriori probability, whereby direct connection to the
regression parameter is lost; (iii) this approach requires a statis-
tical model of the clustering process, leaving out the possibility
to combine popular unsupervised clustering algorithms, such
as hierarchical clustering, with popular parametric regression
models like generalized linear models and Cox’s proportional
hazards model.

Due to its generality, we instead chose to study the two-
stage modeling process. A number of ad hoc methods have been
developed in various specific settings, which could be adapted to
this situation. Examples include matrix methods [10], regression
calibration (RC) [11], pooled estimation [12], multiple imputation
[13], corrected score estimation [14] and simulation and extrap-
olation (simex) [15–17]. Among these methods, both simex and
RC have become useful tools for correcting effect estimates in
the presence of additive measurement error. RC can be applied to
both continuous and categorical covariates, while the simex idea
has been extended to the misclassification simex (mcsimex)
method for correcting effect estimates in the presence of errors
in categorical covariates [18]. In this paper, we chose to focus on
these methods and compare them because of their generality,
simplicity and direct applicability.

The article is organized as follows. In Section 2, we detail
the statistical setting and outline the RC and mcsimex methods.
Simulation studies in Section 3 show the performance of our
proposal. In Section 4 we apply the mcsimex and RC approaches
to data from a study on unsupervised clustering of gene expres-
sion data from cancer patients by Zhan et al. [5]. The results of
the paper are discussed in Section 5 followed by computational
details in Section 6.

Statistical setting
The naïve method

Assume we have n i.i.d. realizations {(yi, zi, hi), i = 1, . . . , n} of
(Y, Z, H) where Y is the outcome and Z ∈ R

p are features that clus-
ter the observations into unobserved classes H ∈ {1, 2, ..., m}. As
we do not directly observe the classes H, we use an unsupervised
clustering method to infer the classes based on the features Z
and coin them H∗. The misclassification error is characterized by
the m×m misclassification matrix � = [πij]m×m, which is defined
by its components

πij = P(H∗ = i | H = j), i, j = 1, . . . , m. (1)

Assume that we want estimates of the effect sizes β of each of
the unobserved m components, using e.g. a generalized linear
model

g(E(Y | H = h)) = x�
h β, (2)

where β = (β1, . . . , βm)�, xh = e1 + eh1[h �= 1] is encoded by
treatment contrasts, g is the link function and Y is assumed to
be generated from an exponential family distribution [19]. Opti-
mization of the log-likelihood of the generalized linear model
based on the assumed i.i.d. data y1|h∗

1, . . . , yn|h∗
n, i.e. replacing

the indicator functions in Equation (2) with indicators for the
inferred classes, gives the estimate β̂({(yi, h∗

i ), i = 1, . . . , n}) [19].
This procedure will in the following be referred to as the naïve
method.

It is important to notice that maximum likelihood estimation
under the naïve method is estimation of a misspecified model,
and that convergence of estimates under misspecified models is
ensured [20]. It is, however, well known that estimating β by the
naïve method leads to a biased estimate [18]. In general we will
denote the limit of a maximum likelihood estimate by β(�) for a
model misspecified by the misclassification matrix �.

Regression calibration

RC is a simple approach that can be applied in many situations,
see e.g. Carroll et al. [1] for a detailed introduction. The idea
behind RC is that the misclassified variable H∗ can be replaced
by the expected value of the true variable given the observed
but misclassified variable, i.e. E(H|H∗). For the application in the
study at hand, this means that the indicator functions in (2)
are replaced by the expected value of the indicators given the
observed data, i.e. the posterior probability of the true class such
that

xh = e1 +
m∑

h=2

ehP(H = h|Z = z).

In order to infer the expected value one must usually have
a validation set with both values available, but we will instead
assume that these probabilities are given as the posterior class
probability from the clustering procedure, and can be inferred
from e.g. Gaussian mixture models (GMM) or by using a fuzzy
clustering procedure such as fuzzy c-means [21] instead of the
hard clustering algorithm k-means.

The mcsimex method

In order to formulate the mcsimex method, Küchenhoff et al. [18]
defines the function G : [−1, ∞) → R

m by

G(λ) = β(�(1+λ)), (3)

where �λ can be expressed as �λ = E�λE−1 via the spectral
decomposition, with � being the diagonal matrix of eigenvalues
and E the corresponding matrix of eigenvectors. For the function
(3) to be well defined, we need to ensure the existence of �λ

and that it is a misclassification matrix for λ ≥ 0. Criteria for
existence are given by Küchenhoff et al. [18].

We notice that G parameterizes the amount of misclassifi-
cation, where G(−1) = β(Im×m) corresponds to no misclassifica-
tion, G(0) = β(�) corresponds to the present misclassification
and G(λ) for λ ≥ 0 corresponds to increasing misclassification.
The fundamental idea behind mcsimex is to simulate G(λ) for
increasing λ ≥ 0 and then extrapolate back to λ = −1.

In a few situations explicit forms of G as a function of λ can be
calculated, but they tend to be unstable to estimate, wherefore
mcsimex relies on finite-dimensional parametric approxima-
tions G(λ, γ ), γ ∈ R

k, of G(λ). One example from the R-package
simex is the quadratic approximation G(λ, (γ0, γ1, γ2)) = γ0 + γ1 ∗
λ + γ2 ∗ λ2 [22]. It is custom in the mcsimex literature to assume
one either has the misclassification matrix at hand or it can
be estimated from training data. Details for estimation of the
misclassification matrix in the paper at hand are given in the
sections on analysis of simulated and real data.
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The mcsimex method (or algorithm) can now be formulated
as:

Algorithm [18]

1. Simulation of data with added noise. For a fixed grid of values
1 < λ1 < · · · < λm, simulate B data sets with increased
noise, i.e. generate i.i.d. random variables (condition upon
{(yi, zi), i = 1, . . . , n})

H∗
b,i(λk) ∼ Categorical

(
�̂

λk

•ĥi

)
,

where b = 1, . . . , B, i = 1, . . . , n, k = 1, . . . , m and �̂
λk

•ĥi
is the ĥi’th

column of �̂λk .
2. Parameter estimation in simulated data. For each level of

increased noise obtain the mean parameter estimate by aver-
aging over estimates from the B data sets:

β̂(λk) = B−1
B∑

b=1

β̂({(yi, h∗
b,i(λk)), i = 1, . . . , n}).

3. Fit a curve to mean parameter estimates. Parameters for the
curve,γ , are obtained by the least squares method:

γ̂ = arg minγ∈�

k∑
i=0

(
β̂(λk) − G(λk, γ )

)2
,

where λ0 = 1 and β̂(λ0) = β̂({(yi, ĥi), i = 1, . . . , n}) is the naïve
estimator.

4. Extrapolation. The mcsimex estimate is then given by the
extrapolation to λ = −1

β̂S = G(−1, γ̂ ).

The mcsimex method is illustrated in Figure 1

Simulation studies
Logistic regression

In this section, we investigate empirically how different sample
sizes, imbalances between classes and clustering algorithms
affect the effect estimates. For the simulations, we generate
n = 200, n = 500 or n = 1000 independent samples from a
two-class GMM, where the prior probabilities of class 1 are π1 =
5/10 or π1 = 2/10 to generate balanced or imbalanced classes,
respectively, and set π2 = 1 − π1. Class 1 and 2 observations
have bivariate normal distributions with means μ1 = (−1, 0)

and μ2 = (1, 0), respectively, and a common identity covariance
matrix. The outcome is modeled by a logistic regression with
linear predictor x�

h β where the intercept and class effect are
given by (β1, β2) = (−1, 2).

Unsupervised clustering was performed using either GMM as
implemented in the R-package mcclust [23], k-means from the
base implementation in R or fuzzy c-means from the R-package
e1071 [24]. We estimated β using either the true class labels,
class labels inferred from unsupervised clustering with GMM or
k-means, class probabilities for individual samples obtained as
posterior class probabilities from GMM or fuzzy c-means and the
naïve model corrected using the mcsimex method. The misclas-
sification matrix for the mcsimex approach was inferred sepa-
rately for each round of simulation. First, we inferred the class

probabilities, means and variance–covariance matrices of the
GMM or K-means clustering from the simulated data. Secondly,
we simulated 100 000 bivariate normal samples from each of
the inferred classes. Thirdly, for each of the 100 000 samples we
predicted the class membership based on the simulated binary
sample using respectively the maximum posterior probability of
the classes or shortest distance to the class center given the
estimated GMM or K-means clustering model from step one.
Finally, we calculated the ratio of classified and misclassified
predicted classes to the underlying simulated classes.

Each scenario was repeated 1000 times and the results are
summarized by bias and coverage of the confidence intervals.
Results from the balanced scenario π1 = 5/10 are shown in
Table 1. For ease of presentation, results of applying the RC
approach to class probabilities from fuzzy c-means are presented
under a k-means header. We see that using the true class labels
there is a small bias in both of the estimated parameters and the
coverage is close to 95%. When using the estimated class labels
inferred from either the GMM or k-means clustering without
taking misclassification into account, i.e. the naïve model, both
parameters are biased and coverage is far from the assumed 95%.
The bias is not alleviated by increasing the number of samples,
the coverage is however smaller, due to a smaller standard error.
When adjusting for misclassification using either RC or the
mcsimex approach, both bias and coverage of the parameters are
improved, and the improvement is similar across sample sizes
and methods. Results from the imbalanced scenario are shown
in Table 2. These also show smaller bias and better coverage for
the adjusted models. Results are, however, better when using
GMM than k-means. The k-means algorithm tends to estimate
clusters of uniform size [25], leading to poor performance with
imbalanced clusters, and since we used the fitted k-means clus-
ters to infer the misclassification matrix this also becomes
misspecified and the simex approach cannot fully correct for
the added noise. Some work has been done to alleviate this
bias in the k-means algorithm, e.g. using multicenters [26] or
undersampling [27]. We did not pursue this further in the present
paper, but just notice that one might instead use the GMM to
infer clusters in the imbalanced case.

Cox’s proportional hazards model

In survival analysis Cox’s proportional hazards model is often
used as the model of choice for inferring the impact of covariates
on the rate of events. The R package simex, used for this paper,
did not previously support this model, which poses a problem for
using mcsimex in survival analysis. This can be circumvented
by using the Poisson approximation [28], but we chose instead
to augment the source code of the simex package to include the
coxph model class from the survival package [29, 30].

To test the performance of our implementation we performed
a 2nd round of simulations. Simulations and class label infer-
ence were performed in the same manner as in Section 3.1, but
instead of a binary outcome survival times were drawn from
an exponential distribution with parameter λ = class, class =
1, 2, giving a true hazard ratio of 2, and censoring times were
drawn from and exponential distribution with parameter λ =
0.5. Results from the simulations are shown in Tables 3 and 4.
The results confirm the mcsimex and RC methods also reduce
biases in the estimated parameters from Cox’s proportional
hazards model. However, the improvement in bias as well as
the coverage is better in the balanced scenario. Coverages are
always smaller for the simex method than RC, which indicates
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Figure 1. Illustration of the mcsimex method. Class labels were simulated from a binomial distribution with P = 0.5 and noise was added to achieve a misclassification

probability of 0.2. A binary outcome with a true odds ratio of β = 2 was generated, and a logistic regression model was fit to the misclassified labels to get the

naïve parameter estimate β(�). For each level of increased noise, λ ∈ (0.5, 1, 1.5, 2), 100 simulated data sets were generated by misclassifying labels according to the

misclassification matrix �λ and an estimate of β was inferred by refitting the model (gray dots). A quadratic curve was fit through the naïve estimate and mean

parameter estimates for each value of λ (black dots). Finally, the mcsimex estimate was obtained by extrapolating the curve to the level of no noise, λ = −1.

Table 1. Results from applying RC and simex to simulated data with balanced classes and a binary outcome. A logistic regression model was
fitted with the true or inferred class labels, from either GMM or k-means with and without simex correction. Results from the RC approach
with fuzzy c-means probabilities are presented under the k-means header. Simulations were done with 200, 500 or 1000 samples

GMM k-means

True Naïve Simex RC Naïve Simex RC

200
bias β1 −0.01 0.34 0.07 0.04 0.34 0.07 −0.04
bias β2 0.03 −0.69 −0.17 −0.08 −0.67 −0.13 0.08
coverage β1 0.94 0.55 0.86 0.85 0.60 0.92 0.94
coverage β2 0.94 0.39 0.90 0.90 0.39 0.93 0.94

500
bias β1 0.00 0.36 0.08 0.03 0.34 0.06 −0.03
bias β2 0.00 −0.71 −0.15 −0.06 −0.69 −0.14 0.06
coverage β1 0.96 0.28 0.88 0.90 0.28 0.92 0.94
coverage β2 0.96 0.06 0.91 0.92 0.05 0.90 0.95

1000
bias β1 0.00 0.35 0.06 0.02 0.35 0.08 −0.03
bias β2 0.01 −0.69 −0.12 −0.03 −0.69 −0.15 0.05
coverage β1 0.95 0.08 0.88 0.89 0.05 0.88 0.94
coverage β2 0.96 0.00 0.90 0.93 0.00 0.88 0.94

that standard errors for the estimates are too small. This is
likely caused by estimating them with the jackknife variance
estimator in the simex package. This has previously been shown
to underestimate the variance, so using an asymptotic variance
estimate is preferred [31]. An asymptotic variance estimate for
Cox’s proportional hazards model, incorporating misclassifica-
tion, has to the best of our knowledge not yet been derived, but
the problem can be alleviated by using a bootstrap approach to
estimate the variance, which also adds the possibility to include
additional variance resulting from estimation of the misclassi-
fication matrix [31]. However, the bootstrap approach drastically

increases computational cost as the simex model has to be fitted
for each bootstrap sample.

Cancer subclassification
Since the invention of high-dimensional gene expression pro-
filing, just before this millennium, a popular task has been to
perform unsupervised cluster analysis on such data to identify
new subgroups and correlate these subgroups to biological infor-
mation, clinical data and outcome. In this paper, we consider
an example from subclassification of multiple myeloma (MM)
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Table 2. Results from applying RC and simex to simulated data with imbalanced classes and a binary outcome. A logistic regression model was
fitted with the true or inferred class labels, from either GMM, or k-means with and without simex correction. Results from the RC approach
with fuzzy c-means probabilities are presented under the k-means header. Simulations were done with 200, 500 or 1000 samples

GMM k-means

True Naïve Simex RC Naïve Simex RC

200
bias β1 −0.06 0.52 0.14 0.08 1.10 0.83 0.87
bias β2 0.06 −0.70 −0.17 −0.07 −1.16 −0.74 −0.68
coverage β1 0.96 0.55 0.81 0.8 0.02 0.24 0.16
coverage β2 0.95 0.49 0.89 0.9 0.05 0.63 0.67

500
bias β1 0.00 0.57 0.14 0.14 1.09 0.82 0.86
bias β2 0.01 −0.75 −0.16 −0.12 −1.15 −0.73 −0.65
coverage β1 0.95 0.32 0.82 0.80 0.00 0.04 0.00
coverage β2 0.95 0.20 0.89 0.90 0.00 0.31 0.42

1000
bias β1 −0.01 0.53 0.08 0.09 1.08 0.81 0.85
bias β2 0.01 −0.71 −0.10 −0.08 −1.15 −0.72 −0.65
coverage β1 0.94 0.16 0.86 0.82 0.00 0.00 0.00
coverage β2 0.95 0.04 0.89 0.90 0.00 0.09 0.16

Table 3. Results from applying RC and simex to simulated data with balanced classes and survival outcomes. Cox’s regression model was fitted
with the true or inferred class labels, from either GMM or k-means with and without adjustment for misclassification. Results from the RC
approach with fuzzy c-means probabilities are presented under the k-means header. Simulations were done with 200, 500 or 1000 samples

GMM k-means

True Naïve Simex RC Naïve Simex RC

200
bias 0.05 −0.42 0.16 −0.01 −0.38 −0.01 0.12
coverage 0.96 0.68 0.91 0.92 0.72 0.92 0.94

500
bias 0.02 −0.42 −0.07 −0.02 −0.41 −0.07 0.06
coverage 0.95 0.38 0.92 0.94 0.40 0.91 0.94

1000
bias 0.01 −0.42 −0.07 −0.02 −0.42 −0.09 0.04
coverage 0.95 0.11 0.90 0.95 0.12 0.89 0.96

Table 4. Results from applying RC and simex to simulated data with unbalanced classes and survival outcomes. Cox’s regression model was
fitted with the true or inferred class labels, from either GMM or k-means with and without adjustment for misclassification. Results from the
RC approach with fuzzy c-means probabilities are presented under the k-means header. Simulations were done with 200, 500 or 1000 samples

GMM k-means

True Naïve Simex RC Naïve Simex RC

200
biasb 0.07 −0.40 0.03 0.05 −0.62 −0.36 −0.35
coverage 0.94 0.72 0.88 0.92 0.38 0.79 0.84

500
bias 0.01 −0.43 −0.05 −0.04 −0.63 −0.39 −0.37
coverage 0.94 0.55 0.89 0.92 0.06 0.63 0.72

1000
bias 0.01 −0.42 −0.05 −0.03 −0.63 −0.40 −0.39
coverage 0.95 0.33 0.92 0.93 0.00 0.42 0.51

by Zhan et al. [5]. MM is a malignancy of end stage B cells
that expand in the bone marrow, resulting in anemia, bone
destruction and renal failure. The data set contains 414 gene
expressions sets from the MM patient’s bone marrow. The gene
expressions were profiled on Affymetrix HGU133 Plus 2 arrays
and exported to.CEL-files by the Affymetrix Genomics Console.
To replicate the analysis we downloaded raw.CEL files from the

GEO repository GS24080 and matched these by patient IDs to
cases included in [5] and were able to match 407 out of the 414
cases. This was done since raw data were not available in the
repository indicated in the original paper, so we resorted to a
later study from the same group. Data were MAS5 normalized
and filtered according to instructions in the original study [5]
resulting in a data set with gene expressions for 2169 genes. This
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Figure 2. Kaplan–Meier curves for the identified classes, and risk groups in the original study by Zhan et al. (A, C) [5] and refitted with GMM classes (B, D). P-values

arises from log-rank test of differences in survival.

Table 5. Confusion matrix for class labels in the training data, accu-
racy = 0.9. Rows show original classes from Zhan et al. [5] and columns
show clusters determined with the GMM

1 2 3 4 5 6 7

CD1 15 6 0 0 0 1 0
CD2 0 40 0 0 0 0 1
HY 0 2 63 0 0 0 0
MS 0 0 0 42 0 0 0
MF 0 0 0 0 19 1 0
PR 0 0 1 1 0 16 11
LB 0 0 2 0 0 0 29

is a higher number of genes than the 1559 reported in the original
paper, and is possibly caused by the different number of samples
and/or slight differences in the MAS5 normalization procedure
as implemented in the R package affy [32] and the Affymetrix
Microarray Suite GCOS 1.1.

After filtering, they performed hierarchical clustering on the
remaining genes and chose to cut the tree, so seven clusters
were formed. In order to mimic their analysis flow we identified
seven subgroups by estimating a seven-component GMM. The
classes were labeled according to the most similar class from
[5] as shown in the confusion matrix in Table 5. The classes
estimated from the GMM had an accuracy of 0.9 compared to the
original classes. Kaplan–Meier curves for the original and GMM
classes are shown in, respectively, panels A and B of Figure 2.

These data confirm that a GMM reasonably well approximates
the hierarchical clustering by Zhan et al. [5].

The seven classes were split into a low-risk group consisting
of the CD1, CD2, HY and LB classes, and a high-risk group with
the MF, MS and PR classes [5]. The accuracy of the original versus
GMM risk groups was 0.98. Kaplan–Meier curves are shown in
panel C of Figure 2 for the original classes and panel D for the
GMM classes.

Cox’s proportional hazards model was employed to estimate
the hazard ratio of the high- versus the low-risk group, but
this analysis did not take any possible misclassification of the
inferred classes from the unsupervised clustering into account.
To investigate the impact of correction for misclassification we
applied the RC and mcsimex method to the data at hand. For
RC, class probabilities were obtained by summing posterior class
probabilities for respectively high- and low-risk classes from a
GMM fitted to the full data set. As shown in the simulation
results the variance estimates of the built-in jackknife estimate
for the mcsimex method are underestimated so we chose to
do the analysis using bootstraps as well. We performed 1000
bootstraps iterations where at each step a sample of size n = 407
was drawn with replacement from the available data. A GMM
was fitted to the sample and the out-of-bag samples was used
to infer the misclassification matrix by comparing the predicted
class from the in-bag GMM model to the class obtained from the
full data. Cox’s proportional hazards model was then fitted to
the in-bag sample and the mcsimex model was applied using
the estimated misclassification matrix. By estimating the mis-
classification matrix at each iteration of the bootstrap procedure
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Table 6. Hazard ratio of high- versus low-risk groups in the training
set from Zhan et al. [5] with the naïve and corrected models using the
GMM classes

HR Lower 95 Upper 95 P-value

Zhan classes - Naïve 2.53 1.58 4.06 0.0001
GMM - Naïve 2.55 1.59 4.09 0.0001
GMM - RC 2.55 1.59 4.09 0.0001
GMM - Simex (Average MC) 3.19 1.71 5.95 0.0003
GMM - Simex (Full bootstrap) 3.12 1.72 5.66 0.0002

we factor in the added variance from its estimation. Results
from this, compared to RC and the naïve estimate along with
results from using mcsimex with an average misclassification
matrix from 1000 bootstraps, but only fitting the mcsimex model
once, are shown in Table 6. For the average misclassification
matrix we observed a misclassification probability of 0.07 for the
low risk group, and 0.13 for the high-risk group. For the naïve
models we see similar results for the original classes from [5]
and the refitted classes from the GMM, as expected from the
high accuracy for the risk groups. Using the RC method we find
a similar estimate to the naïve approach. Investigation of the
inferred class probabilities showed very little variation within
class, i.e. values close to 1, explaining the similarity to the naïve
estimate. This might be remedied by setting up a more elaborate
bootstrapping scheme to infer individual class probabilities; this
would however counteract the simplicity of the RC approach. For
both simex approaches we find a higher point estimate for the
hazard ratio of high versus low risk; confidence intervals are,
however, wide and overlapping.

Discussion
In this paper, we documented a bias on effect estimates when
regressing on misclassified labels arising from unsupervised
learning. We also suggested a workflow for adjusting the effect
estimates based on either the RC or mcsimex method. We had
to extend existing software to appropriately handle regression
based on time to event outcome. The effectiveness of the work-
flow was documented on simulated data, and we also shed new
light on bias and variance of effect estimates in an existing
cancer subclassification study.

The strength of the suggested workflow is essentially its
general applicability and seemingly robustness. However, these
advantages come at the cost of computational intensiveness of
the Monte Carlo approach in mcsimex. For the RC approach com-
putations requires little extra compared to the naïve approach
as class indicators are simply replaced by class probabilities in
the regression model. The analysis on true data did, however,
suggest that in some instances this approach might be too
simple.

As mentioned in Section 1 there exists a number of alterna-
tive methods to handle misclassified labels in regression models.
Latent variable models seem most interesting as they are built on
parametric models and maximum likelihood estimation. How-
ever, we have only come across one study dealing with the
misclassification problem arising from unsupervised learning,
but here a slightly different set-up is studied, as they formulate a
latent variable model for class risk given measured class features
and additional covariates [8].

In the light of our results, we encourage researchers to adjust
for bias when regressing on potentially misclassified labels. We

also encourage biomarker researchers to revisit previous studies,
especially those that led to negative results when regressing
upon misclassified labels.

Computational details
All simulations and analyses were carried out by the statisti-
cal programming language R. For RC, class labels were simply
replaced by the class probabilities, i.e regression was done on
the probability of class 2, while the mcsimex function from the
simex package was used as the main vehicle [22] for mcsimex
analyses. This function contains functionality for mcsimex cor-
rection of regressions from the lm, glm, gam, nls, polr, lme and
nlme functions. For the current study we extended the pack-
age to accommodate Cox’s proportional hazards model via the
coxph function of the survival package [29, 30]. This extension
was made by forking the source code of the simex package
from https://github.com/cran/simex. The adapted code has been
included in the simex package and is available at https://cran.r-
project.org/package=simex

We utilized a number of other R and Bioconductor packages,
notably the mclust and e1071 packages for clustering [23, 24].
For a complete list of packages see the R markdown document
available at https://github.com/HaemAalborg/misClass, which
details all steps in the analyses carried out in this paper.

Key Points
• Class labels from unsupervised clustering are prone to

misclassification.
• Effect estimates based on these class labels may be

biased.
• The bias can be reduced by correcting for misclassifica-

tion with the generally applicable regression calibration
and mcsimex methods.
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