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Abstract: Two novel exopolysaccharides, named LPB8-0 and LPB8-1, were isolated and purified from
Lactiplantibacillus pentosus B8. Moreover, their structure and bioactivities were evaluated through
chemical and spectral means. The study results demonstrated that LPB8-0 was primarily composed
of mannose and glucose and had an average molecular weight of 1.12 × 104 Da, while LPB8-1 was
composed of mannose, glucose, and galactose and had an average molecular weight of 1.78 × 105 Da.
Their carbohydrate contents were 96.2% ± 1.0% and 99.1% ± 0.5%, respectively. The backbone of
LPB8-1 was composed of (1→2)-linked α-D-Manp and (1→6)-linked α-D-Manp. LPB8-0 and LPB8-1
had semicrystalline structures with good thermal stability (308.3 and 311.7 ◦C, respectively). SEM
results displayed that both LPB8-0 and LPB8-1 had irregular thin-slice shapes and spherical body
structures. Additionally, an emulsifying ability assay confirmed that LPB8-0 and LPB8-1 had good
emulsifying activity against several edible oils, and this activity was retained under acidic, neutral,
and high temperature conditions. Furthermore, an antioxidant assay confirmed that LPB8-1 had
stronger scavenging activity than LPB8-0. Overall, these results provide a theoretical basis for the
potential application of these two novel exopolysaccharides as natural antioxidants and emulsifiers
in the food and pharmaceutical industries.

Keywords: exopolysaccharide; structural analysis; biofunctional properties; Lactiplantibacillus pentosus

1. Introduction

Exopolysaccharides (EPSs), produced by various microorganisms (bacteria, fungi,
and microalgae) during their growth phases, are high-molecular-weight and structurally
diverse groups of natural biomacromolecules [1]. EPSs have recently attracted considerable
attention from many researchers because of their potential applications in various industries.
Compared with artificial polymers, natural EPSs are almost inexhaustible polymers, as
they are not dependent on external environmental conditions.

Lactic acid bacteria (LAB) have been generally recognized as safe (GRAS) by the
FDA, and LAB-EPSs have also been recognized as safe agents. Previous studies have
reported that LAB-EPSs from different sources possess multiple functional bioactive activi-
ties, such as antioxidation, anticancer, immunomodulatory, and prebiotic activities [2–4].
Unlike other polymers, LAB-EPSs have attracted increasing attention because of their
unique physicochemical properties and comprehensive applications in some industrial
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fields, including food additives, pharmaceuticals, and wastewater treatment, as an emul-
sifying agent, coagulant, thickener, flocculant, etc. Indeed, the bioactive activities and
physicochemical properties of EPSs have been verified to be closely associated with their
chemical structures and complexity, including their monosaccharide composition, molec-
ular weight (MW), linkage type, and substituent groups [5]. Consequently, a systemic
characterization of the structure of various LAB-EPSs is of high significance to exploiting
their functional properties and providing a theoretical basis for their future applications in
various industries.

So far, numerous LAB-EPS-producing strains have been screened and identified from
traditional fermented foods. For instance, LAB-EPSs from Lactobacillus rhamnosus ZFM231 [6],
Lactobacillus plantarum CNPC003 [7], and Streptococcus thermophilus ZJUIDS-2-0 [8] have been
reported to possess potential bioactivities and functional properties. As a representative of
fermented vegetables, Sichuan pickle is a LAB-rich resource. Notably, Lactiplantibacillus spp.
(gram-positive, facultatively anaerobic, non-motile, and non-spore-forming) plays an indis-
pensable role in pickle fermentation. Additionally, the EPS from Lactiplantibacillus plantarum
MM89 exhibited excellent immunomodulatory activity and hence could be regarded as
a convenient additive or functional immunomodulatory agent for food products [3]. A
new EPS-producing strain, L. pentosus B8, was recently screened from Sichuan pickle in
our laboratory. So far, very few studies have verified the structural characteristics and
biofunctional properties of the EPSs from L. pentosus.

The present work sought to isolate EPSs from L. pentosus B8. Furthermore, the
structural characteristics, emulsifying activities, and antioxidant activities of these EPSs
were assessed.

2. Materials and Methods
2.1. Bacterial Propagation

An EPS-producing strain was isolated from Sichuan pickle. Based on its morphological
and physiological characteristics and 16S rDNA sequence analysis, the strain was identified
as L. pentosus (GenBank accession number: MW898221) and named as strain B8. This strain
was routinely grown on MRS broth at 30 ◦C and preserved in 30% (v/v) glycerol.

2.2. Crude EPS Extraction and Purification

The EPS of L. pentosus B8 was obtained according to a previously reported method,
with minor modifications [9]. Briefly, L. pentosus B8 was inoculated in MRS medium
supplemented with 40 g/L sucrose and incubated at 30.0 ± 0.1 ◦C for 48 h. Subsequently,
the fermented broth was centrifuged (12,000× g, 10 min), and the supernatant was added
to 95% (v/v) cold ethanol. The precipitates were resuspended in ultrapure water, and the
protein was removed using an enzyme combined with the Savage method [10]. Briefly,
papain (800 U/mL) was mixed with the precipitate solution (pH 6.0) and maintained
at 55 ◦C (water bath) for 100 min, followed by thorough mixing with chloroform and
n-butanol (4:1, v/v). Later, this mixture was centrifuged, dialyzed (MW: 8–14 kDa), and
lyophilized to obtain the crude EPS. Using an anion-exchange chromatographic column
(DEAE-52; GE Healthcare, Stockholm, Sweden), the sample was eluted with ultrapure
water and three NaCl concentrations (0.1, 0.3, and 0.5 M NaCl). The fractions were collected
from 4 mL aliquots per tube, and then the total sugar content was measured using the
phenol–sulfuric acid method. The primary fractions were pooled, dialyzed, and then
lyophilized. Afterward, the lyophilized EPS sample was redissolved in ultrapure water at
a final concentration of 30 mg/mL. Further EPS purification was performed on Sephacryl
S-300 HR and S-400 HR columns (1.6 cm × 90 cm; GE Healthcare, Stockholm, Sweden) and
eluted with ultrapure water at a flow rate of 1 mL/min. Finally, the resulting fractions were
pooled and freeze-dried for structural characterization and functional evaluation.
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2.3. Chemical Composition Characterization Assays

The total sugar content of the EPSs was estimated by the phenol–sulfuric acid method
by using glucose as a standard. The protein content was estimated using the bicinchoninic
acid (BCA) method. The EPSs (1 mg/mL) were recorded in the range of 200–800 nm by
using a UV–vis spectrophotometer (Hitachi, Tokyo, Japan) to evaluate the presence of
protein or nucleic acid.

2.4. Determination of MW

The MWs of the EPSs were determined through high-performance size-exclusion chro-
matography (HPSEC) along with refractive index (RI) (Optilab T-Rex, Wyatt Technology,
Santa Barbara, CA, USA) and multiangle laser light scattering (MALLS) detectors (DAWN
HELEOS II, Wyatt Technology, Santa Barbara, CA, USA). The EPS samples were dissolved
in 0.1 M NaNO3 aqueous solution (5 mg/mL) and filtered through a filter (0.45 µm). The
LPB8-0 and LPB8-1 solutions (5 mg/mL, 100 mL) were added to the HPSEC–RI–MALLS
system. The EPSs were eluted with 0.1 mol/L NaNO3 solution.

2.5. Monosaccharide Composition

The monosaccharides of LPB8-0 and LPB8-1 were determined through high perfor-
mance anion-exchange chromatography with pulsed amperometric detection (HPAEC-
PAD). The LPB8-0 and LPB8-1 samples (5.0 mg) were hydrolyzed with trifluoroacetic acid
(2.0 M) at 121 ◦C for 2 h. Then, two hydrolysates were evaporated to dryness under an
N2 stream blowing instrument and eluted with methanol. The released monomers and all
standards were further measured using a Thermo ICS-5000 ion chromatography system
(Thermo Scientific, Waltham, MA, USA) fitted with a Dionex CarboPac PA-20 analytical
column and a Dionex ED50A electrochemical detector.

2.6. Linkage Analysis by Methylation

The linkage analysis method of Nasir et al. [11] was used, with minor modifications.
In total, 10 mg of the LPB8-1 sample was dissolved in anhydrous dimethyl sulfoxide and
methylated with 0.5 mL methyl iodine. After methylation, the methylated sample was
hydrolyzed with TFA, reduced with NaBD4, and acetylated to produce the derivative for a
7890A-5977B GC–MS system (Agilent Technologies, Palo Alto, CA, USA) equipped with
an HP-5MS capillary column. The program was isothermal at 140 ◦C; the hold time was
2 min, with a temperature gradient of 3 ◦C/min up to a final temperature of 230 ◦C.

2.7. FTIR and NMR Spectroscopy Analysis

FTIR spectroscopy (Thermo Fisher Scientific, Waltham, MA, USA) was used to de-
termine the major chemical groups of the EPSs. The IR spectra were recorded from
600 to 4000 cm−1. Then, a 40 mg/mL solution of the sample was prepared with 99.9%
D2O (500 µL) as the solvent. The 1D and 2D NMR data were recorded using a Bruker
spectrometer (600 MHZ, Bruker, Karlsruhe, Switzerland).

2.8. Thermal Stability Evaluation

The thermal properties of the EPSs (LPB8-0 and LPB8-1) were measured by a thermo-
gravimetric analyzer (209F3, NETZSCH, Free State of Bavaria, Germany). Approximately
5 mg of each of the EPS samples were placed in a standard aluminum pan and heated
between 50 and 800 ◦C in a nitrogen atmosphere (10 ◦C/min).

2.9. Examination of X-ray Diffractometry, Particle Size, and Zeta Potential

The X-ray diffraction (XRD) data of LPB8-0 and LPB8-1 were analyzed using an X-ray
diffractometer (D8 ADVANCE Bruker, Germany). The LPB8-0 and LPB8-1 samples were
recorded at 2θ angles from 5 to 85◦ with a scanning rate of 10◦/min. The size distributions
and zeta potentials of the EPSs (0.5% w/v) were measured using a NanoPlus Zeta Potential
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and Particle Size Analyzer (ZEN5600, Malvern Instruments, Malvern, UK) at 25 ◦C. The
LPB8-0 and LPB8-1 samples were dissolved in ultrapure water.

2.10. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM)

The morphological characteristics of LPB8-0 and LPB8-1 samples were observed using
a Apreo 2C SEM (Thermo Fisher Scientific, Waltham, MA, USA) at a voltage of 15.0 kV
with magnification of 1000× and 5000×, respectively. Then, 10 µg/mL of EPS solution was
deposited onto the surface of freshly mica plate and was allowed to air-dry. The tapping
mode was used to acquire the topographies of LPB8-0 and LPB8-1 by using an atomic force
microscope (TESPA-V2, Bruker, Billerica, MA, USA), and the AFM image size was selected
as 8 µm × 8 µm.

2.11. Emulsifying Activities of the EPSs

The emulsifying activities of LPB8-0 and LPB8-1 were measured according to our
previously reported methods [12]. Briefly, 3 mL of several edible oils (soybean oil, coconut
oil, olive oil, corn oil, rap oil, peanut oil, palm oil, and sunflower oil) were added to 2 mL
of the EPS solutions at a concentration of 1 mg/mL. Then, each sample was stirred for
5 min. Later, the effects of different EPS concentrations (0.1, 0.5, 1.0, 1.5, and 2.0 mg/mL),
temperatures (25, 40, 60, 80, and 100 ◦C), and pH values (4.0, 6.0, 8.0, 10.0, and 12.0) on
emulsion stability were assessed. The emulsifying activity (EA, %) was analyzed after 1, 24,
and 168 h using the following equation:

EA (%) = (emulsion layer height/total height)× 100

2.12. Analysis of the Antioxidant Activities of LPB8-0 and LPB8-1 In Vitro

The antioxidant activities (DPPH radical scavenging ability, ABTS+ free radical scav-
enging ability, and hydroxyl free radical scavenging ability) of LPB8-0 and LPB8-1 were
evaluated according to the previously reported method [13].

2.12.1. DPPH Scavenging Activity

Briefly, approximately 100 µL of LPB8-0 and LPB8-1 sample solution of different con-
centrations were immersed in 10 mL DPPH solution. Then, the mixture was incubated
for 30 min in darkness. The absorbance was recorded at 517 nm on a UV–visible spec-
trophotometer (PerkinElmer, Waltham, MA, USA). The DPPH radical scavenging ability of
samples was calculated using the following formula:

scavenging ability (%) = (1− Asample)/Ablank × 100

where Asample and Ablank represent the absorbances of the test and control samples, respectively.

2.12.2. ABTS Radical Scavenging Activity

For ABTS radical scavenging activity, equal volumes of ABTS solution (7 mmol/L) and
potassium persulfate solution (2.45 mmol/L) were mixed and placed at room temperature
overnight. Then, the stock solution was added to various concentrations of LPB8-0 and
LPB8-1 samples. The reaction mixture was reacted at 37 ◦C for 30 min. The absorbance
of the samples was measured at 732 nm, and the ABTS radical scavenging activity was
determined as follows:

scavenging ability (%) = (1− Asample)/Ablank × 100

where Asample is the absorbance of a sample and Ablank is the absorbance of a blank.

2.12.3. Hydroxyl Free Radical Scavenging Activity

Then, 1.0 mL of LPB8-0 and LPB8-1 samples at different concentrations were blended
with FeSO4 (2 mmol/L) and salicylic acid—ethanol solution (6 mmol/L), and then, H2O2



Foods 2022, 11, 2327 5 of 18

solution (0.5 mL, 9 mmol/L) was added to the mixed solutions before incubation at 37 ◦C
for 30 min. Subsequently, the absorbance of the mixtures was immediately tested at 536 nm.
The scavenging activity of LPB8-0 and LPB8-1 samples was calculated as follows:

scavenging ability (%) = 1− (A2 − A1)/A0 × 100

where A0, A1, and A2 represent the absorbance of the reagent blank, control, and samples,
respectively.

2.13. Statistical Analysis

Statistical analysis and graph plotting were performed using the SPSS 20.0 (IBM Co.,
Armonk, NY, USA) and Origin 9.0.0 software (Origin Lab Co., Northampton, MA, USA),
and values are expressed as means ± standard deviations.

3. Results and Discussion
3.1. Extraction, Purification, and Chemical Composition of the EPSs

The crude EPSs of L. pentosus B8 were harvested through a series of processing steps,
including ethanol precipitation, deproteinization, dialysis, and lyophilization. The EPS
production yield was 1401.52 ± 9.54 mg/L. It was first isolated using a DEAE-52 anion-
exchange column, and two fractions (designated as LPB8-0 and LPB8-1, respectively)
displayed on the elution profile were obtained (Figure 1A). Then, LPB8-0 and LPB8-1 were
purified through Sephacryl S-300 HR and S-400 HR gel-filtration columns, respectively. As
depicted in Figure 1B,C, the elution profiles of the two fractions appeared with only one
single peak each, showing that LPB8-0 and LPB8-1 were homogeneous. Further dialysis
and lyophilization produced LPB8-0 and LPB8-1 fractions with a purity of 96.2% ± 1.0%
and 99.1% ± 0.5%, but sulfate was not detected in the samples (Table 1). Compared with
the crude EPS, no obvious absorption appeared at 260 or 280 nm in the UV–vis spectra
(Figure 2A), indicating no nucleic acids or proteins in LPB8-0 and LPB8-1.

Table 1. Chemical compositions and basic properties of LPB8-0 and LPB8-1.

Factions Carbohydrate Content
(%)

Protein Content
(%)

Sulfates
(%)

Mw
(Da)

LPB8-0 96.2 ± 1.0% Nd * Nd * 1.12 × 104

LPB8-1 99.1 ± 0.5% Nd * Nd * 1.78 × 105

* Not detected.
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Figure 2. (A) UV−vis absorption spectra of crude EPS (black curve), LPB8-0 (red curve), and LPB8-1
(green curve); (B) HPAEC-PAD profiles of monosaccharide standards (black curve, peak identities:
1, fucose; 2, rhamnose; 3, arabinose; 4, galactose; 5, glucose; 6, xylose; 7, mannose; 8, fructose; 9, ribose;
10, galacturonic acid; 11, guluronic acid; 12, glucuronic acid; 13, mannuronic acid), LPB8-0 (blue
curve) and LPB8-1 (red curve); (C) FTIR spectra of LPB8-0 (blue curve) and LPB8-1 (red curve).
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3.2. MW Distribution and Monosaccharide Composition Analysis of the EPSs

The MWs of LPB8-0 and LPB8-1 were tested using an HPSEC–RI–MALLS system. As
tabulated in Table 1, the MWs of LPB8-0 and LPB8-1 were 1.12 × 104 and 1.78 × 105 Da,
respectively. This phenomenon indicated that one strain could produce EPSs of different
MWs. These results were consistent with those of a previous study reporting LAB-EPSs in
the MW range of 104–106 g/mol [14].

The monosaccharide composition of LPB8-0 and LPB8-1 was detected using the
HPAEC-PAD system (Figure 2B). LPB8-0 was primarily composed of approximately 15.76%
mannose and 84.24% glucose, while LPB8-1 was composed of mannose, glucose, and
galactose at the molar ratios of 77.74%, 21.08%, and 1.18%, respectively. Notably, no uronic
acid was found in LPB8-0 and LPB8-1. The yield, total carbohydrate content, and monosac-
charide composition of LPB8-1 were higher than those of LPB8-0, which was used in the
subsequent experiments.

3.3. Functional Groups and Glycosidic Linkages

As they represent the most important and reliable analytical method, FTIR absorption
spectra were employed to analyze the major characteristic peaks and linkage bonds in the sam-
ples. As depicted in Figure 2C, the obvious peaks at 3382 (LPB8-1) and 3403 (LPB8-0) cm−1 rep-
resented the O–H stretching vibration. The peaks at 2932 (LPB8-1) and 2929 (LPB8-0) cm−1

were caused by the stretching vibration of C–H. The absorption peaks at 1645 (LPB8-1)
and 1641 (LPB8-0) cm−1 might have been due to the associated water, and the peaks at
1412 cm−1 could be assigned to the bending vibration of C–OH in this sample [15]. Notably,
the characteristic absorption bands in the range of 900−1200 cm−1 were attributed to the
stretching vibrations of C−O−C and C−O−H [16]. Weak peaks were observed from 800
to 900 cm−1, indicating the presence of α- and β-configurations.

LPB8-1 was subjected to methylation treatment followed by GC–MS analysis to con-
firm the types of glycosidic linkages of monosaccharide residues. The results are sum-
marized in Table 2 and Figure S1. The reduced LPB8-1 exhibited ten types of linkages,
including T-Manp-(1→,→3)-Manp-(1→,→2)-Manp-(1→,→6)-Manp-(1→,→6)-Glcp-(1→,
→4)-Glcp-(1→,→3,6)-Manp-(1→,→2,6)-Manp-(1→,→2,6)-Glcp-(1→, and→2,3,6)-Manp-
(1→ with molar ratios of 36.00:11.94:17.31:2.58:2.93:11.11:0.97:10.10:6.74:0.32, respectively.

Table 2. Glycosidic linkage composition of methylated LPB8-1 by GC–MS analysis.

Time (min) Methylated Sugars Deduced Linkages Molar Ratios

8.9 2,3,4,6-Me4-Manp T-Manp-(1→ 36.00
12.3 2,4,6-Me3-Manp →3)-Manp-(1→ 11.94
12.4 3,4,6-Me3-Manp →2)-Manp-(1→ 17.31
13.6 2,3,4-Me3-Manp →6)-Manp-(1→ 2.58
13.7 2,3,4-Me3-Glcp →6)-Glcp-(1→ 2.93
14.1 2,3,6-Me3-Glcp →4)-Glcp-(1→ 11.11
17.9 2,4-Me2-Manp →3,6)-Manp-(1→ 0.97
18.2 3,4-Me2-Manp →2,6)-Manp-(1→ 10.10
18.2 3,4-Me2-Glcp →2,6)-Glcp-(1→ 6.74
21.4 4-Me-Manp →2,3,6)-Manp-(1→ 0.32

3.4. NMR Analysis

A deep structural characterization of LPB8-1 was investigated with 1D (1D-1H, 1D-13C)
and 2D (H-1H COSY, TOCSY, and NOESY; 1H-13C HSQC and HMBC) NMR data to obtain
more comprehensive information about the linkages between the glycosyl residues and
signal assignments. As depicted in the 1H NMR spectrum (Figure 3A), a group of the
predominant signals (H-1) ranging from δ 4.52 to 5.52 ppm was observed. Intensive
anomeric carbon signals (C-1) were located at δ 99.30–104.69 ppm in the 13C NMR spectrum
(Figure 3B). The broad signals between δ 3.30 and 4.33 ppm were related to H-2–H-6 signals,
and the corresponding carbon signals at δ 61.42–80.99 ppm were the characteristic peaks of
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C-2–C-6. A total of eleven anomeric protons (5.43, 5.33, 5.19, 5.18, 5.16, 5.13, 5.09, 5.08, 5.05,
4.93, and 4.56 ppm) appeared in the 1H spectrum, which are labelled with A–K, respectively.
The chemical shifts of anomeric proton and carbon signals were confirmed through the 2D
NMR (COSY, HSQC, and HMBC) spectrum analysis.
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Based on the eleven sugar signals, a representative signal of residue B was extensively
investigated. Residue B had a relatively intensive anomeric proton signal at δ 5.33 ppm,
and its corresponding anomeric carbon signal at δ 102.29 ppm was successfully obtained
through HSQC spectrum analysis (Figure S2A), showing the presence of an α-configuration.
As shown in Figures 3C and S2B, further combining of the COSY and TOCSY spectral
data revealed that other proton signals at δ 5.33/4.16 ppm, 4.16/3.96 ppm, 3.96/3.79 ppm,
3.79/3.92 ppm, and 3.92/3.80 (3.66) ppm were mainly caused by the H-1/H-2, H-2/H-3,
H-3/H-4, H-4/H-5, and H-5/H-6, respectively, of residue E. Hence, the proton signals of
residue B occurred at δ 4.16 ppm, 3.96 ppm, 3.79 ppm, 3.92 ppm, and 3.80 (3.66) ppm for
H-2–H-6, respectively. According to the HSQC spectrum of LPB8-1, the strong cross-peaks
of 5.33/102.29, 4.16/79.80, 3.96/71.68, 3.79/68.01, 3.92/74.49, and 3.80 (3.66)/62.38 were
attributed to the H-1/C-1, H-2/C-2, H-3/C-3, H-4/C-4, H-5/C-5, and H-6/C-6, respectively.
Compared with a previous study, the C-2 (δ 79.80 ppm) moved downward, showing that it
was substituted at the position of C-2 [17,18]. Hence, residue B was identified as→2)-α-D-
Manp-(1→. Subsequently, the signal changes of other residues were identified and deduced
using the same method, and the detailed signal assignments of protons and carbon are
summarized in Table 3 [19–22].

Afterward, the correlations of the linkage sites/types and sequences between different
sugar residues in LPB8-1 were evaluated, and the NOESY and HMBC spectra were analyzed
(Figure S2C,D). In the HMBC spectrum, the cross-peak between the H-1 of residue B
(δ 5.33 ppm) and the C-5 of residue F (δ 74.57 ppm) indicated that H-1 was related to O-6
and O-2, suggesting the existence of→2)-α-D-Manp-(1→2,6)-α-D-Manp-(1→. Similarly, the
H-1 of residue D (δ 5.18 ppm) was found to be linked to the O-6 of residue F (δ 74.57 ppm),
suggesting the presence of α-D-Manp-(1→2,6)-α-D-Manp-(1→. The H-1 signals of α-D-
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Manp-(1→ (G) at δ 5.09 ppm corresponded to the C-2 signal of→2)-α-D-Manp-(1→(B) at
δ 79.80 ppm, demonstrating the linkage α-D-Manp-(1→2)-α-D-Manp-(1→. In the NOESY
spectrum, the correlations at 5.09/4.16, 5.08/4.16, and 4.56/3.78 were assigned to G (H-1)/H
(H-2), H (H-1)/B (H-2), and K (H-1)/E (H-6), respectively. These related signals confirmed
the existence of α-D-Manp-(1→2)-α-D-Manp-(1→,→2,6)-α-D-Manp-(1→3,6)-α-D-Manp-
(1→, and →6)-β-D-Glcp-(1→2,6)-α-D-Manp-(1→, respectively. According to the NMR
spectrum analysis, a possible structural unit of LPB8-1 was predicted and is depicted in
Figure 3D.

Table 3. 1H and 13C NMR chemical shift data for LPB8-1.

Sugar Residue Chemical Shifts δ (ppm)

H-1/C-1 H-2/C-2 H-3/C-3 H-4/C-4 H-5/C-5 H-6/C-6 H-6′

A:→4)-α-D-Glcp-(1→ 5.43/101.28 3.66/72.05 4.01/72.64 3.67/73.08 3.83/74.25 3.93/61.84 3.69
B:→2)-α-D-Manp-(1→ 5.33/102.29 4.16/79.80 3.96/71.68 3.79/68.01 3.92/74.49 3.80/62.38 3.66
C:→3)-α-D-Manp-(1→ 5.19/103.62 4.11/71.36 3.92/74.74 3.68/68.24 3.85/74.64 3.94/62.46 3.70
D: α-D-Manp-(1→ 5.18/103.54 4.10/71.29 3.91/72.07 3.67/68.24 3.82/74.72 3.93/62.23 3.69
E:→2,6)-α-D-Manp-(1→ 5.16/99.72 4.07/80.27 3.80/71.91 3.70/68.55 3.83/74.57 3.92/68.08 3.78
F:→2,6)-α-D-Manp-(1→ 5.13/99.64 4.06/80.19 3.80/71.76 3.71/68.63 3.82/74.62 3.93/68.32 3.78
G: α-D-Manp-(1→ 5.09/103.39 4.10/71.44 3.91/71.68 3.68/68.32 3.81/74.57 3.92/62.46 3.69
H:→3,6)-α-D-Manp-(1→ 5.08/103.62 4.28/71.05 3.89/75.05 3.78/67.85 3.95/74.72 3.84/68.01 3.79
I:→6)-α-D-Manp-(1→ 5.05/103.54 4.28/71.21 3.97/71.76 3.79/67.85 3.95/74.41 3.82/68.16 3.77
J:→2,6)-β-D-Glcp-(1→ 4.93/101.04 4.03/79.72 3.65/71.32 3.91/70.82 3.80/74.18 3.91/68.24 3.71
K:→6)-β-D-Glcp-(1→ 4.56/104.56 3.37/74.64 3.54/77.14 3.67/69.26 3.78/74.80 3.97/67.77 3.62

3.5. Crystalline Features and Thermal Stability

XRD, a technique providing crystallinity information, has been widely used to exam-
ine the amorphous and crystalline structure of polysaccharides. As depicted in Figure 4A,
LPB8-0 and LPB8-1 exhibited major crystalline reflections at 18.69◦ and 19.17◦, respec-
tively, confirming that they were semicrystalline polymers with low crystallinity. This was
consistent with previous study results showing similar crystalline structures for the ESPs
from Bacillus licheniformis PASS26 [23] and B. cereus KMS3-1 [24]. This special semicrys-
talline structure could be attributed to the order degree within the polysaccharides, which
might directly affect the physical and functional properties of the polysaccharides, such as
viscosity, solubility, water holding capacity, tensile strength, and swelling power.

Figure 4B depicts the thermal stability analysis results for LPB8-0 and LPB8-1, display-
ing two stages. In the first phase, an initial mass loss of approximately 5% was observed
between 35 and 115 ◦C, which might have been ascribed to the evaporation and desorption
of water. However, the mass remained unchanged from 115 to 240 ◦C, indicating that
LPB8-0 and LPB8-1 were relatively stable below 240 ◦C. With the temperature increasing,
the maximum mass loss was observed from 240 to 550 ◦C with a mass loss of 75%. This
might have been due to the depolymerization of LPB8-0 and LPB8-1. Sharp peaks were
observed on the DTG curves at 308.3 and 311.7 ◦C highlighting the high degradation
temperature (Td) of LPB8-0 and LPB8-1, respectively, and especially of LPB8-1. The masses
gradually decreased to 24.94% and 14.98% in LPB8-0 and LPB8-1, respectively, with an
increase in temperature to 800 ◦C. The Td values of LPB8-0 and LPB8-1 were higher than
those of the EPSs from Leuconostoc pseudomesenteroides DRP-5 (298.81 ◦C) [25] and Lacto-
bacillus sakei L3 (272 ◦C) [26]. These results led to the conclusion that LPB8-0 and LPB8-1
had significant thermal stability, which is vital for food industries requiring a high level of
thermal processing.
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3.6. Particle Size and Zeta Potential Examination

Figure 4C,D presents the particle sizes (nm) of LPB8-0 and LPB8-1 (0.5% w/v) in aque-
ous solution. LPB8-0 and LPB8-1 possessed uniform particles, and the size of LPB8-0 parti-
cles (Figure 3C) ranged from 150 to 550 nm, with an average particle size of 286.3 ± 4.1 nm,
while the size of LPB8-1 particles (Figure 3D) ranged from 100 to 450 nm, with an average
particle size of 254.5± 2.3 nm. These particle sizes were smaller than those of the EPSs from
Lactobacillus plantarum C70 (525.5 nm) [19] and Pediococcus pentosaceus M41 (446.8 nm) [27]
but larger than that of the EPS produced by Lactococcus garvieae C47 (166.6 nm) [28]. The dif-
ferences in particle size might be ascribed to the MW, linkages, and chemical compositions
of the EPSs in question [19].
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The zeta potentials (mV) of LPB8-0 and LPB8-1 solutions were detected, and the
charges of LPB8-0 and LPB8-1 were −4.31 ± 0.75 mV and −18.3 ± 1.46 mV, respectively
(Figure 4E,F). Compared with neutral EPSs, EPSs with negative charges exhibited stronger
bioactivity and could alter the process of gel formation, thereby helping to improve the
elasticity of the protein network [27]. Additionally, the physicochemical environment (pH,
temperature), the range of MW, and charge density might affect the zeta potential [29].

3.7. Morphology Characteristics

As shown in Figure 5A,B, LPB8-0 and LPB8-1 appeared as a soft cotton-like structure.
SEM revealed different surface morphologies of LPB8-0 and LPB8-1 (Figure 5C–F) at 1000×
and 5000× magnifications. LPB8-0 exhibited an uneven surface primarily composed of
an irregular, thin-sliced filiform structure, while the surface morphology of LPB8-1 was a
branched, irregular, rod-like spherical body structure. The EPS produced by Lactobacillus
plantarum HY [16] had a three-dimensional network structure combining sheets and tubes.
The EPS obtained from B. licheniformis AG-06 [30] exhibited uneven smooth surfaces with
network-like structures composed of irregular chains. The different shapes and structures
might be attributable to the purification, preparation, and monosaccharide composition of
the EPSs [31].
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AFM images of LPB8-0 and LPB8-1 are depicted in Figure 5G–J. LPB8-0 was irregularly
agglomerated in the dilute solution, suggesting molecular aggregation, while LPB8-1 was
uneven in size and exhibited an irregularly spherical molecular conformation, which
might have been ascribed to its branched structure and molecular aggregation through
hydrogen bonds. This phenomenon was consistent with the SEM results. A similar
spherical molecular conformation was found in the EPSs produced by other probiotic
bacteria, such as Lactobacillus plantarum YW11 [32] and B. megaterium PFY-147 [33].

3.8. Emulsifying Activity and Emulsion Stability of the EPSs
3.8.1. Emulsifying Activities with Several Edible Oils

The emulsifying activity and stability of the prepared emulsions were evaluated
against several edible oils. As depicted in Figure 6A,B, after 1 h, LPB8-0 and LPB8-1
showed good EAs (100% ± 0.0%) against palm oil and olive oil, respectively. The LPB8-0
and LPB8-1 produced by L. pentosus B8 were found to possess good emulsion-stabilizing
ability against several edible oils, as shown by the EA24 value, retaining at least 50% of
the initial volume. An effective emulsifier maintains its capacity to the total emulsion
volume 24 h (≥50%) after its formation [34]. Notably, the EA values (70.9% ± 1.2% and
79.9% ± 0.8%) of LPB8-0 and LPB8-1 against palm oil and olive oil remained high after
168 h. Compared with other EPS biopolymers, LPB8-0 and LPB8-1 from L. pentosus B8
had higher EA values. In previous reports, the EPS produced by Virgibacillus salarius
BM02 had an EA24 value of 47.06% against olive oil [35]. By contrast, the EPS of Bacillus
coagulans RK-02 had the highest emulsifying efficiency against sunflower seed oil (70%)
than against soybean oil (62%) and rice oil (41%), at a similar concentration [36]. This
phenomenon might be attributable to the specificity of the EPSs and certain hydrophobic
compounds [35].

3.8.2. Effects of EPS Concentration, pH, and Temperature on Emulsifying Activity

As an important criterion for many fields, an emulsifier should retain its stability
when affected by various complicated conditions (concentration, pH, and temperature). As
depicted in Figure 6C,D, the EA values significantly increased (p < 0.05) with increasing
LPB8-0 and LPB8-1 concentrations (0.1–1 mg/mL). However, the emulsion showed good
stability (p > 0.05) when it was exploited with LPB8-0 and LPB8-1 concentrations ranging
from 1 to 2 mg/mL. Hence, 1 mg/mL was considered as the optimum concentration for
LPB8-0 and LPB8-1 when used as an emulsifier. A similar concentration was observed for
the EPS from Bacillus amyloliquefaciens LPL061 [37]. The emulsions of LPB8-0 and LPB8-1
against palm oil and olive oil exhibited excellent stability under different pH environments
(Figure 6E). Nevertheless, a contradictory result, that is, a decrease in the EA24 value,
was discovered under alkaline environments of pH 10 and 12. This result indicates that
LPB8-0 and LPB8-1 could be potential emulsifiers under different pH environments. In a
previous study, emulsions prepared using EPS22 and olive oil exhibited lower emulsion
activity in the storage pH range of 10 to 12 (alkaline conditions) [34]. As depicted in
Figure 6F, two emulsions retained good emulsifying activity in the temperature range of
25–100 ◦C. Another study reported that the activity of emulsions prepared with the EPS
from Virgibacillus salarius BM02 and sunflower oil decreased to 47.06% at 100 ◦C [35]. These
differences might be attributable to the excellent thermal stability of LPB8-0 and LPB8-1 at
308.3 and 311.7 ◦C, respectively, at pH 10 and 12.
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3.9. Antioxidant Activities of LPB8-0 and LPB8-1
3.9.1. DPPH Radical Scavenging Activities of LPB8-0 and LPB8-1

The scavenging abilities of LPB8-0 and LPB8-1 on DPPH free radicals are shown
in Figure 7A. These two fractions exhibited satisfactory DPPH scavenging ability, and a
positive correlation was observed between DPPH scavenging ability and the concentrations
of LPB8-0 and LPB8-1. LPB8-1 exhibited higher scavenging ability than LPB8-0 at the
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concentrations of 0–10 mg/mL. When the concentrations reached 10 mg/mL, the DPPH
radical scavenging rates of LPB8-0 and LPB8-1 were 50.62% ± 1.5% and 62.82% ± 2.0%,
respectively. However, the scavenging abilities of these two fractions were significantly
weaker than that of the control vitamin C (VC) (p < 0.05). Compared with LPB8-1, an EPS
isolated from Lactobacillus plantarum CNPC003 exhibited a lower DPPH scavenging activity
of 51.52 ± 1.10% at the concentration of 8 mg/mL [7].
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3.9.2. ABTS Radical Scavenging Activities of LPB8-0 and LPB8-1

Figure 7B depicts the ABTS free radical scavenging activities of LPB8-0 and LPB8-1.
The ABTS free radical scavenging activities of these two EPS fractions were considerably
lower than that of the VC, exhibiting a concentration-dependent activity. Compared with
LPB8-1, LPB8-0 exhibited stronger scavenging activities against ABTS in the range of
0–10.0 mg/mL. This trend was similar to that of the DPPH free radical scavenging ability.
At a concentration of 10 mg/mL, the scavenging activities of LPB8-0 and LPB8-1 against
ABTS increased to 47.17% ± 1.7% and 58.36% ± 2.4%, respectively. In a previous study,
the EPS from Lactobacillus plantarum JLAU103 showed an ABTS radical scavenging rate of
65.5% at a concentration of 10 mg/mL [38].

3.9.3. Hydroxyl Free Radical Scavenging Abilities of LPB8-0 and LPB8-1

As depicted in Figure 7C, LPB8-0 and LPB8-1 exhibited a significant, concentration-
dependent hydroxyl free radical scavenging activity in the concentration range of 0–10 mg/mL.
Their scavenging activities were in the following order: VC > LPB8-1 > LPB8-0. The hydroxyl
free radical scavenging capacities of 10 mg/mL LPB8-0 and LPB8-1 were 47.91% ± 1.7% and
72.52%± 2.7%, respectively. Their hydroxyl free radical scavenging activities were stronger
than those of the EPSs from Lactobacillus rhamnosus ZFM231 (49.7%) [6] and Leuconostoc
mesenteroides DRP105 (30.48% ± 0.78%) [39]. Overall, these results indicated that these two
polymers (LPB8-0 and LPB8-1) could be potential alternatives to synthetic antioxidants,
especially LPB8-1.

3.9.4. Correlation between Structure and Antioxidant Activity

Research fronts have proven that polysaccharides possess excellent antioxidant effi-
cacy, but their antioxidant mechanism is still obscure. Zhang et al. [40] discovered that the
antioxidant activity pathway of polysaccharides might be ascribed to the presence of OH
groups that could improve hydrogen to stabilize the free radicals or directly react with the
free radicals to terminate the radical chain reaction. The antioxidant abilities of polysaccha-
rides largely depend on their purity, monosaccharide compositions, MWs, amounts and
positions of functional groups, glycosidic linkages, and chain conformations. The purities
of LPB8-0 and LPB8-1 were 96.2%± 1.0% and 99.1%± 0.5%, respectively. However, LPB8-1
exhibited better antioxidant activity than LPB8-0. Jiang et al. [41] reported that the polysac-
charide (MBP-2) extracted from mung bean skin with higher carbohydrate content (89.26%)
exhibited stronger antioxidant activity than that with lower carbohydrate content (MBP-1;
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86.69%). These results were in agreement with those reported by Xie et al. [42]. Moreover,
the antioxidant properties of the polysaccharides studied herein were closely related to
their MWs. In this study, LPB8-1, with a high MW, exhibited better antioxidant properties,
indicating that EPSs with higher MWs possess stronger antioxidant activities, which would
be consistent with the results of a previous study [43]. However, polysaccharides produced
by Sagittaria sagittifolia L. with lower MWs (16.62 kDa) had better antioxidant abilities,
which might have been due to the fact that low-MW polysaccharides could accept more
free radicals [44]. The inconsistency in the aforementioned results indicates that MW does
not affect the antioxidant properties of polysaccharides. An et al. [45] reported the signifi-
cant effects of monosaccharide composition on antioxidant activity. In previous studies,
some monosaccharides (mannose, galactose, xylose, rhamnose, arabinose, etc.), the major
constituents of polysaccharides, exhibited satisfying antioxidant activity [46,47]. Thus, the
high proportions of mannose and galactose in LPB8-1 might have contributed to its high
antioxidant efficacy. Furthermore, Feng et al. [48] found that the antioxidant activity of
polysaccharides might be governed by their functional groups (hydroxyl and carboxyl) and
chain conformation. In this study, we inferred that the antioxidant activity of LPB8-0 and
LPB8-1 might have depended not on one factor but rather on a combination of multiple
factors (high purity, high MW, and high mannose and galactose contents). However, further
exploration is highly recommended to explore the detailed antioxidant mechanism of EPSs
produced by LAB.

4. Conclusions

In this study, two novel EPSs (LPB8-0 and LPB8-1) were isolated and purified from
L. pentosus B8. The MWs, monosaccharide compositions, and surface morphologies of LPB8-
0 and LPB8-1 were slightly different, with typical absorption peaks of polysaccharides.
The backbone of LPB8-1 was composed of→2)-α-D-Manp-(1→ and→6)-α-D-Manp-(1→.
The results demonstrated that LPB8-0 and LPB8-1 were semicrystalline polymers with
outstanding thermal stability. LPB8-0 and LPB8-1 in aqueous solution had average particle
diameters of 286.3 ± 4.1 nm and 254.5 ± 2.3 nm and negative charges of −4.31 ± 0.75 mV
and −18.3 ± 1.46 mV, respectively. Both LPB8-0 and LPB8-1 showed excellent emulsifying
activities against several edible oils, especially palm oil and olive oil. Additionally, DPPH,
ABTS, and hydroxyl free radical assays showed that LPB8-0 and LPB8-1 exhibited potential
antioxidant activities in vitro in a concentration-dependent manner. LPB8-1, with high
purity and a high MW, had better antioxidant ability. Overall, the study results provide a
theoretical basis for the potential applications of LBP8-1 as an emulsifier and antioxidant in
foods and pharmaceuticals.
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Author Contributions: G.J.: conceptualization, formal analysis, writing—original draft preparation;
R.L.: revision; J.H.: validation; L.Y. and J.C.: formal analysis, software. Z.X. (Zhe Xu): formal analysis;
B.Z. and Y.Y.: software; Z.X. (Zhongmei Xia): funding acquisition, data curation; Y.T.: revision,
project administration, supervision. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by National Key Research and Development Program of China
(2018YFC1802201) and the Si-chuan Key Research and Development Program (2020YFS0287).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/foods11152327/s1


Foods 2022, 11, 2327 17 of 18

References
1. Riaz Rajoka, M.S.; Wu, Y.; Mehwish, H.M.; Bansal, M.; Zhao, L. Lactobacillus exopolysaccharides: New perspectives on

engineering strategies, physiochemical functions, and immunomodulatory effects on host health. Trends Food Sci. Technol. 2020,
103, 36–48. [CrossRef]

2. Rahbar Saadat, Y.; Yari Khosroushahi, A.; Pourghassem Gargari, B. A comprehensive review of anticancer, immunomodulatory
and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohyd. Polym. 2019, 217, 79–89. [CrossRef] [PubMed]

3. Rajoka, M.S.R.; Mehwish, H.M.; Kitazawa, H.; Barba, F.J.; Berthelot, L.; Umair, M.; Zhao, L. Techno-functional properties and
immunomodulatory potential of exopolysaccharide from Lactiplantibacillus plantarum MM89 isolated from human breast milk.
Food Chem. 2022, 377, 131954. [CrossRef] [PubMed]

4. Riaz Rajoka, M.S.; Mehwish, H.M.; Siddiq, M.; Haobin, Z.; Zhu, J.; Yan, L.; Shi, J. Identification, characterization, and probiotic
potential of Lactobacillus rhamnosus isolated from human milk. LWT Food Sci. Technol. 2017, 84, 271–280. [CrossRef]

5. Yang, X.; Ren, Y.; Zhang, L.; Wang, Z.; Li, L. Structural characteristics and antioxidant properties of exopolysaccharides isolated
from soybean protein gel induced by lactic acid bacteria. LWT Food Sci. Technol. 2021, 150, 111811. [CrossRef]

6. Hu, S.M.; Zhou, J.M.; Zhou, Q.Q.; Li, P.; Xie, Y.Y.; Zhou, T.; Gu, Q. Purification, characterization and biological activities of
exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. LWT Food Sci. Technol. 2021, 147, 111561. [CrossRef]

7. Bomfim, V.B.; Pereira Lopes Neto, J.H.; Leite, K.S.; de Andrade Vieira, É.; Iacomini, M.; Silva, C.M.; Cardarelli, H.R. Partial
characterization and antioxidant activity of exopolysaccharides produced by Lactobacillus plantarum CNPC003. LWT Food Sci.
Technol. 2020, 127, 109349. [CrossRef]

8. Cao, F.; Liang, M.; Liu, J.; Liu, Y.; Renye, J.A., Jr.; Qi, P.X.; Ren, D. Characterization of an exopolysaccharide (EPS-3A) produced by
Streptococcus thermophilus ZJUIDS-2-01 isolated from traditional yak yogurt. Int. J. Biol. Macromol. 2021, 192, 1331–1343. [CrossRef]

9. Gan, L.; Jiang, G.; Li, X.; Zhang, S.; Tian, Y.; Peng, B. Structural elucidation and physicochemical characteristics of a novel
high-molecular-weight fructan from halotolerant Bacillus sp. SCU-E108. Food Chem. 2021, 365, 130496. [CrossRef]

10. Yan, J.K.; Li, L.; Wang, Z.M.; Leung, P.H.; Wang, W.Q.; Wu, J.Y. Acidic degradation and enhanced antioxidant activities of
exopolysaccharides from Cordyceps sinensis mycelial culture. Food Chem. 2009, 117, 641–646. [CrossRef]

11. Nasir, A.; Sattar, F.; Ashfaq, I.; Lindemann, S.R.; Chen, M.H.; Van den Ende, W.; Anwar, M.A. Production and characterization of
a high molecular weight levan and fructooligosaccharides from a rhizospheric isolate of Bacillus aryabhattai. LWT Food Sci. Technol.
2020, 123, 109093. [CrossRef]

12. Jiang, G.; Gan, L.; Li, X.; He, J.; Zhang, S.; Chen, J.; Tian, Y. Characterization of Structural and Physicochemical Properties of an
Exopolysaccharide Produced by Enterococcus sp. F2 From Fermented Soya Beans. Front. Microbiol. 2021, 12, 744007. [CrossRef]
[PubMed]

13. Jia, Y.N.; Wang, Y.J.; Li, R.L.; Li, S.Q.; Zhang, M.; He, C.W.; Chen, H.X. The structural characteristic of acidic-hydrolyzed corn
silk polysaccharides and its protection on the H2O2-injured intestinal epithelial cells. Food Chem. 2021, 356, 129691. [CrossRef]
[PubMed]

14. Lynch, K.M.; Zannini, E.; Coffey, A.; Arendt, E.K. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation,
Properties, Characterization, and Health Benefits. Annu. Rev. Food Sci. T 2018, 9, 155–176. [CrossRef]

15. Park, S.; Saravanakumar, K.; Sathiyaseelan, A.; Park, S.; Hu, X.; Wang, M.H. Cellular antioxidant properties of nontoxic exopolysac-
charide extracted from Lactobacillales (Weissella cibaria) isolated from Korean kimchi. LWT Food Sci. Technol. 2022, 154, 112727.
[CrossRef]

16. Liu, T.; Zhou, K.; Yin, S.; Liu, S.; Zhu, Y.; Yang, Y.; Wang, C. Purification and characterization of an exopolysaccharide produced
by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. Int. J. Biol. Macromol. 2019, 134, 516–526. [CrossRef]

17. Wang, K.; Li, W.; Rui, X.; Chen, X.; Jiang, M.; Dong, M. Structural characterization and bioactivity of released exopolysaccharides
from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 2014, 67, 71–78. [CrossRef] [PubMed]

18. Wang, Q.; Wei, M.; Zhang, J.; Yue, Y.; Wu, N.; Geng, L.; Wang, J. Structural characteristics and immune-enhancing activity of
an extracellular polysaccharide produced by marine Halomonas sp. 2E1. Int. J. Biol. Macromol. 2021, 183, 1660–1668. [CrossRef]
[PubMed]

19. Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Galiwango, E.; Tamiello-Rosa, C.; Abdullah, H.; Hamed, F. Characterization,
bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated
from camel milk. Int. J. Biol. Macromol. 2020, 144, 938–946. [CrossRef] [PubMed]

20. Huo, J.; Lei, M.; Zhou, Y.; Zhong, X.; Liu, Y.; Hou, J.; Wu, W. Structural characterization of two novel polysaccharides from
Gastrodia elata and their effects on Akkermansia muciniphila. Int. J. Biol. Macromol. 2021, 186, 501–509. [CrossRef]

21. Li, M.; Li, W.; Li, D.; Tian, J.; Xiao, L.; Kwok, L.Y.; Sun, Z. Structure characterization, antioxidant capacity, rheological characteristics
and expression of biosynthetic genes of exopolysaccharides produced by Lactococcus lactis subsp. lactis IMAU11823. Food Chem.
2022, 384, 132566. [CrossRef]

22. Shi, W.; Zhong, J.; Zhang, Q.; Yan, C. Structural characterization and antineuroinflammatory activity of a novel heteropolysaccha-
ride obtained from the fruits of Alpinia oxyphylla. Carbohyd. Polym. 2020, 229, 115405. [CrossRef] [PubMed]

23. Insulkar, P.; Kerkar, S.; Lele, S.S. Purification and structural-functional characterization of an exopolysaccharide from Bacillus
licheniformis PASS26 with in-vitro antitumor and wound healing activities. Int. J. Biol. Macromol. 2018, 120, 1441–1450. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.tifs.2020.06.003
http://doi.org/10.1016/j.carbpol.2019.04.025
http://www.ncbi.nlm.nih.gov/pubmed/31079688
http://doi.org/10.1016/j.foodchem.2021.131954
http://www.ncbi.nlm.nih.gov/pubmed/34973591
http://doi.org/10.1016/j.lwt.2017.05.055
http://doi.org/10.1016/j.lwt.2021.111811
http://doi.org/10.1016/j.lwt.2021.111561
http://doi.org/10.1016/j.lwt.2020.109349
http://doi.org/10.1016/j.ijbiomac.2021.10.055
http://doi.org/10.1016/j.foodchem.2021.130496
http://doi.org/10.1016/j.foodchem.2009.04.068
http://doi.org/10.1016/j.lwt.2020.109093
http://doi.org/10.3389/fmicb.2021.744007
http://www.ncbi.nlm.nih.gov/pubmed/34777291
http://doi.org/10.1016/j.foodchem.2021.129691
http://www.ncbi.nlm.nih.gov/pubmed/33838603
http://doi.org/10.1146/annurev-food-030117-012537
http://doi.org/10.1016/j.lwt.2021.112727
http://doi.org/10.1016/j.ijbiomac.2019.05.010
http://doi.org/10.1016/j.ijbiomac.2014.02.056
http://www.ncbi.nlm.nih.gov/pubmed/24631548
http://doi.org/10.1016/j.ijbiomac.2021.05.143
http://www.ncbi.nlm.nih.gov/pubmed/34048832
http://doi.org/10.1016/j.ijbiomac.2019.09.171
http://www.ncbi.nlm.nih.gov/pubmed/31672637
http://doi.org/10.1016/j.ijbiomac.2021.06.157
http://doi.org/10.1016/j.foodchem.2022.132566
http://doi.org/10.1016/j.carbpol.2019.115405
http://www.ncbi.nlm.nih.gov/pubmed/31826414
http://doi.org/10.1016/j.ijbiomac.2018.09.147
http://www.ncbi.nlm.nih.gov/pubmed/30261252


Foods 2022, 11, 2327 18 of 18

24. Krishnamurthy, M.; Jayaraman Uthaya, C.; Thangavel, M.; Annadurai, V.; Rajendran, R.; Gurusamy, A. Optimization, composi-
tional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohyd.
Polym. 2020, 227, 115369. [CrossRef] [PubMed]

25. Du, R.; Qiao, X.; Zhao, F.; Song, Q.; Zhou, Q.; Wang, Y.; Zhou, Z. Purification, characterization and antioxidant activity of dextran
produced by Leuconostoc pseudomesenteroides from homemade wine. Carbohyd. Polym. 2018, 198, 529–536. [CrossRef] [PubMed]

26. Wang, B.; Song, Q.; Zhao, F.; Zhang, L.; Han, Y.; Zhou, Z. Isolation and characterization of dextran produced by Lactobacillus sakei
L3 from Hubei sausage. Carbohyd. Polym. 2019, 223, 115111. [CrossRef]

27. Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Liu, S.Q. Physicochemical, bioactive and rheological
properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohyd. Polym. 2020, 229, 115462. [CrossRef]

28. Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Almazrouei, N.; Galiwango, E.; Esposito, G.; Najjar, Z. Exopolysaccharide produced
by the potential probiotic Lactococcus garvieae C47: Structural characteristics, rheological properties, bioactivities and impact on
fermented camel milk. Food Chem. 2020, 333, 127418. [CrossRef]

29. Wang, B.H.; Cao, J.J.; Zhang, B.; Chen, H.Q. Structural characterization, physicochemical properties and alpha-glucosidase
inhibitory activity of polysaccharide from the fruits of wax apple. Carbohyd. Polym. 2019, 211, 227–236. [CrossRef]

30. Vinothkanna, A.; Sathiyanarayanan, G.; Balaji, P.; Mathivanan, K.; Pugazhendhi, A.; Ma, Y.; Thirumurugan, R. Structural
characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06
from Indian polyherbal fermented traditional medicine. Int. J. Biol. Macromol. 2021, 174, 144–152. [CrossRef]

31. Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from
jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [CrossRef] [PubMed]

32. Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11
isolated from Tibet Kefir. Carbohyd. Polym. 2015, 125, 16–25. [CrossRef]

33. Pei, F.; Ma, Y.; Chen, X.; Liu, H. Purification and structural characterization and antioxidant activity of levan from Bacillus
megaterium PFY-147. Int. J. Biol. Macromol. 2020, 161, 1181–1188. [CrossRef] [PubMed]

34. Maalej, H.; Hmidet, N.; Boisset, C.; Bayma, E.; Heyraud, A.; Nasri, M. Rheological and emulsifying properties of a gel-like
exopolysaccharide produced by Pseudomonas stutzeri AS22. Food Hydrocolloid. 2016, 52, 634–647. [CrossRef]

35. Gomaa, M.; Yousef, N. Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus
salarius BM02: Study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina
platensis. Int. J. Biol. Macromol. 2020, 149, 552–561. [CrossRef] [PubMed]

36. Kodali, V.P.; Das, S.; Sen, R. An exopolysaccharide from a probiotic: Biosynthesis dynamics, composition and emulsifying activity.
Food Res. Int. 2009, 42, 695–699. [CrossRef]

37. Han, Y.; Liu, E.; Liu, L.; Zhang, B.; Wang, Y.; Gui, M.; Li, P. Rheological, emulsifying and thermostability properties of two
exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohyd. Polym. 2015, 115, 230–237. [CrossRef]

38. Min, W.H.; Fang, X.B.; Wu, T.; Fang, L.; Liu, C.L.; Wang, J. Characterization and antioxidant activity of an acidic exopolysaccharide
from Lactobacillus plantarum JLAU103. J. Biosci. Bioeng. 2019, 127, 758–766. [CrossRef]

39. Xing, H.; Du, R.; Zhao, F.; Han, Y.; Xiao, H.; Zhou, Z. Optimization, chain conformation and characterization of exopolysaccharide
isolated from Leuconostoc mesenteroides DRP105. Int. J. Biol Macromol. 2018, 112, 1208–1216. [CrossRef]

40. Zhang, H.; Cui, S.W.; Nie, S.P.; Chen, Y.; Wang, Y.X.; Xie, M.Y. Identification of pivotal components on the antioxidant activity of
polysaccharide extract from Ganoderma atrum. Bioact. Carbohyd. Diet. Fibre. 2016, 7, 9–18. [CrossRef]

41. Jiang, L.; Wang, W.; Wen, P.; Shen, M.; Li, H.; Ren, Y.; Xie, J. Two water-soluble polysaccharides from mung bean skin:
Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocolloid. 2020, 100, 105412. [CrossRef]

42. Xie, J.H.; Jin, M.L.; Morris, G.A.; Zha, X.Q.; Chen, H.Q.; Yi, Y.; Xie, M.Y. Advances on Bioactive Polysaccharides from Medicinal
Plants. Crit. Rev. Food Sci. 2016, 56, 60–84. [CrossRef] [PubMed]

43. Zhang, L.; Hu, Y.; Duan, X.; Tang, T.; Shen, Y.; Hu, B.; Liu, Y. Characterization and antioxidant activities of polysaccharides from
thirteen boletus mushrooms. Int. J. Biol. Macromol. 2018, 113, 1–7. [CrossRef] [PubMed]

44. Gu, J.; Zhang, H.; Wen, C.; Zhang, J.; He, Y.; Ma, H.; Duan, Y. Purification, characterization, antioxidant and immunological
activity of polysaccharide from Sagittaria sagittifolia L. Food Res. Int. 2020, 136, 109345. [CrossRef] [PubMed]

45. An, Q.; Ye, X.; Han, Y.; Zhao, M.; Chen, S.; Liu, X.; Wang, W. Structure analysis of polysaccharides purified from Cyclocarya
paliurus with DEAE-Cellulose and its antioxidant activity in RAW264.7 cells. Int. J. Biol. Macromol. 2020, 157, 604–615. [CrossRef]
[PubMed]

46. Shen, S.; Zhou, C.; Zeng, Y.; Zhang, H.; Hossen, M.A.; Dai, J.; Liu, Y. Structures, physicochemical and bioactive properties of
polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction. LWT Food Sci. Technol. 2022,
154, 112446. [CrossRef]

47. Wang, C.; Li, W.; Chen, Z.; Gao, X.; Yuan, G.; Pan, Y.; Chen, H. Effects of simulated gastrointestinal digestion in vitro on the
chemical properties, antioxidant activity, alpha-amylase and alpha-glucosidase inhibitory activity of polysaccharides from
Inonotus obliquus. Food Res. Int. 2018, 103, 280–288. [CrossRef] [PubMed]

48. Feng, S.; Cheng, H.; Xu, Z.; Yuan, M.; Huang, Y.; Liao, J.; Ding, C. Panax notoginseng polysaccharide increases stress resistance
and extends lifespan in Caenorhabditis elegans. J. Funct. Foods. 2018, 45, 15–23. [CrossRef]

http://doi.org/10.1016/j.carbpol.2019.115369
http://www.ncbi.nlm.nih.gov/pubmed/31590875
http://doi.org/10.1016/j.carbpol.2018.06.116
http://www.ncbi.nlm.nih.gov/pubmed/30093031
http://doi.org/10.1016/j.carbpol.2019.115111
http://doi.org/10.1016/j.carbpol.2019.115462
http://doi.org/10.1016/j.foodchem.2020.127418
http://doi.org/10.1016/j.carbpol.2019.02.006
http://doi.org/10.1016/j.ijbiomac.2021.01.117
http://doi.org/10.1016/j.ijbiomac.2020.02.018
http://www.ncbi.nlm.nih.gov/pubmed/32032709
http://doi.org/10.1016/j.carbpol.2015.03.003
http://doi.org/10.1016/j.ijbiomac.2020.06.140
http://www.ncbi.nlm.nih.gov/pubmed/32561282
http://doi.org/10.1016/j.foodhyd.2015.07.010
http://doi.org/10.1016/j.ijbiomac.2020.01.289
http://www.ncbi.nlm.nih.gov/pubmed/32006575
http://doi.org/10.1016/j.foodres.2009.02.007
http://doi.org/10.1016/j.carbpol.2014.08.044
http://doi.org/10.1016/j.jbiosc.2018.12.004
http://doi.org/10.1016/j.ijbiomac.2018.02.068
http://doi.org/10.1016/j.bcdf.2016.04.002
http://doi.org/10.1016/j.foodhyd.2019.105412
http://doi.org/10.1080/10408398.2015.1069255
http://www.ncbi.nlm.nih.gov/pubmed/26463231
http://doi.org/10.1016/j.ijbiomac.2018.02.084
http://www.ncbi.nlm.nih.gov/pubmed/29458100
http://doi.org/10.1016/j.foodres.2020.109345
http://www.ncbi.nlm.nih.gov/pubmed/32846537
http://doi.org/10.1016/j.ijbiomac.2019.11.212
http://www.ncbi.nlm.nih.gov/pubmed/31786297
http://doi.org/10.1016/j.lwt.2021.112446
http://doi.org/10.1016/j.foodres.2017.10.058
http://www.ncbi.nlm.nih.gov/pubmed/29389616
http://doi.org/10.1016/j.jff.2018.03.034

	Introduction 
	Materials and Methods 
	Bacterial Propagation 
	Crude EPS Extraction and Purification 
	Chemical Composition Characterization Assays 
	Determination of MW 
	Monosaccharide Composition 
	Linkage Analysis by Methylation 
	FTIR and NMR Spectroscopy Analysis 
	Thermal Stability Evaluation 
	Examination of X-ray Diffractometry, Particle Size, and Zeta Potential 
	Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) 
	Emulsifying Activities of the EPSs 
	Analysis of the Antioxidant Activities of LPB8-0 and LPB8-1 In Vitro 
	DPPH Scavenging Activity 
	ABTS Radical Scavenging Activity 
	Hydroxyl Free Radical Scavenging Activity 

	Statistical Analysis 

	Results and Discussion 
	Extraction, Purification, and Chemical Composition of the EPSs 
	MW Distribution and Monosaccharide Composition Analysis of the EPSs 
	Functional Groups and Glycosidic Linkages 
	NMR Analysis 
	Crystalline Features and Thermal Stability 
	Particle Size and Zeta Potential Examination 
	Morphology Characteristics 
	Emulsifying Activity and Emulsion Stability of the EPSs 
	Emulsifying Activities with Several Edible Oils 
	Effects of EPS Concentration, pH, and Temperature on Emulsifying Activity 

	Antioxidant Activities of LPB8-0 and LPB8-1 
	DPPH Radical Scavenging Activities of LPB8-0 and LPB8-1 
	ABTS Radical Scavenging Activities of LPB8-0 and LPB8-1 
	Hydroxyl Free Radical Scavenging Abilities of LPB8-0 and LPB8-1 
	Correlation between Structure and Antioxidant Activity 


	Conclusions 
	References

