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ABSTRACT

Single-cell RNA sequencing data is characterized by
a large number of zero counts, yet there is growing
evidence that these zeros reflect biological variation
rather than technical artifacts. We propose to use
binarized expression profiles to identify the effects
of biological variation in single-cell RNA sequenc-
ing data. Using 16 publicly available and simulated
datasets, we show that a binarized representation of
single-cell expression data accurately represents bi-
ological variation and reveals the relative abundance
of transcripts more robustly than counts.

INTRODUCTION

Single cell RNA sequencing (scRNAseq) data are highly
sparse, and the common belief is that the zero values are
primarily caused by technical artifacts (often referred to as
dropouts). Although more zeros are observed in scRNAseq
data than expected, these can largely be explained by bio-
logical rather than technical factors (1). Also, the amount
of zeros in scRNAseq is in line with distributional mod-
els of molecule sampling counts (2,3). These distributional
models show that a zero observation is not simply a missing-
value, as a missing-value would provide no information. On
the contrary, a zero observation for a gene reveals that the
respective gene is unlikely to be highly expressed (3). Meth-
ods that utilize zero observations for feature selection (4,5)
and cell type clustering (6) have recently been developed and
perform better or comparable with methods relying on the
continuous expression values of highly variable genes. For
instance, Qiu (6) binarized scRNAseq count data, where
each zero remains zero and every non-zero value was as-
signed a one. With this binary representation, cell type clus-
ters were identified based on co-occurrence of transcripts.
Yet, it is not clear whether differences in the number of ze-
ros for a gene also reflect differences across distinct biolog-
ical cell populations. Therefore, we investigated whether bi-
ological differences across cell population can be identified

using Binary Differential Analysis (BDA) rather than the
commonly used differential expression analysis (DEA). In-
stead of relying on changes in the expression value of genes
across cell populations, which can be sparse and are subject
to pre-processing steps, we analyzed the binary expression
patterns across biological distinct cell populations, i.e. are
there more (or less) zeros for a gene in condition A com-
pared to condition B. Taken together the main contribu-
tion of our work is that we show that the binarization of
gene expression is biologically relevant and can be used to
test for differences between a wide variety of groupings, and
that this holds across different datasets, as well as different
single-cell protocols.

MATERIALS AND METHODS

Single-cell RNA-seq datasets

In total, 16 scRNAseq dataset (14 human and 2 mouse)
were used to investigate the utility and biological rele-
vance of binarized expression profiles of genes (Table 1). All
datasets had pre-annotated cell types and conditions. From
the corresponding references, un-normalized count matri-
ces were acquired, and only annotated cells were kept for
further analysis. For each dataset, we extracted the anno-
tated cell type, patient ID, and to which of contrasting cell
population the cell belonged from the included meta data.
This was slightly different for the aging mouse atlases and
cancer atlas. For the aging mouse atlases (7), instead of an-
notated cell types we retrieved the tissue names. For the can-
cer atlas (8), the contrasting cell populations were defined
by cell type, so we retrieved the tissue and the cancer-type
for each cell. Each dataset was separately pre-processed. For
BDA, the count matrices were transformed to a binary rep-
resentation, where each zero remain zero and every non-
zero value was assigned a one. For the DEA, each count
matrix was log-normalized using Seurat 3.2.2 (9), such that
yi j = log( xi j∑

j xi j
× 104), where xi j and yi j are the raw and

normalized values for every gene i in every cell j , respec-
tively. This normalizes the feature expression measurements
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for each cell by the total expression, multiplies this by a scale
factor (10 000 by default), and log-transforms the result.
The cancer atlas was already normalized, as it was a merger
of multiple datasets.

Statistical analysis

P-values were corrected for multiple tests with the
Benjamini–Hochberg procedure and significance was as-
sumed at an adjusted P-value of PFDR ≤ 0.05. Spearman’s
rank correlation coefficient and the associated P-values
were calculated using the cor.test function in R v4.0.2.

Differential expression analysis

DEA was performed using the Wilcoxon Rank Sum test us-
ing the FindMarkers function in Seurat 3.2.2 (9). Note that
the Wilcoxon Rank Sum test from Seurat takes into account
zero measurements and handles them as ties between con-
trasting cell populations. Genes coding for ribosomal pro-
teins were excluded and we only tested genes that were ex-
pressed in at least 10% of the cells in either of the respective
groups of interest. This is the default option in the Find-
Markers function and speeds up testing by ignoring infre-
quently expressed genes. P-values were corrected for multi-
ple tests.

Binary differential analysis (BDA)

As the sampling process of biomolecules is the main cause
for generating zeros, as illustrated by Svensson (2) and
Sarkar and Stephens (3). The probability of measuring a
gene is dependent on the relative abundance; more abun-
dant genes are less likely to result in a zero observation. Ex-
trapolating this to a population of cells, the number of zeros
for a gene is representative of the abundance within the re-
spective cell population, and differences in the number of
zeros between two groups of cells are representative of dif-
ferential abundance. Lastly, we assume that within a single-
cell experiment zeros induced by stochastic processes are
not confounded by the groupings. In other words, a stochas-
tically induced zero is equally likely to happen in either cell
population, as such, in this setting can be ignored.

Implementation

In the main analyses, to statistically test for significant dif-
ferences of zero observations between pre-defined groups
in scRNAseq data, we used a logistic regression (BDA-
LR). Specifically, the glm(family = ‘binomial’) function in
R v4.0.2, with the binarized expression pattern of the genes
as outcome variables and the grouping (i.e. healthy versus
diseased) as predictor variable. We have used logistic regres-
sion because it allows to add covariates to correct for po-
tential confounding factors. Moreover, predictor variables
as well as covariates can be continuous, allowing for com-
plex study designs. All genes that were tested with DEA
were also tested with BDA. The resulting association P-
values were corrected for multiple tests (see Statistical anal-
ysis). In addition to logistic regression, we used the Chi-
squared test (BDA-chisq), the Fisher’s exact test (BDA-
fisher) and binary Pearson’s correlation (BDA-Phi) on the

simulated data. The Chi-squared test and the Fisher’s exact
tests were performed with the chisq.test() and fisher.test()
R functions, respectively. These tests were performed for
each gene on the contingency table representing the bi-
narized gene expression against the pre-defined groupings.
The binary Pearson’s correlation was calculated between
each binarized gene and the pre-defined groupings and per-
formed with the cor.test() R function, where one group was
defined as 0 and the other group as 1. In a binary set-
ting the outcome statistic of Pearson’s correlation is called
Phi (�).

BDA–DEA comparison

For the comparison between BDA and DEA, we investi-
gated agreement and disagreement between detected genes
and the linear association between the logOR and logFC.
Agreement was calculated by the Jaccard index, i.e. num-
ber of genes that both tests commonly detected, divided by
the total number of genes that were detected. Agreement
was calculated on the combination of all datasets and for
each individual dataset. The disagreement was investigated
by means of inspecting characteristics of BDGs-only and
DEGs-only. BDGs-only were defined as genes that were de-
tected (PFDR ≤ 0.05) by BDA and were not detected (PFDR
> 0.05) by DEA. Conversely, DEGs-only were defined as
genes that were detected (PFDR ≤ 0.05) by DEA and were
not detected (PFDR > 0.05) by BDA. The Spearman’s rank
correlation coefficients between the logOR and logFC were
calculated with the estimates of all tested genes of the re-
spective datasets. The scale differences for every dataset,
between logOR and logFC, were calculated with a linear
model on the estimates of all tested genes of the respective
datasets, using the lm function in R v4.0.2. The logOR was
specified as outcome variable and the logFC as predictor
variable. The resulting slopes were interpreted as scale dif-
ferences between the logOR and logFC

Simulation

Data were simulated with muscat 1.2.1 (10). The provided
PBMC dataset (11) was used as reference. In total, 100 sim-
ulated datasets were generated with varying sample sizes
(1000 cells, 2000 cells, 5000 cells and 10 000 cells), 25 simu-
lations per sample size. For each simulation 1000 genes were
generated of which 25% were differently expressed between
two groups of equal size. For all tests we calculated the False
Positive Rate (FPR), Positive Predictive Value (PVV) and
accuracy (F1-score) per simulation. Performance was eval-
uated of 12 DEA methods. Eight methods implemented in
Seurat (wilcox, bimod, t, negbinom, poisson, LR, MAST
(12), DESeq2 (13)), 4 additional methods (DEsingle (14),
BPSC (15), monocle (16), limmaVoom (17)) and 4 BDA
methods (logistic regression, chi squared test, Fisher’s ex-
act test and binary Pearson’s correlation). For the runtime
benchmark, each run of the simulation of every tests was
also timed with proc.time()function in R. Tests requir-
ing >20 min computational time on one simulated dataset
were excluded.
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Table 1. Single cell datasets included in this study.

Dataset
No. of unique

individuals
No. of
cells

No. of
genes

Contrasting subpopulation
defined by: Description Protocol Reference

Alzheimer’s Disease
(AD)

14 13 214 10 850 Control versus AD Entorhinal
cortex

10x Chromium (21)

Major Depressive
Disorder (MDD)

34 78 886 30 062 Control versus MDD Prefrontal
cortex

10x Chromium (31)

Type 2 Diabetes
(T2D)

10 3514 26 271 Control versus T2D Pancreas Smart-seq2 (32)

Coronavirus Disease
2019 (COVID19)

13 44 721 26 361 Control versus COVID19 PBMCs Seq-Well (33)

Lung adenocarcinoma
(LUAD, Lung)

22 88 144 29 634 Normal tissue versus
cancerous tissue

Lung 10x Chromium (34)

Lung adenocarcinoma
(LUAD, Lymph node)

17 54 577 29 634 Normal tissue versus
cancerous tissue

Lymph node 10x Chromium (34)

Four cancers (T-cells) 14 132 549 22 815 Normal tissue versus
cancerous tissue

Colon,
Endo, Lung,
Renal

10x Chromium (35)

Aging Mouse Atlas
FACS

14 74 157 22 966 3m versus 24m Aging mouse Smart-seq2 (7)

Aging Mouse Atlas
Droplet

11 83 262 20 138 3m versus 24m Aging mouse 10x Chromium (7)

Allen Brain Atlas
(Medialis temporalis
Gyrus)

8 14 689 48 304 Inhibitory neurons versus
excitatory neurons

Medialis
temporalis
Gyrus

Smart-Seq v4 (36)

Colorectal Cancer 23 63 502 27 946 Normal tissue versus
cancerous tissue

Colon CRC
cells

10x Chromium (37)

Cortex Neurons 5 9451 28 985 Inhibitory neurons versus
excitatory neurons

Cortex 10x Chromium (25)

Cortex
Oligodendrocytes

5 307 28 985 OPC versus ODC Cortex 10x chromium (25)

Substantia Nigra 7 4711 28 985 OPC versus ODC Substantia
Nigra

10x chromium (25)

Cancer Atlas (1) 171 33 346 50 705 Regulatory T cells versus T
helper cells

Cancer atlas Multiple (8)

Cancer Atlas (2) 162 30 105 48 942 Naive-memory CD4 T cells
versus Transitional memory
CD4 T cells

Cancer atlas Multiple (8)

Validation with existing bulk RNA-seq data

The AD bulk RNA-seq datasets were acquired from
Gemma (18). The first dataset from Friedman et al. (19)
consisted of 33 controls (CT) and 84 samples from indi-
viduals diagnosed with Alzheimer’s Disease (AD) collected
from the fusiform gyrus. This dataset was reprocessed by
Gemma and no batch effects were present. For the differen-
tial expression analysis in bulk we used the Wilcoxon Rank
Sum test from limma v3.44.3 (20). In total, 2228 genes were
tested for differential expression, as these genes were also
included in the scRNAseq AD dataset (21) analysis. The
second dataset from Hokama et al. (22) consisted of 47 con-
trols and 32 AD samples. The samples originated from the
frontal cortex (NCT = 18, NAD = 15), temporal cortex (NCT
= 19, NAD = 10) and hippocampal formation (NCT = 10,
NAD = 7). The data was reprocessed and batch corrected
by Gemma. For the differential expression analysis no dis-
tinction was made between brain regions. In total, 2001
genes were tested for differential expression. All resulting
association P-values were corrected for multiple tests. For
validation, the significant BDGs and DEGs from the scR-
NAseq AD dataset analyses were compared with the signif-
icantly differentially expressed genes from the bulk analy-
ses. Venn diagrams were plotted with ggVennDiagram(v0.3)
(23). Correlations were calculated between the logOR and
logFC of the single-cell analysis with the bulk logFC.

RESULTS

BDA competitive with Wilcoxon Rank Sum test

As proof of concept, we performed BDA with a simple lo-
gistic regression on binarized expression profiles from 16
scRNAseq datasets (662 825 cells in total, Table 1). We com-
pared the results of BDA-LR with those of differently ex-
pressed genes (DEGs) detected using the commonly used
Wilcoxon Rank Sum test, which is also top ranked for sin-
gle cell analyses (9,24). We tested each gene using both
BDA-LR and DEA for differences between conditions (6
datasets), cell types (6 datasets) and normal versus cancer-
ous tissues (4 datasets, Figure 1A). Across all datasets, a to-
tal of 96 275 significant genes (PFDR ≤ 0.05) were identified
with either BDA-LR (92 381 genes) or DEA (91 521 genes).
Of these, 87 627 were identified by both tests, resulting in a
Jaccard index of 0.91. This high degree of agreement is also
reflected in each individual dataset (median = 0.92, mini-
mum = 0.76, and maximum = 0.99). We did not use a log
fold-change (logFC) or log odds-ratio (logOR) threshold,
as for each dataset and comparison different thresholds are
appropriate. In all datasets, the logFC and logOR were sig-
nificantly (spearman) correlated (median (� ) = 0.90, mini-
mum (� ) = 0.49 and maximum (� ) = 0.98, P ≤ 5 × 10–100).
The three datasets with the lowest correlation coefficient be-
tween logOR and logFC (� ≤ 0.62) were datasets generated
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Figure 1. (A) Heatmap of the dataset characteristics, general overview of the results of both BDA-LR and DEA per dataset, and a comparison of the
results. The rows represent the datasets, the first column shows the cell populations that were used as contrast for testing. (B) Plot of the logOR and logFC
of the Cancer Atlas (2) dataset. The x-axis represent the logFCs of each tested gene, and the y-axis represent the logORs for the same genes. The blue
lines shows the linear association between the logFC and logOR. The Spearman’s rank correlation coefficient (� ) is also shown in the plot. (C) Barplots
of the F-score of four BDA methods and 12 DEA methods on simulated data. Numbers above the barplots show the number of cells that were generated
within the simulation. Height of bar defines the median value from 25 simulations, error bars are the first and third quartile. (D) Two density plots of
MTUS2 from cortex neuron dataset. The top plot shows the density of MTUS2 in inhibitory neurons and the bottom plot shows the density of MTUS2 in
excitatory neurons. (E) Two density plots of Gnb2I1 from the aging mouse atlas droplet dataset. The top plot shows the density of Gnb2I1 in 3-month-old
mice and the bottom plot shows the density of Gnb2I1 in 24-month-old mice. Both (D and E) are supported with fraction of zeros and variance of each
cell population.
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using the Smart-seq protocol (Table 1). Across the datasets,
we observed an average increase of 1.80 in logOR (median
= 1.70, Q1 = 1.59, Q3 = 2.10), for every increase in logFC
(see Figure 1B for the cancer atlas (2) dataset (8)). The high
degree of agreement of detected genes shows that BDA-LR
performs on par with the Wilcoxon Rank Sum test, and
the strong correlation of the logFC and logOR across all
datasets shows that the results can be interpreted in a simi-
lar way.

BDA among the best performing tests on simulated data

To compare the performance of binary methods with meth-
ods relying on counts in a controlled manner, we simu-
lated scRNAseq data with muscat (10) using the provided
dataset as reference (11). We generated scRNAseq data with
varying number of cells and 25% of differentially expressed
genes. With 1000 and 2000 simulated cells, DEsingle (14)
performed the best as the F1-score (Figure 1C) and posi-
tive predictive value (PPV, Supplementary Figure S1) were
the highest and the false positive rate (FPR, Supplemen-
tary Figure S2) was the lowest. However, this performance
comes at a cost in terms of considerably required compu-
tational time (Supplementary Figure S3a). For that rea-
son, we excluded DEsingle when simulating 5000 and 10
000 cells (running time >20 min). All binary-based meth-
ods performed consistently good, with 1000 and 2000 cells
ranking tightly together. BDA-fisher and BDA-Phi had de-
creased relative performance with 5000 and 10 000 cells,
while the performances of BDA-chisq and BDA-LR were
also among the best with 5000 and 10 000 cells. Taken to-
gether, this shows that differences in the frequency of zeros
between groups can represent biological variation and can
most accurately be detected with BDA-chisq and BDA-LR
in a time efficient manner.

Differences in test outcomes explained by differences in vari-
ance between contrasting cell populations

Despite the observed association between mean expres-
sion and number of zeros, which has been previously de-
scribed (2), and similar performance of the two tests, there
were 4754 and 3894 genes uniquely identified using BDA
and DEA, respectively, across all datasets. To better under-
stand these differences, we highlighted two extreme exem-
plar cases that were not significant differentially expressed
(PFDR ≥ 0.05), while they were binary differential genes
(BDGs, PFDR ≤ 5.27 × 10–115). In the cortex dataset (25),
MTUS2 had significantly less zeros in excitatory neurons
(logOR = 1.30, PFDR|BDA = 5.27 × 10–115, Figure 1D) com-
pared to inhibitory neurons, while the expression levels were
not significantly different (logFC = -1.70 × 10–3, PFDR|DEA
= 5.70 × 10–2), implying additional high ranked expressions
for every additional zero. In the aging mouse atlas droplet
dataset (7), Gnb2l1 had significantly less zeros in the 3-
month-old mice (logOR = -0.67, PFDR|BDA = 1.81 × 10–122,
Figure 1E) compared to the 24-month-old mice, while again
the expression levels were not significantly different (logFC
= 3.15 × 10–3, PFDR|DEA = 6.97 × 10–1). These examples
show that differences in variance between contrasting cell
populations can interfere with the association between ob-
served zeros and mean expression, resulting in disparities

between BDA and DEA. Of note, most BDGs-only and
DEGs-only had small differences in P-values between the
two tests i.e. a borderline significant difference in frequency
of zeros while not having a significant difference in median
expression (Supplementary Figure S4). The mean PFDR for
the 4754 genes uniquely identified using BDA was 9.57 ×
10–3, while the mean PFDR of the same genes using DEA was
3.18 × 10–1. As for the 3894 genes uniquely identified using
DEA the mean PFDR of BDA was 3.45× 10–1 and mean
PFDR of DEA was 8.56 × 10–3.

Binary differential genes are not driven by technological or
biological process

To exclude that the differentially behaving genes between
BDA and DEA associate with a specific technological or bi-
ological process, we investigated whether there were genes
repeatedly detected by a one of the two methods. In most
cases, genes that were identified as BDG-only (or DEG-
only) were found within a single dataset (Supplementary
Figure S5a, Supplementary Figure S5b), suggesting the ab-
sence of a driving process for them.

Binary differential genes validated with bulk RNA sequencing
data

To provide additional insight that differences in zero ob-
servations are indeed biologically relevant and represent
differential abundance we compared the results of the
Alzheimer’s disease (AD) dataset (21) (entorhinal cortex)
with DEA analysis performed on a bulk RNAseq AD
dataset (19), an approach followed by others (26). The
bulk RNAseq datatset was comprised of samples from the
fusiform gyrus. For genes measured in both, the scRNAseq
dataset and the bulk dataset (N = 2177), the majority of
BDG-only (59.4%) were also differentially expressed in bulk
(Figure 2A). The logOR of the single cell analysis was also
significantly correlated with the logFC of the bulk analy-
sis (� = 0.39, P = 9.70 × 10–79, Figure 2B). Similarly, in a
second dataset (22), 65.9% of the BDG-only genes were dif-
ferentially expressed in bulk samples from the frontal cor-
tex, temporal cortex and hippocampal formation (Supple-
mentary Figure S6). Given that the differences in zero ob-
servations for genes between the tested groups (expressed
in logOR) highly correlates with the differences in median
expression in bulk RNAseq data (expressed in logFC), and
that the majority of BDG-only were still detected in bulk,
further emphasizes that binarized scRNAseq expression
data can be used to detect differentially abundant genes.

Binarization with a threshold of one most appropriate for
BDA

To test the binarization scheme, we performed a BDA on
the AD dataset for binary profiles generated with different
thresholds for binarization (thresholds ranging from one
to ten counts). Naturally, for every increase in the thresh-
old, the number of genes with zero measurements across all
cells increased, resulting in a decreasing number of tested
and significant genes (Supplementary Figure S7a,b). With
higher thresholds, we found a decrease in correlation of the
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Figure 2. (A) Venn diagram of genes detected (PFDR ≤ 0.05) in a bulk AD dataset (Friedman et al.), in the single cell AD dataset with BDA-LR (BDGs)
and with DEA (DEGs). Each section shows the number and percentage of genes belonging to that section. (B) Plot of the logFC from the AD bulk dataset
(x-axis) and the logOR from the single cell AD dataset (y-axis). The red line represents the linear association between the bulk logFC and logOR. The
Spearman’s rank correlation coefficient (� ) and corresponding association P-value are also shown. Outlier genes (n = 9, B) were removed from the plots.

logORs from BDA with the logFC from DEA (Supplemen-
tary Figure S7c). These results show that the default bina-
rization scheme where zeros remain zero and every non-zero
value is assigned a one, is indeed appropriate.

DISCUSSION

Altogether, our results show that binarized expression pat-
terns across cell populations represent biological variation
and can be used as measure of relative abundance of tran-
scripts. Across 16 datasets and a variety of contrasting cell
populations (disease versus healthy, cell types and cancer
status), BDA detected biologically relevant genes that were
missed by DEA. While the performance of BDA and DEA
on real data is largely comparable, with a known ground
truth, BDA performed better than DEA on simulated data.
Additionally, BDA benefits reproducibility and is more ro-
bust than DEA, since the only pre-processing step required
for BDA is the binarization of counts. In contrast, DEA re-
quires normalization and transformation of counts, where
an analyst can choose from an excess of equally valid meth-
ods (27). Performing BDA on datasets generated using the
Smart-seq protocol should be approached with more cau-
tion: although the agreement of detected genes between
BDA and DEA was high, we observed the lowest correla-
tion between the logOR and logFC for these datasets.

With six of the sixteen datasets we performed the differ-
ential analyses between cell types that were based on clus-
ters that were determined with the expression data itself, op-
posed to a case–control setting. We should note that this
is a circular analysis (double dipping) and that the result-
ing P-values in these comparisons are thus not guaranteed
to be controlled for false discoveries. This is, however, still
common practice in single-cell differential analyses, as this
setup is used to identify cell type markers. For the other ten

dataset, the results are not compromised statistically as the
case–control definitions are not based on the single-cell data
itself.

In our main approach to test for BDA, we have used logis-
tic regression. A logistic regressor for differential expression
has been used before (12,28,29). These previous applica-
tions, however, use continuous expression values of genes as
input, while we propose to use the binary expression value.
As for MAST (12), a logistic regression on binarized ex-
pression values is implemented to take into account the ze-
ros (expressed versus not expressed) and is combined in a
hurdle model with a linear Gaussian model for the continu-
ous values. In contrast to the previously described methods,
we show that the frequencies of zeros alone are sufficient
to capture biological variation and to identify differential
expression of genes between biologically distinct groups in
single-cell data.

A commonly used term for observed zeros in single-cell
data is dropouts. As zeros in single-cell data can largely be
explained by distributional models of molecule sampling
counts (2,3), the use of the term dropout can be mislead-
ing, as indicated by Sarkar and Stephens (3). This work
contributes to clarifying the origin of zeros in single-cell
RNAseq data, by showing that the frequency of zeros can
actually be used to identify biological differences.

Performing BDA is normalization-free, time efficient and
an accurate alternative for DEA for which we see three po-
tential use cases. First, BDA could be performed in isolation
as a fast and accurate alternative to DEA. For different use
cases, different BDA tests can be used. For more complex
study designs BDA-LR could be used as it allows to adjust
for covariates, allowing to take into account biological repli-
cates, which decreases false discoveries (30). More straight-
forward designs could be performed with BDA-chisq. Sec-
ond, BDA could be performed in addition to DEA to iden-
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tify more genes. Finally, BDA could be used to validate pre-
processing, normalization and DEA as a big discrepancy
between the BDGs and DEGs could indicate an aberration
in the DEA results.

DATA AVAILABILITY

The datasets used and prepared for this study can be
downloaded from Zenodo (http://doi.org/10.5281/zenodo.
4487320). The results are also made available in an inter-
active shiny dashboard: http://insyprojects.ewi.tudelft.nl:
5000/BinaryDifferentialAnalysis/. The scripts, func-
tions and source data for the figures are available at the
Github repository: https://github.com/gbouland/binary-
differential-analysis, including two vignettes describing a
BDA starting from a Seurat object and a raw count matrix.
BDA is also implemented in an R-package and is available
at: https://github.com/gbouland/BDA.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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