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Abstract
The mammalian hippocampus plays a crucial role in producing a cognitive map of space—

an internalized representation of the animal’s environment. We have previously shown that

it is possible to model this map formation using a topological framework, in which informa-

tion about the environment is transmitted through the temporal organization of neuronal

spiking activity, particularly those occasions in which the firing of different place cells over-

laps. In this paper, we discuss how gamma rhythm, one of the main components of the

extracellular electrical field potential affects the efficiency of place cell map formation. Using

methods of algebraic topology and the maximal entropy principle, we demonstrate that

gamma modulation synchronizes the spiking of dynamical cell assemblies, which enables

learning a spatial map at faster timescales.

Author Summary

One of the goals of theoretical systems neuroscience is to connect parameters of neuronal
activity observed in electrophysiological experiments, such as cell firing rates, frequencies
and amplitudes of the brain rhythms, with cognitive phenomena that emerge at the scale
of large groups of cells. In previous work, we proposed an approach for modeling one such
phenomenon: spatial learning in the mammalian hippocampus. This approach rested on
the hypothesis that hippocampal neurons encode a rough-and-ready topological map of
an environment, whereas geometric details likely come from multiple inputs from other
brain regions. A key property of this model is that it allows us to estimate the effect pro-
duced by different parameters of neuronal activity on spatial learning. In particular, it we
showed that theta oscillations strongly enhance the ability of the place cell ensembles to
learn topologically accurate spatial maps. In this work, we show that synchronization of
neuronal spiking activity by the other major component of the oscillating extracellular cell
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potential—the gamma rhythm—also enhances both spatial learning and the retrieval of
spatial memories at the physiological timescale.

Introduction
The mammalian hippocampus plays a key role in spatial cognition. Hippocampal place cells
manifest remarkable spatial specificity of spiking activity: they fire only in select locations in
the environment, known as place fields [1]. As a result, place cell spike trains contain informa-
tion about the animal’s current location [2], as well as its future [3] and past [4] navigation
routes, both in the wakeful state and even in sleep [5]. Moreover, damage to the hippocampal
network impairs spatial learning and navigation planning [6, 7]. It is thus believed that the
population of place cells encodes a cognitive map of the environment that serves as the basis of
animal’s spatial awareness [8, 9].

Topology vs. geometry
For years it has been assumed that the cognitive map is Cartesian, containing detailed informa-
tion about locations, distances and angles. Undoubtedly, such information is provided by vari-
ous brain regions, but increasing evidence suggests that the hippocampal map is topological in
nature. For example, electrophysiological recordings in morphing environments demonstrate
that the spatial order (overlaps, adjacency and containment) is preserved, even in the face of
deformations of the environment that cause the place fields to stretch or change shape [10–14].
In other words, the sequential order of place cell activity induced by the animal’s moves through
morphing environment remains invariant, at least within a certain range of geometric transfor-
mations [15–17]. This implies that place cell spiking encodes a rough-and-ready framework
into which other brain regions integrate more detailed metrical information [17–21].

What sorts of neuronal computations could produce such a framework [22–27]? The
approach proposed in [28–30] exploits the connection between the place field map and the Alex-
androv-Čech theorem, according to which the pattern of overlaps between regular spatial regions
U1, U2, . . .UN covering a space X encodes the topological structure of X [32]. The construction
suggested by the Alexandrov-Čech theorem is the following. If the regionsUi are represented as
vertices, pairs of overlapping regions Ui \ Uj 6¼ ;, as links between these vertices, the triples
Ui \ Uj \ Uk 6¼ ; as the facets between these links and so forth, then the resulting simplicial com-
plexN is topologically equivalent to X (see Glossary in the Methods section and S1 Fig).

The fact that the place fields produce a dense cover of the environment suggests that the pat-
tern of overlaps between them contains the information required to represent the environ-
ment’s topology, which we propose holds the key to the way in which the hippocampus
encodes its topological map of a given space. Note that the domains where several place fields
overlap are precisely the ones where the corresponding place cells cofire: the information about
the overlap of place fields is represented via place cell coactivity, which suggests that the Alex-
androv-Čech construction can be carried out not only via the geometric pattern of the place
field overlaps, but also through analysis of place cell coactivities.

Topological model
The details of the topological model of the hippocampal map are discussed in [29, 30]. In brief,
the idea is to represent the combinations of coactive place cells (c1, c2, . . ., cp) as coactivity sim-
plexes, σ = [c1, c2, . . ., cp]—combinatorial representations of multi-dimensional polyhedra (see
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Methods). Together, these coactivity simplexes form a simplicial coactivity complex Ts. In this
construction, the individual cell assemblies (i.e., a group of neurons that jointly drive a down-
stream readout neuron), provide local information about a given space; joined together into a
neuronal ensemble (i.e., a population of cell assemblies), they represent the space as whole. By
analogy, a collection of individual simplexes representing connected locations, together form a
simplicial complex which represents environment as a whole. Numerical simulations demon-
strate that Ts captures the topological structure of the environment and serves as a schematic
representation of the hippocampal map [29, 31]. For example, the sequences of place cell com-
binations ignited along the paths traversed by the animal are represented in Ts by chains of
coactivity simplexes—the simplicial paths [33, 34]. A non-contractible simplicial path may rep-
resent a navigational path that encircles a physical obstacle, whereas topologically trivial sim-
plicial paths correspond to contractible routes in the physical space (Fig 1A and 1B).

The complex Ts begins to form as soon as the rat starts navigating. Every detected instance
of place cell coactivity contributes a simplex to Ts. At the early stages of navigation, when only
a few cells have time to produce spikes, the coactivity complex is small, fragmented, and con-
tains many gaps (in topological terms, “holes”), most of which do not represent physical obsta-
cles in the environment. Such holes tend to disappear as spatial learning continues. Therefore,
the minimal time, Tmin, after which the topology of Ts matches the topology of the environ-
ment, or more precisely, when the correct number of topological loops emerges, can be viewed
as a theoretical estimate of the time required to learn the hippocampal map (Fig 1C, [29, 30]).

Physiological parameters
An important property of the model is that the structure of the coactivity complex Ts and the
time course of its formation during learning are sensitive to various parameters of the neuronal
firing statistics, which allows us to study the effect that changes in any of these parameters (e.g.,

Fig 1. An animal’smovements through a given space are represented in the coactivity complex. A: Two topologically equivalent paths in a physical
environment, γ1 and γ2 (this commonly used notation for the paths is unrelated to γ-rhythm), encircle an obstacle (white square) and are therefore non-
contractible. The path γ3 does not encircle the obstacle and therefore is contractible and topologically inequivalent to γ1 and γ2. B: A schematic
representation of the 2D skeleton of the coactivity complex Ts (vertices shown as black dots, the 1D links as white lines and 2D facets as grey triangles)
and of the simplicial paths Γ1, Γ2 and Γ3, which represent the physical paths γ1, γ2 and γ3. The topological equivalences and inequivalences between the
simplicial paths (Γ1ffi Γ2 and Γ1 ≇ Γ3, Γ2 ≇ Γ3) provide qualitative information about the physical paths, encoded via place cell coactivity. Since we are
concerned primarily with representing the topological properties of the navigational paths, in the following we discuss only the 2D skeleton of the coactivity
complex. C: Timelines of the topological loops encoded in the coactivity complex. As the animal begins to explore its environment, the coactivity complex
contains many spurious topological loops (gaps in the information about that part of the environment) most of which do not represent the physical obstacle.
This “topological noise” in the depicted graph disappears after about five minutes, which marks the learning time, Tmin—the moment when the correct
topology of space has emerged. One 1D loop represents the obstacle and one 0D loop informs us that the environment is connected.

doi:10.1371/journal.pcbi.1005114.g001
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firing rate, place field size, number of neurons) produce in the ability of the ensemble to correctly
learn a space. For example, if the firing rate slows, the system can compensate with a change to
the place field size or the number of neurons in the ensemble, but only up to a point: beyond cer-
tain limits, the assembly will not be able to learn efficiently, or even at all [29]. As another exam-
ple, the oscillations of the extracellular electrical field potential, typically referred to as the local
field potential (LFP), are known to modulate place cells activity at several timescales: each place
cell tends to spike within a small range of the phases of the theta component of the LFP (θ, 4–12
Hz [35]), which depends on the distance that the animal has traveled into the corresponding
place field. As a rat moves through the place field, the preferred θ-range of a place cell progres-
sively decreases with each new θ-cycle, a phenomenon known as θ-phase precession [36]. The
preferred θ-phases of different cells are additionally synchronized by the second major compo-
nent of the LFP, the gamma rhythm (γ, 30–80 Hz, [37]). In fact, the period of the more rapid γ-
rhythm, Tγ, is believed to define the range of the preferred phases within the slower θ-rhythm;
on average one θ-period, Tθ, contains about seven γ-cycles, Tθ� 7Tγ (see [38] and S2A Fig).

Numerous experimental [39–43] and theoretical [38, 44–47] studies demonstrate that both
θ- and γ-waves play key roles in spatial, working, and episodic memory functions. Most theo-
retical analyses have addressed the way in which the γ-synchronization affects the informa-
tional contents of spiking in small networks or in individual cells, but the topological approach
allows us to model the formation of cognitive map as a whole. For example, it was used in [30]
to demonstrate that θ-precession makes otherwise poorly-performing ensembles more efficient
at spatial learning.

The present analysis applies the topological model to study the effect of γ-waves on spatial
learning and to demonstrate that γ-synchronization of place cell spiking activity enables the
encoding or retrieval of large-scale spatial representations of the environment by integrating
place cell coactivity at a synaptic timescale.

Brain rhythms in the topological model
Computational modeling of θ-phase precession is relatively straightforward. At a basic level, it
amounts to imposing a particular relationship between a place cell’s spiking probability, the
phase of the θ-wave and the distance that the animal has traveled into the corresponding place
field [48] (see Methods). The effects of the γ-rhythm are, however, more diverse. Electrophysi-
ological experiments suggest that there exist at least two types of place cells: “TroPyr” cells that
spike at the trough of the fast γ-wave (50–80 Hz) and “RisPyr” cells that fire at the rising phase
of slow γ-waves, overriding θ-precession [49–51]. Although we can model both S2 Fig with our
approach (see Methods), in the following we will model only the TroPyr cells that exhibit more
robust firing patterns and higher firing rates, and therefore may play a primary role in produc-
ing the cognitive map [29, 30].

γ-modulation of spiking. Physiologically, the γ-wave represents fast oscillations of the
inhibitory postsynaptic potentials. As the amplitude of γ drops at a certain location, the sur-
rounding cells with high membrane potential spike [53–55]. As a result, the preferred θ-phase
of several cells becomes synchronized with a γ-trough, which thereby gates the place cell coac-
tivity. The literature refers to such groups of coactive place cells as “dynamical cell assemblies”
(see [60–62] and S2A Fig).

Modeling γ-modulation therefore requires adjusting the times of the θ-modulated spikes
closer to the troughs of the γ-wave [57]. Algorithmically, this task is similar to the task of dis-
tributing particles stochastically over the wells of a 1D potential energy field, which is solved
based on the Maximum Entropy Principle [58]. The probability that a particle lands at point x
in a potential U(x) is p* e−βU(x), where the parameter β controls the spread of locations
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around the minima of U(x). The lower the β, the more random the distribution. In this work
we will borrow terminology from statistical physics, where the parameter β is the reciprocal
temperature of the system, and lower values of βmean warmer temperatures (higher stochasti-
city) and higher values of βmean cooler temperatures (lower stochasticity; see S2B Fig).

Viewing the γ-amplitude, Aγ(t), as an inhibitory potential extended over the time axis, we
confined the place cell firing to the troughs of the γ-wave by modulating their firing rates with
the factor e�bgAgðtÞ. Thus, the parameter βγ controls the temporal spread Δβ of spikes produced
by the dynamical cell assemblies. For small βγ, the cell assemblies are “hot,”meaning their
spikes are spread diffusely near the γ-troughs. For large βγ the assemblies are “cold,” their
spikes “freeze” at the γ-troughs (Fig 2 and S3 Fig). In particular, the case in which the spike
trains are uncorrelated with the γ-troughs corresponds to the limiting case of an “infinitely
hot” (βγ = 0) hippocampus, modeled in [30].

To our knowledge, the statistics of the temporal spreads of the spikes produced by dynam-
ical cell assemblies have not been studied, but the neurophysiological literature suggests that a
typical spread is about one γ-period (Δ� Tγ� 20 msec) [59–62]. This implies that the effective
temperature of these hippocampal cell assemblies is comparable to the mean γ-trough ampli-
tude 1=bg � �Atr (see Methods). In the following discussion, it will be convenient to scale the

amplitude of the γ-wave according to its standard deviation from the mean, σγ, Aγ(t)! A(t) =
Aγ(t)/σγ. In turn, this entails the corresponding scaling of the inverse temperature, yielding a
parameter β = βγ σγ with the “physiological” range between 0.5 ≲ β≲ 2.

Reading out place cell coactivity. The spiking signals produced by the place cells are
transmitted to a population of neurons downstream from the hippocampus. In the reader-cen-
tric approach to information processing in the hippocampal network [31, 61], the cell assem-
blies are viewed not simply as occasional combinations of coactive place cells, but as
functionally interconnected cell groups that exhibit repeated coactivity and jointly trigger

Fig 2. Gamma synchronization. A: Without coupling with the γ-wave (β = 0, top panel) the simulated place cell spikes are scattered diffusely over the time
axis. The temporal spread of the place cell coactivity exceeds a θ-period, Δ0� 1.5Tθ, Tθ� 125 msec. At β = 1, the intervals of place cell coactivity
concentrate near domains of high γ-amplitude, Δ1� 0.5Tθ. At β = 2, the spikes accumulate near the γ-troughs, Δ2� Tγ, thus producing dynamical cell
assemblies (bottom panel). B: The statistics of interspike intervals (ISI) for different βs. The black dashed line shows the distribution of the time intervals
between deep γ-troughs (deeper than two standard deviations of Aγ(t) from the mean). As β increases, the intervals between spikes are more controlled by
the deep troughs (where the amplitude exceeds three standard deviations of Aγ(t) above the mean). Note that the tendency for spikes produced by the
same place cell to appear within the same γ-cycle can be viewed as a basic model of bursting [52].

doi:10.1371/journal.pcbi.1005114.g002
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responses from their respective readout neurons. In turn, the readout neuron nσ spikes upon
receiving a sufficient amount of timed EPSP inputs over a certain period wσ, defined as the
“integration window” [63–65], which is the only parameter describing readout neurons in the
following discussion. Clearly, different readout neurons may integrate inputs over different
time intervals. However, in order to simplify the approach, we will describe the entire popula-
tion of the readout neurons using a single parameter wσ = w, viewed as the average time over
which a typical readout neuron accumulates EPSP inputs [30].

θ and γ synchronicity. In our previous study [30], we modeled assemblies of independently
θ-precessing place cells simply as groups of neurons that happened to produce spikes within a
certain w-period. The model predicted that the correct spatial information is reliably encoded if
the coactivity inputs are identified over the θ-timescale (Tθ≲ w≲ 2Tθ). However, as w shrinks,
the chance of producing and detecting the coactivities within a w-period diminishes, and the
topological map takes longer to form. For the intermediate range of values (3Tγ≲ w≲ 3Tθ), the
learning time is approximately inversely proportional to w, but as w reduces to the γ-period, the
pool of detected place cell coactivities more frequently fails to capture the topological structure
of the environment or requires a much longer time to produce it, exhibiting high variability of
Tmin upon w. In contrast with these results, experimental studies have shown that the synchro-
nicity of the place cell assemblies is best manifested precisely at the γ-timescale [60–62]. This
implies that the hippocampal network is capable of producing large-scale spatial maps based on
γ-timescale readouts. From this, we hypothesized that the failure of the previous (θ-driven) topo-
logical model to capture this empirical evidence might be due to poorer synchronization of inde-
pendent neurons driven by a common θ-pacemaker, rather than to the physiological cell
assemblies that are additionally synchronized through synaptic interactions [66].

In the present analysis, we use the effective temperature 1/β to describe phenomenologically
these additional synchronization mechanisms. As illustrated in Fig 2, the parameter β controls
the temporal spread of spiking activity in cell assemblies Δβ independently from w and allows us
to transition frommodeling desynchronized cell assemblies to modeling cell assemblies that are
tightly coupled with γ-troughs. The results shown in Fig 2 suggest also that binding the coactiv-
ity of place cell assemblies within γ-periods (Δ2 � Tγ) should significantly reduce the time
required by the downstream networks to detect place cell coactivity. Thus, γ-synchronization
may enable us to construct a reliable neuronal representation of space within a much tighter
temporal window, w� Tγ, which provides a possible explanation for its functional importance.

Results
To assess the effects of γ-waves on the ability of place cells to encode spatial information, we
built the coactivity complex using γ-modulated spike trains for different βs and studied its
topological properties for a set of w’s, including the values for which the independent θ-pre-
cessing place cells fail to produce correct topological maps. The results shown in Fig 3 demon-
strate that, at large integration windows (w� Tθ, fat lines), tightening the cell assemblies
around the γ-troughs does not produce a significant effect on either the structure of Ts or on
the times required to learn the map Tmin. This outcome is easy to explain: if the readout neu-
rons accumulate EPSPs at the θ-timescale, i.e., over hundreds of milliseconds, the temporal
arrangement of the spikes at the γ-timescale does not change the combinations of coactive
place cell detected downstream. In other words, no matter how the γ-tuned spikes are spread
inside a θ-wide window w, the coactivity simplexes, and thus the coactivity complex, remain
the same, yielding the same topological information after the same learning period. As w
decreases, the temporal spread of the poorly synchronized, hot place cell assemblies (β< 1)
begins to exceed w. As a result, only a fraction of the coactive cells can be detected downstream,
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which leads to a decrease of the number of simplexes in Ts and to a proliferation of spurious
topological loops during the learning period. Moreover, many of these loops persist indefi-
nitely, preventing the appearance of the correct topological information even at the intermedi-
ate values of w (Fig 3C).

In contrast, the behavior of the cold cell assemblies (β> 1, the blue ends of the graphs) is
different. First, the number of 2D simplexes increases, because the size of the cell assemblies
increases with increasing β (Fig 3A). Second, colder coactivity complexes Ts yield fewer, faster-
contracting spurious loops (Fig 3B and S4 Fig). Third, the learning times drop significantly: for
β = 2, the Tmin computed for w = 0.5Tθ is reduced by about 50% compared to the desynchro-
nized, β = 0 case, which indicates that γ-synchronization promotes the formation of a topologi-
cal map based on the coactivity information transmitted to the downstream networks at times
shorter than one γ-cycle (Fig 3C and S5 Fig).

Nevertheless, the results shown in Fig 3 typically do not extend to the γ-timescale of w.
The inputs collected from the cell assemblies which cooled to the physiological range of βs
(0.5 ≲ β ≲ 2) at w< 0.3Tθ often failed to produce an accurate map of the environment. This
suggests that producing a correct neuronal map of space within a biologically plausible
learning time using w� Tγ requires further cooling of Ts (by increasing β indefinitely, the
cell assemblies can be made to fire as tightly at the troughs as desired). Thus, in order to keep
the parameter β within the physiological range, we have deployed an alternative approach.

Clique coactivity complexes
In the above discussion, the central construction of the model, which is the coactivity complex
Ts, was introduced as a schematic representation of the place field map [31]. However, as
shown in [67, 68], a coactivity complex can be built not only by detecting higher-order cofiring

Fig 3. Influence of γ-modulation on spatial learning in a cell assembly network with coincidence detector readout neurons. There are two major
parameters of the model: the mean width of the temporal windoww over which the postsynaptic readout neurons integrate spikes from the place cell
assemblies (w1 = 2Tθ,w2 = 1.2Tθ,w3 = 0.8Tθ,w4 = 0.5Tθ,w5 = 0.3Tθ, w6 = 0.2Tθ, with larger windowsw represented by thicker lines), and the effective
temperature 1/β which controls the clustering of place cells’ spikes around the troughs of the γ-wave (Fig 2). Larger values of β (indicated by the blue color
of the colormap) correspond to tighter coupling between the place cell’s spiking probability and the γ-amplitude (S2 Fig). A: The number of 2D simplexes,
N2, in the coactivity complex Ts as a function of β, for differentw’s. For large integration windows (thicker lines), coupling with the γ-wave produces no
significant effect: the N2 changes less along the β-axis. Asw decreases, the number of simplexes drops (the thinner lines lay below the thicker ones).
However, the smaller the integration windoww, the greater the number of coactive place cell combinations, produced by the cooling of the cell assemblies.
Forw = Tγ (bottom curve) the number of 2D simplexes grows by 40% as β increases from 0 to 2. B: Shrinking the integration windoww increases the total
number of topological loops observed in Ts during the course of learning, whereas cooling down the coactivity complex reduces this number. For example,
the number of spurious loops in cold coactivity complexes (cold loops, β = 2) atw = Tγ is half the number of those in hot complexes (hot loops, β = 0). C: The
learning time Tmin grows asw shrinks and tends to decrease as a function of β. However, note that even cold simplicial complexes fail to produce the
correct topological maps for smallw. In the particular map illustrated here (mean place field size s = 24 cm, mean firing rate f = 20 Hz,Nc = 450 cells),
learning time diverges atw� 0.5Tθ.

doi:10.1371/journal.pcbi.1005114.g003
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events that directly mark the locations where several place field overlap, but also by integrating
the information provided by the lower-order place cell coactivity. Physiologically, the latter
option corresponds to the cell assembly network in which the readout neurons integrate lower-
order coactivity inputs over a working or intermediate memory timescale, rather than merely
react to cofiring as all-or-none coactivity detectors [69, 70].

To model a network of cell assemblies driving a population of input-integrator readout neu-
rons, we used the following approach. First, we detected the lowest-order, pairwise place cell
coactivities and used them to build a connectivity graph G (see [67] and S6 Fig). Fully intercon-
nected subgraphs of G are called cliques (see Methods); cliques of G are identified with the sim-
plexes of a new clique coactivity complex T B. A key property of this algorithm is that the

connections constituting a clique or a simplex do not have to be detected simultaneously but
can be accumulated over an extended period of time. For physiological accuracy, we restrict
this period to 10 mins or less, which results in a coactivity complex whose simplexes emerge
over working or intermediate memory intervals.

Although the algorithms for constructing temporal simplicial and clique complexes seem
quite different, the actual difference between these two coactivity complexes is not as large.
First, as shown in [31, 67], most simplexes of T B correspond to the simplexes of Ts and vice-

versa: the identities of the cell assemblies are largely the same, only the time course of their con-
struction changes. Furthermore, the topological structures of these complexes are quite close.
Second, most pairwise connections within the cliques of G are produced almost simultaneously
while the rat traverses the region where several place fields overlap. In other words, most cli-
ques appear at once, just as the simplexes do, and only a relatively small number of the maxi-
mal cliques are actually “corrected” over time [68]. Nevertheless, this effect does improve the
overall performance of the clique coactivity complexes, which typically produce far fewer spu-
rious topological loops and shorter learning times Tmin than those produced by simplicial coac-
tivity complexes.

Implementing the γ-synchronization mechanism in an integrator model yields the results
illustrated in Fig 4. First, the structure of the graphs on Figs 3A and 4A is qualitatively similar,
though the pool of third-order cliques is slightly larger than the pool of 2D simplexes. This is
because not every clique makes a simultaneous appearance as a simplex, but every simplex can
be viewed as an instantly detected clique. The behaviors of the topological loops in T B and in

Ts, shown in Figs 3B and 4B are similar as well. The γ-synchronization reduces the number of
cold, spurious loops in both types of complexes (S7 Fig). Physiologically, this implies that a γ-
rhythm produces the same organizing effect on the activity of cell assembly network, whether
the latter is based on a coincidence detector or on the input integrator readout neurons. How-
ever, it should be noted that, for all βs, the number of loops in T B is smaller than in Ts by an

order of magnitude, illustrating the efficiency of the input integrating readout neurons. Most
importantly, the integrator complex T B produces finite learning times at the γ-timescale inte-

gration window, w� Tγ. This demonstrates that the hippocampal network can produce a spa-
tial map by reading out γ-synchronized place cell coactivity at the γ-timescale and
accumulating the coactivities over the timescale of working or intermediate memory.

Discussion
It has long been established that both θ and γ rhythms correlate strongly with the capacity for
learning and memory, but the mechanisms by which they influence cognitive functions has
remained unclear. These extracellular fields define the timescale of place cell coactivity, thereby
controlling the “parcellation” of the information flow received by downstream networks. In
particular, the synchronization of the processes taking place at the synaptic timescale, such as
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the processes controlled by the membrane time constant, the duration of receptor-mediated
postsynaptic spike potentials, the rate of spike-timing dependent plasticity, and so forth, [71–
73] is manifested at the network level as γ-frequency oscillations [74–78]. Processes that
involve slower forms of synaptic plasticity, including slow-changing spiking thresholds [79–
82], synchronize at the θ-frequency timescale. As a result, θ-oscillations provide lower-resolu-
tion temporal packaging of place cell coactivity [66, 83, 84], integrating spiking inputs from
several cell assemblies over one or more θ-periods [85–87].

Our previous model, based on place cells that are independently θ-precessing, provided a
self-consistent description of the hippocampal network’s function at the θ-timescale, which
predicted an optimal integration window for reading out the information within the θ-range
[30]. However, as the integration window became smaller, the spatial map encoded by inde-
pendently precessing place cells failed to achieve correct spatial representation, which sug-
gested to us the importance of additional synchronization at the γ-timescale. Here we
developed a phenomenological model based on the assumption that the γ-rhythm not only
controls the probability of the cell assembly spiking but also defines the temporal spread of the
spikes produced by the cell assemblies around the troughs of the γ-wave. As a result, the model
predicts that if the preferred θ-phases synchronize with the γ-troughs, then topological infor-
mation about the given environment can be readily captured by integrating place cell coactivity
at the γ-timescale. Thus, γ-synchronization of spiking activity is crucial for both encoding and
reading out information from the cell assemblies arriving in “γ-packets” [61].

This result suggests a possible phenomenological explanation as to why reduction of the γ-
wave amplitude correlates with impairments in learning, whether the cause is changes in the
network’s synaptic physiology [88–91], psychoactive drugs [92–94], neurodegeneration, or
aging [95, 96], whereas an increase of the γ-amplitude correlates with successful learning and
retrieval of the learned information [97–101]. According to our model, reducing either the γ-
amplitude or the diffused coupling between the γ-rhythm and place cell spiking activity, the

Fig 4. Influence of the γ-modulation on spatial learning in cell assembly network with input integrator readout neurons: clique complexes. A: The
dependence of the number of triple connections in the clique coactivity complex T B is similar to the dependence of the number of 2D simplexes in the
simplicial coactivity complex. As the integration window narrows (same range ofw’s as on Fig 3), the number of triple connection cliques drops. Cooling
down the assemblies produces no significant effect at large integration windows, but does increase the number of triple connections for smallw’s (by about
25% forw� Tγ). B: The total number of topological loops observed in the clique coactivity complex T B is reduced with cooling for smallw’s, in a way similar
to the case of the coincidence detection (Čech) coactivity complex. At the γ-timescale,w� Tγ, the tendency of the shrinkingw’s to cause the clique
complex to form large numbers of topological loops is nearly compensated by cooling down T B: the number of cold loops (β = 2) in T B is about 50% of the
number hot loops (β = 0). Note that despite similar qualitative behaviors, the scales of N s

l1
, and N B

l1
are different: the clique complex produces fewer spurious

loops than the simplicial complex. C: Learning times grow as a function ofw; however, for the clique complex they remain finite even forw� Tγ. The more
tightly clustered the clique complex is around the γ troughs, the more rapidly it learns, especially for smallw.

doi:10.1371/journal.pcbi.1005114.g004
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latter being equivalent to lowering β, should increase learning times and lower the success rate
in constructing topologically accurate cognitive maps. Vice versa, high γ-amplitude and strong
coupling between the spike times and the γ-wave should result in more effective spatial learning.

Methods

Glossary
An abstract simplex of order d, σd, is a set of (d + 1) elements, e.g., a set of (d + 1) active cells.
Note that the subsets of the set σd form subsimplexes of σd and that a nonempty overlap of any
two simplexes sd

1 and s
d
2 is a subsimplex of both sd

1 and s
d
2 . A simplicial complex Sσ is a family

of simplexes. The elements of a simplex σd can be visualized as vertices of d-dimensional poly-
topes: σ0 can be visualized as a point, σ1 as the ends of a line segment, σ2 as the vertices of a tri-
angle, σ3 as the vertices of a tetrahedron, etc. [102]. A clique in a graph G is a set of fully
interconnected vertices (i.e., a complete graph). Combinatorially, cliques have the same key
properties as the abstract simplexes: any subcollection of vertices in a clique is fully intercon-
nected, and hence forms a subclique. A nonempty overlap of two cliques Bd1 and B

d
2 is a subcli-

que in both Bd1 and B
d
2 . Therefore, cliques define abstract simplexes and thus the collection of

cliques in a graph G defines a clique simplicial complex SB(G).

Choice of the simulated environment
In [30] we showed that the time required to learn a large spatial environment is approximately
equal to sum of times required to learn its parts. Therefore, we simulated a non-preferential
exploratory behavior in a small planar environment (1m × 1m) shown in Fig 1A, similar to
those used in electrophysiological experiments [103].

The Poisson spiking rate of a place cell c at a point r(t) = (x(t), y(t)) is given by

lcðrÞ ¼ fce
�ðr�rcÞ2

2s2c

where fc is the maximal firing rate and sc defines the size of the place field centered at rc =
(xc, yc). The set of scs and fcs in an ensemble of N place cells are lognormally distributed around
a certain ensemble-mean firing rate f and a certain ensemble-mean place field size s, with the
variances σf = af and σs = bs, respectively. Thus, a place cell ensemble is described by a triplet of
parameters: (s, f, N) [29].

θ-phase precession
As the rat moves over a distance l(t) into the place field of a cell c, the preferred spiking phase is

φy;cðtÞ � 2pð1� lðtÞ=LcÞ;

where Lc * 3sc is the size of the place field [36, 104]. To simulate the coupling between the fir-
ing rate and the θ-phase, we modulated the original Gaussian firing rate by a θ-factor Λθ, c(φ),
giving

Ly;cðφÞ ¼ e
�ðφ�φy;cðtÞÞ2

2ε2c ;

using the θ-component of the LFP recorded in wild type rats. The width ε of the Gaussian was
defined in [30] to be the ratio of the mean distance that rat travels during one θ-cycle to the
size of the place field, ε = 2πv/Lωθ, where v is the rat’s speed and ωθ/2π is the frequency of the
θ-signal.
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γ-modulation
To incorporate the γ-rhythm into our model, we extracted the 30–80 Hz frequency band from
the same LFP signal so that all the existing correlations between θ and γ waves are preserved,
then we shifted the simulated place cell spiking times towards the troughs of γ amplitude by
modulating their respective spiking rates with the additional Boltzmann factor [58],

LgðtÞ � e�bgAgðtÞ; ð1Þ

where Aγ(t) is the amplitude of the γ-wave and 1/βγ is a formal parameter that plays the role
of the effective temperature [105] (Fig 2). Simulating the net firing rate as a product of all
three factors

lnet ¼ lcðx; yÞLy;cðφÞLgðAgÞ

preserves spatial selectivity of spiking and the θ-precession (S8 Fig) and forces the preferred
phases of the θ-phase precession φc into the γ-cycles, in accordance with the θ-γ theory [38,
41, 56].

Temperature of the cell assemblies
In a vicinity of the ith trough, the gamma signal has the form

AgðtÞ � Ag;0 � Ag;i cos ðoitÞ � ag;i þ Ag;i

o2
i t

2

2
; ð2Þ

where the parameters Aγ,0 are the mean amplitude of Aγ; Aγ,i and ωi are its instantaneous
amplitude and frequency at the ith trough aγ,i = Aγ,0 − Aγ,i and the index i runs over all troughs
i 2 I. Using the expansion Eq (2) in Eq (1) allows estimating the spread Δi of the spikes around
the ith through from the Gaussian variance as

D2

i ¼
1

bgAg;io2
i

: ð3Þ

A priori, in order to accurately define the temporal spread of spikes produced by different cell
assemblies at different times, the inverse effective temperature should be trough-specific, βγ,i.
However, we consider a simplified case in which the average βγ = hβγ,iii 2 I defines the coupling
between the γ-wave and the place cell spike times across the entire hippocampal network.

The variance Eq (3) is about six times smaller than the instantaneous period, i.e.,

6ffiffiffiffiffiffiffiffiffiffiffi
bgAg;i

p
oi

� 2p
oi

;

which implies that the effective temperature is approximately equal to the mean γ-amplitude

1

bg

� Ag;

where Aγ = hAγ,iii 2 I. By normalizing Aγ with the standard deviation sg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

gðtÞ � A2
g;0

qD E
t
,

A = Aγ/σγ, we obtain the scaled parameter β = βγ σγ, with the characteristic value

b ¼ 1

A
:
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Cell types
The described approach can be applied to both the TroPyr and RisPyr cells. Mathematically, the
“rising phases of γ” controlling the spiking of RisPyr cells correspond to the vicinities of peaks
of the time derivatives of the γ-amplitude. Therefore, the spiking probability of RisPyr cells can
be constrained by a factor similar to Eq (1), involving the derivative of the γ-amplitude, A0(t),
which would override the θ-precession constraint (Λθ,c(φ) = 1) in the vicinity of the A0(t)-peaks.
The analysis of the mixed (RisPyr and TroPyr) ensembles is more complex and sui generis.

Mathematical methods required for this study are based on Persistent Homology Theory
(see [29] and [106, 107]) implemented by the “JPlex” freeware package [108].

Supporting Information
S1 Fig. An illustration of the Alexandrov-Čech theorem. A: A spatial domain traversed by a
short fragment of the simulated trajectory (black line). The locations where seven simulated
place cells produced their spikes are marked by asterisks of seven different colors. B: The place
fields (regions marked by ovals) cover the traversed space. The construction of the correspond-
ing Čech complexN is illustrated on the following panels. C: Each element of the cover corre-
sponds to a vertex of the Čech complex: vertices are shown by small colored discs. D: Every
overlapping pair of place fields contributes a one-dimensional (1D) link to the Čech complex.
The result is the 1D skeleton ofN . E: Every triplet of place fields with a common intersection
contributes a two-dimensional (2D) facet (triangle), which together form the 2D skeleton of
the Čech complex. F: According the Alexandrov-Čech theorem, the 2D skeleton represents the
topology of the cover shown on panel A, e.g., captures the central hole in the environment.
(TIF)

S2 Fig. Brain rhythms modulate place cell spiking activity. A: Spike times precess with the θ-
rhythm (red wave): as the rat traverses a place field, the corresponding place cell discharges at a
progressively earlier phase in each new θ-cycle. These “preferred” phases of the θ-rhythm cor-
respond to particular γ-cycles; the blue wave shows the net θ + γ amplitude. The synchronized
spikes (shown by tickmarks colored according to the place fields traversed by the animal’s tra-
jectory) cluster over the γ-troughs, yielding dynamical cell assemblies. B: Analogy between the
stochastic particles (red dots) in a 1D potential (black curve) and the spread of spike times
(tickmarks) around the γ-troughs (same black curve). If the temperature is high (dashed line,
top panel), the particles spread diffusely over the potential landscape, and when the tempera-
ture is low (bottom panel), they are confined at the bottoms of the potential wells. A similar
effect is produced if the place cell firing rate is modulated by the Boltzmann factor e�bgAgðtÞ,
where Aγ(t) is the amplitude of the γ-wave and βγ represents the inverse temperature. When βγ
is low, the spikes of the dynamical cell assemblies are “hot” (i.e., more spread in time), and
when βγ is large, the spikes are concentrated at the γ-troughs.
(TIF)

S3 Fig. Histograms of the γ-phases at the times of place cell spiking, as a function of the
inverse effective temperature β. The cooler the cell assemblies, the more the spikes are cou-
pled with the γ-troughs.
(TIF)

S4 Fig. Freezing out spurious loops. Timelines of the topological loops in the coactivity com-
plex produced in the environment shown in Fig 1 for different integration windows (scale of
w’s is shown on top) and for different effective temperatures 1/β (colorbar on the right). As the
width of the integration window narrows, the number of spurious topological loops in the
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coactivity complex increases. For large w’s, spurious loops tend to disappear with learning (the
times Tmin when the correct topological structure of Ts emerges are marked by vertical dashed
lines). For small w’s, some of these loops persist, indicating that the detected coactivity infor-
mation is insufficient for eliminating spurious loops in Ts. However, cooling down the coactiv-
ity complex suppresses the proliferation of the spurious loops: at β = 2 (bottom row) the
coactivity complex has a correct structure at the integration window w� (2/3)Tθ.
(TIF)

S5 Fig. The effect of γ-synchronization on spatial learning. Each panel represents the results
of simulating 150 neuronal ensembles at different effective temperatures 1/β (colorbar on the
right) and different integration times w (scale shown above). Each dot represents a particular
ensemble of Nc place cells with the mean place field size s. The maximal firing rates of the simu-
lated neurons are distributed lognormally around f = 25 Hz (see Methods in [29, 30]). The
color of the dot indicates the average time Tmin required to encode an accurate map of the envi-
ronment shown on Fig 2A, averaged over ten place field maps with the same (s, N). If the inte-
gration window is large (two left-most columns), γ-synchronization does not produce a strong
effect on learning times. As the integration window becomes smaller, cooling the coactivity
complex increases the scope of successful place cell ensembles. This implies that γ-synchroni-
zation increases the resilience of the hippocampal network in the face of variations of the place
cell spiking parameters.
(TIF)

S6 Fig. The effect of γ-synchronization on spatial learning. Each panel represents the results
of simulating 150 neuronal ensembles at different effective temperatures 1/β (colorbar on the
right) and different integration times w (scale shown above). Each dot represents a particular
ensemble of Nc place cells with the mean place field size s. The maximal firing rates of the simu-
lated neurons are lognormally distributed around f = 25 Hz (see Methods in [29, 30]). The
color of the dot indicates the average time Tmin required to encode an accurate map of the envi-
ronment shown on Fig 2A, averaged over ten place field maps with the same (s, N). If the inte-
gration window is large (two left-most columns), γ-synchronization does not produce a strong
effect on learning times. As the integration window becomes smaller, cooling the coactivity
complex increases the scope of successful place cell ensembles. This implies that that γ-syn-
chronization increases the resilience of the hippocampal network in the face of variations of
the place-spiking parameters.
(TIF)

S7 Fig. Freezing out the spurious loops in clique complexes. Timelines of the topological
loops in the clique coactivity complex produced in the environment shown on Fig 1, for differ-
ent integration windows (scale of w’s is shown on top) and different effective temperatures 1/β
(colorbar on the right). The learning times Tmin are marked by red vertical dashed lines. The
qualitative dependence of the number of topological loops in the coactivity complex on the
width of the integration window and the effective temperature 1/β are similar to the ones pro-
duced by the coactivity complex. However, the overall numbers of spurious topological loops is
smaller, and the coactivity complex has a correct structure even at the smallest integration win-
dow w� (2/5)Tθ.
(TIF)

S8 Fig. Simulated place fields and θ-precession are not affected by γmodulation. A: Place
fields shown for β = 0, β = 1 and β = 2. B: The θ-phase/position diagram illustrating the θ-pre-
cession of a simulated place cell for β = 0, β = 1 and β = 2.
(TIF)
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