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The structural origin of the hard-sphere glass
transition in granular packing
Chengjie Xia1, Jindong Li1, Yixin Cao1, Binquan Kou1, Xianghui Xiao2, Kamel Fezzaa2, Tiqiao Xiao3 & Yujie Wang1,4

Glass transition is accompanied by a rapid growth of the structural relaxation time and a

concomitant decrease of configurational entropy. It remains unclear whether the transition

has a thermodynamic origin, and whether the dynamic arrest is associated with the growth

of a certain static order. Using granular packing as a model hard-sphere glass, we show the

glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order.

This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically

frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases,

its growth follows an entropy-driven nucleation process, similar to that of the random

first-order transition theory. Our study essentially identifies a long-sought-after structural

glass order in hard-sphere glasses.
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W
hen a liquid is cooled towards the glass transition, the
dynamics slows down dramatically. The mechanism of
this phenomenon has been extensively investigated for

decades, but there is no consensus on it yet1,2. Recently, the
discovery of dynamic heterogeneity and the rapid increase of its
correlation length near the glass transition suggest the collective
nature of the dynamics, which has inspired hope that a
corresponding static correlation length associated with some
critical behaviour similar to an ordinary phase transition can be
identified2,3. This length scale is also supposed to have a
configurational entropy origin, as originally suggested by the
Adam–Gibbs theory4. Recent searches for this static correlation
length have identified crystalline, icosahedron-like, or ‘point-to-
set’ type of orders which show significant increases of the
correlation lengths as dynamic arrest is approached5. However,
for all existing approaches, either the relationship with the
configurational entropy or the structural nature of the order
remains to be understood.

The hard-sphere system is a popular model glass former
because it can simulate systems such as metallic glasses, granular
systems and colloidal suspensions6. The close relationship
between static granular packing and hard-sphere glasses dates
back to the pioneering work of Bernal7, who experimentally
investigated granular packing to model liquid structures.
Additionally, agitated granular systems exhibit slow dynamics
that resemble those of thermal glassy systems8–11. The analogy
between granular packing and a thermal glass can be formally
understood by Edwards’ ensemble, on which a statistical
framework similar to the equilibrium statistical mechanics can
be established for static granular packing12. Additionally,
the hard-sphere system has a zero-temperature geometric
phase transition, the jamming transition, which demonstrates

interesting properties like marginal stability and critical scaling
behaviours13,14. Jamming transition and its distinction with the
glass transition have recently been characterized from both
thermodynamic15 and rheological16 points of view. A recent
theoretical approach has tried to incorporate the jamming
transition into the framework of glass theory through a
Gardner transition to fractal sub-basins in the free energy
landscape17. However, the possible structural changes associated
with these two transitions and the structural nature of the fractal
sub-basins remain to be explored.

Using granular packing as a model hard-sphere glass system,
we identify a geometrically frustrated polytetrahedral structural
order which fulfils the requirements of a static glass order. By
using synchrotron X-ray imaging techniques18,19, we carry out a
systematic study of the dynamics, thermodynamics, and
structures of tapped granular packing. We demonstrate that the
system exhibits all key phenomena of a thermal glassy system.
Particularly, a polytetrahedral structural order grows rapidly as
the packing fraction increases and it is spatially correlated with
the slow relaxation dynamics. The non-trivial fractal dimension
and length scale of this polytetrahedral order are consistent
with an entropy-driven nucleation model similar to the random
first-order transition (RFOT) theory20.

Results
Thermodynamic variables based on Edwards’ ensemble. To
obtain the thermodynamic variables and detailed local structures
of the packing, we carry out X-ray microtomography scans on
packing of different average packing fractions F prepared by
three different protocols (Methods). Based on the statistical
framework originally proposed by Edwards and coworkers12, the
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Figure 1 | Dynamics and thermodynamics of tapped granular packing. (a) Variance of reduced Voronoi volume versus average packing fraction F.

Different symbols represent different packing preparation protocols: tapping (circles), hopper (triangles) and flow pulse (diamonds). The solid line is a

second-order polynomial fitting. (b) Entropy S versus F. The insets shows S versus compactivity w and the equation of state w(F). The dashed lines

correspond to extrapolations towards S¼0. (c) Packing fraction F measured by tomography (circles and diamonds) and projection imaging (triangles)

versus G. Open circles mark the end of the reversible branch where the experimental tapping number is insufficient for the system to reach steady states.

(d) Compaction curves of various tapping intensities G and KWW fits (lines). Error bars are defined as s.e.m. KWW, Kohlrausch–Williams–Watts.
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thermodynamic variables, such as entropy S and compactivity w
(similar role as temperature), are evaluated from the fluctuations
of the reduced Voronoi cell volumes vvoro¼Vvoro/Vg, where Vg

and Vvoro are the particle volumes and their Voronoi cell volumes
respectively, according to21,22

1
w Fð Þ �

1
w F ¼ 0:55ð Þ ¼

1
Vg

Z F

0:55

dF0

F02s2
v

ð1Þ

and

S Fð Þ� S F ¼ 0:64ð Þ ¼ Vg

Z 0:64

F

dF0

F02w F0ð Þ; ð2Þ

where s2
v ¼ v2

voro

� �
� vvoroh i2. The constant, which is similar to

the Boltzmann constant, is set to unity. Vg is also set to unity for
convenience. We further assume that the compactivity of random
loose packing is infinitely large, that is, 1

wðF¼0:55Þ ¼ 0, to complete
the integral of equation (1). In equation (2), the entropy S(F)
can only be identified up to a constant and we assume
S(F¼ 0.64)E1.1 by using the Shannon entropy calculation
results22. The integral of equation (1) is calculated numerically
starting from a second-order polynomial fitting of s2

v as a
function of F: s2

v ¼ 2:387F2� 3:063Fþ 0:997 (Fig. 1a). Our
results are in quantitative agreements with previous study22

(Fig. 1b). It is worth noting that the configurational entropy
defined above corresponds to the complexity in hard-sphere glass
terminology and should not be confused with the definition as the
entropy difference between liquid and crystal phases6.

Like a thermal hard-sphere glass, S decreases with decreasing w
or increasing F. We extrapolate S(F) and S(w) curves to S¼ 0 to
obtain the corresponding glass-close-packing (GCP) packing
fraction FGCP¼ 0.671 or GCP compactivity wGCP¼ 0.0554
(refs 6,23,24). FGCP is close to the jammed ideal glass transition
density 0.68 from replica theory calculations6. In the following,
structural relaxation time and structural correlation length will be
expressed as functions of these thermodynamic variables to draw
analogies between the tapped granular system and a thermal
hard-sphere glass.

Relaxation time. To study the slow relaxation dynamics in
granular packing, we use X-ray absorption imaging to measure
the time evolution of the average packing fraction F under tap-
ping (Methods). The structural relaxation times t are calculated
from the compaction curves at different tapping intensities G.
The packing is first tapped at G¼ 15 for 1,000 times to reach
F0¼ 0.615. Then, the compaction curves are measured by tap-
ping the packing at different G to reach the corresponding
reversible-branch packing fractions FN¼F(G) (Fig. 1c). The
packing that has reached reversible-branch is at steady state and
memoryless. Each compaction curve can then be fitted using
the empirical Kohlrausch–Williams–Watts law8: F(t)¼FN

� (FN�F0)exp(� (t/t)b) to obtain t, where t is the number
of taps and b is the stretching exponent (Fig. 1d). The fitted
values of b lie in the range of 0.5–0.9 if both t and b are allowed
to vary. To be consistent, we fix b¼ 0.7 to obtain t for different
compaction curves. Nonetheless, the t values remain essentially
unchanged as compared with the case when b is allowed to vary.
As shown in Fig. 2, t increases with decreasing w or increasing F,
similar to a thermal hard-sphere glass25.

Polytetrahedral order. As shown above, the great analogies in
slow dynamics and thermodynamics between tapped granular
packing and a thermal hard-sphere glass suggest a common
origin. In the following, we propose that the formation of local
geometrically frustrated quasi-regular tetrahedra is the micro-
scopic mechanism for the dynamic arrest in both systems26,27.

We demonstrate that the polytetrahedral order associated with
these quasi-regular tetrahedra corresponds to the long-sought-
after glass order in hard-sphere glasses26,27, by showing: the
polytetrahedral order is spatially correlated with the slow
relaxation dynamics; the static correlation length of this
polytetrahedral order increases rapidly as F increases; and the
size and shape of the polytetrahedral order are consistent with a
configurational entropy-driven nucleation model similar to the
RFOT theory20.

Similar to previous studies28, a quasi-regular tetrahedron is
defined as a Delaunay simplex whose shape is close to a regular
tetrahedron, with the shape deviation less than some threshold
value of a polytetrahedral order parameter d¼ emax� 1. In this
expression, emax, in units of mean particle diameter s, is the
length of the longest edge of the tetrahedron. The d values lie in a
range between zero and an upper limit around one. There exist
other measures to define a quasi-regular tetrahedron, such as
tetrahedricity D (ref. 23). However, it turns out that our general
results are not sensitive to any particular definition.

Correlation between order and dynamics. We first show that the
quasi-regular tetrahedra are spatially correlated with the slow
relaxation dynamics. In the tapping experiment with G¼ 4, we
track the trajectories of all particles for a number of taps by
conducting a tomographic scan after each tap (Methods). We
define Dri¼ dri� v(ri) as the diffusing displacement after one tap
of particle i located at ri, where the absolute displacement dri is
subtracted by an averaged steady-state convection displacement
v(ri) (Methods). To characterize the mobility of particles
belonging to tetrahedra of different d values, we define the
d-mobility Dr2(d)¼h|Dri|2id (ref. 29), where the average is taken
over all particles composing tetrahedra with d. As shown in
Fig. 3a, a positive correlation between d-mobility and d value is
clearly visible. The average value of

ffiffiffiffiffiffiffi
Dr2
p

after one tap is B0.04s,
which is close to the typical cage size in the packing30. This is
owing to the fact that one tap duration at G¼ 4 is on similar
timescale as the structural relaxation time t, that is, the particles
have undergone many collisions upon one tap. It is worth noting
that similar correlation between the particle mobility and the
shape of tetrahedron it belongs to has also been observed in
colloidal systems31, which suggests that the inherent friction of
granular system is not the cause of the structure–dynamics
correlation.
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Figure 2 | Relationships between relaxation time and thermodynamic

variables. Relaxation time t versus w, and VFT fitting according to

equation (3) (line). In this fitting, we fix the fragility index D¼4 by adopting

the hard-sphere simulation results (note the equivalence of w and T/P)25,54,

and obtain: t0¼0.024±0.014 and w0¼0.049±0.003. The inset shows t
versus 1

wsc
and fitting according to equation (4) (with t0¼0.024) (line).

VFT, Vogel–Fulcher–Tammann.
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As an alternative evidence, we define a tetrahedron correlation
function pd(t) as the probability that one tetrahedron (Delaunay
simplex) with d at t¼ 0 is composed of the same four particles
from t¼ 0 to the tth tapping. This function captures the
dependency of the local structural relaxation time upon d. As
shown in Fig. 3b, tetrahedra with smaller d relax much more
slowly than those with larger d.

Spatial correlation of polytetrahedral order. The fraction of
quasi-regular tetrahedra grows as F increases, which is accom-
panied by increasing spatial correlations among them, that is,
they tend to aggregate with each other. This spatial correlation
can be demonstrated explicitly in terms of a percolation analysis
on the Delaunay networks32. Tetrahedra are coloured according
to their d values (tetrahedra with dodc are coloured where dc is a
threshold) or coloured randomly but with the same number of
tetrahedra. In both cases, face-adjacent coloured tetrahedra are
joined together to form clusters. We cut a cubic region out of the
packing and define Lcluster as the longest spanning range of each
cluster in directions parallel to the three axes of the cube.
Max(Lcluster) grows as more cells can be coloured when the
threshold value of dc is gradually relaxed, and it can ultimately
reach the size of the cubic region Lbox at the percolation limit.
As shown in Fig. 4, it turns out that tetrahedra chosen based on
their d (or D) values show higher likelihood to percolate
compared with the random-colouring case, which suggests their
spatial correlations. To emphasize the unique relevancy of this
polytetrahedral order, similar percolation analyses are carried
out over various other structural order parameters, which show
almost identical percolation behaviours with their random
counterparts, suggesting that there exist negligible correlations29

(Methods). Next, we use dc¼ d*¼ 0.245 to select out quasi-
regular tetrahedra at different F. The threshold value adopted is
similar to previous studies28,33. The polytetrahedral order
associated with these quasi-regular tetrahedra has a
polytetrahedral structure28. The specific d* value chosen
corresponds to a percolation transition of the polytetrahedral
order at random close packing (RCP) (F¼ 0.64) associated with
the jamming transition of frictionless particles13,28,34.

We quantify how the spatial correlations among these quasi-
regular tetrahedra vary with F by calculating the correlation
length x at different F. The average size of the polytetrahedral
clusters xc is evaluated using the radius of gyration Rg of all

clusters, x2
c ¼

2
P

R2
gN2

cP
N2

c

, where Nc is the number of particles

belonging to a cluster, and R2
g ¼ 1

2h ri� rj

�� ��2iij is half the average

square distance between all pairs of particles in a cluster35. We
note that xc includes contributions from both the intrinsic
correlation length x of the polytetrahedral order and a trivial
correlation length xr associated with the random percolation
process, which also increases with F (Fig. 5a). Therefore we
define x¼ xc� xr which equals to zero when the tetrahedra are
uncorrelated. As shown in Fig. 5a, x, in units of s, also increases
with decreasing w or increasing F, similar to t.

To further characterize the structural change associated with
the growth of x, we study the evolution of P, which is the fraction
of particles belonging to at least one quasi-regular tetrahedron.
P increases from 80 to 98% as F increases from 0.572 to 0.634
(Fig. 5b), whereas x increases from 0.44 to 8.14 accordingly. This
almost 20-fold growth of x can therefore only be induced by the
merging of smaller polytetrahedral clusters into bigger ones
instead of the simple inclusion of more particles. Meanwhile, the
fraction of quasi-regular tetrahedra increases from 13 to 27%, as
shown in Fig. 6a–d.

Dependencies of s and n on thermodynamic variables. In the
following, we analyse the dependencies of t, x on thermodynamic
variables w and S, similar to those in a thermal glassy system.

The relation between t and w can be well described by the
Vogel–Fulcher–Tammann form (Fig. 2)

t ¼ t0exp
Dwt
w� wt

� �
: ð3Þ

The fitted wt¼ 0.049±0.003 agrees nicely with the 0.045 value
from previous hard-sphere simulation25. The corresponding
Ft¼ 0.678 is consistent with FGCP from above entropy
extrapolation1,6, suggesting a similar relationship between
dynamics and thermodynamics as a thermal hard-sphere glass1.
t0¼ 0.024±0.014 tap turns out to be the microscopic timescale
in our system which is much smaller than either the tap duration
or the structural relaxation time t.

Additionally, t and S follows an Adam–Gibbs type of relation

ln
t
t0
/ 1

wsc

� � yc
d� y

; ð4Þ

where sc is the configurational entropy density, defined as
S/hVvoroi, with hVvoroi being the average Voronoi cell volume
(Fig. 2). The exponent yc

d� y ¼ 1:0 � 0:2 is surprisingly close to
the Adam–Gibbs relation4. Here, the exponent yc

d� y follows the
convention of the RFOT theory20,36.
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x also shows a diverging behaviour with decreasing w that can
be fitted using a power-law function37

x / wx
w� wx

� �n
ð5Þ

which yields wx¼ 0.051±0.016 (Fx¼ 0.675±0.023) and
n¼ 1.4±0.6 (Fig. 5a). The value of n is different from the
critical exponent (E2/3) of the three-dimensional (3D) Ising
universality class as suggested in recent experiments38.

We further demonstrate that the growth of the polytetrahedral
order is consistent with a configurational entropy-driven
nucleation model similar to the RFOT theory20. In RFOT
theory, the static correlation length or the mosaic size xmosaic, is
determined by a competition between the gain in configurational
entropy S and a free energy cost proportional to xymosaic because of
surface mismatch between different mosaics20. Specifically, the

competition results in a typical length scale xmosaic / ð 1
Tsc
Þ

1
d� y,

where T is the temperature and d is the spatial dimension37.
Motivated by this nucleation model, we plot x versus 1

wsc
and fit

the data according to

x / 1
wsc

� � 1
d� y

ð6Þ

(Fig. 5c). The fitting yields 1
d� y ¼ 1:78 � 0:34 (y¼ 2.44±0.11).

At first sight, the y value obtained was incompatible

with the original RFOT theory (y¼ d/2)37 or Adam–Gibbs
relation (y¼ 0)4. However, as shown in Fig. 6e, this discrepancy
can be naturally reconciled with the fractal nature of our
polytetrahedral order39, since it has a fractal surface dimension
ys¼ 2.57 (for F¼ 0.634 packing) which is compatible with the
extracted y from above nucleation model (Fig. 6e). Notably, this
unusual y value has been observed before in both experiments
and simulations36. Interestingly, ys decreases slightly with
increasing F, suggesting that the polytetrahedral order will have
less rough surfaces as F increases (Fig. 6f). These fractal
polytetrahedral clusters fail to tile space because they are
frustrated geometrically27,40. Furthermore, cluster size Nc shows
a power-law distribution: p Ncð Þ / N �m

c . It turns out that the
hyperscaling relationship df(m� 1)¼ d roughly holds, where df is
the cluster fractal dimension (Fig. 6e). Similar fractal clusters
have been observed for immobile particle clusters in other
glass-forming liquids41.

In addition to the proceeding cluster-analysis, we also attempt to
extract the correlation length using a spatial correlation function of
d (Fig. 5d). This function behaves rather similarly to the standard
pair correlation function g(r) (ref. 19), which displays a finite-
length decaying behaviour but no discernable differences for
packing with different F. This indicates that protocols based on
pair correlation analysis are incapable of capturing correlations in
our system34. Same problem could also exist in the ‘point-to-set’
type of analysis, because pinning a smooth boundary might not be
the best way to capture a fractal phase inside42.
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Discussion
The main conclusion of the current study is that quasi-regular
tetrahedra are the structural elements of glass order in weakly
polydisperse hard-sphere glass-particle systems. The order grows
by following an entropy-driven nucleation process which is
reminiscent of the diffusion limited cluster aggregation (DLCA)
in kinetic gelation process, where independent clusters following
DLCA growth processes touch in forming a global percolating
fractal structure and acquire mechanical rigidity suddenly43. The
fact that the growth is correlated can therefore induce
cooperativity and non-Arrhenius behaviour in the system.

Similar to the gelation process in systems with attractive
interactions18,43, we suggest that the jamming transition
corresponds to a rigidity percolation transition of glass order
for systems with repulsive interactions, that is, at RCP, the
percolated polytetrahedral clusters acquire an infinite mechanical
correlation length abruptly. The fractal shape of the percolated
polytetrahedral order could therefore be related to the marginal
solid behaviour44 and unique scaling behaviours of the jamming
transition13. Our jamming transition picture therefore suggests a
unified scenario for rigidity transitions in systems with attractive
or purely repulsive interactions: both are driven by the rigidity
percolation of an underlying glass order.

The above percolation mechanism of jamming transition can
also provide a simple geometric explanation of the continuous
range of jamming density (the J-line) observed in numerical
simulations6,15,45. In our system, the highest packing density we
can theoretically achieve is B0.64, which corresponds to the RCP
state. Interestingly, the RCP state has a non-zero entropy and
consists of many polytetrahedral clusters, and therefore is not the
ideal glass state46. At RCP, the average internal packing fraction
of each cluster is approximately 0.67, which suggests that the
rather low global packing fraction originates from the existence of
cluster boundaries. As a result, if we can extrapolate the
configurational entropy towards zero in obtaining a single large
polytetrahedron spanning the whole system, that is, the jammed
ideal glass state or GCP, then in principle, we can obtain a
jammed packing density B0.67. Interestingly, this is exactly the
upper limit of the J-line as has been predicted by the
simulations6,45.

Additionally, since the packing in the current work is close to
the lower-density-limit of the J-line, their equilibrium counter-
parts correspond to supercooled liquid states which are not very
deep in the free energy landscape. This supercooled liquid picture
is consistent with both the mean-field study by Mari et al.45, in
which they found that the J-point correspond to the system just
entering the landscape regime, and the fractal cooperatively
rearranging regions (CRRs) found in glass-forming liquids near
the dynamical crossover temperature39, where the CRRs bear
great similarity to the fractal polytetrahedra in our system. The
location in the free energy landscape also naturally explains our
anomalous scaling exponent y as compared with that of the
original RFOT theory, which mainly deals with mosaic states very
deep in the free energy landscape.

In the current study, we implicitly assume the validity of
Edwards’ ensemble for packing prepared by both tapping and
flow pulse protocols21,47. Despite the fact that packing prepared
under these protocols has previously been established as ergodic,
history-independent, and is therefore prone to a valid statistical
analysis21,47, there still exist some ongoing debates regarding the
basic assumptions of the Edwards’ framework, especially the flat
measure assumption48–53. As of today, a direct correspondence
between the Edwards’ entropy and the configurational entropy of
a thermal hard-sphere glass is still waiting to be established
theoretically. Therefore, despite the self-consistency of a
thermodynamic analysis of our granular hard-sphere glass and

its great analogy with a thermal hard-sphere glass, a direct
one-to-one correspondence should not simply be taken for
granted. This should also be born in mind when comparing our
entropy-driven nucleation picture with RFOT theory.

Overall, our current study illustrates the origin of fragile glass
behaviour in one type of model glass former. It suggests that
other fragile glass systems can potentially be categorized by the
growth of different types of structural orders, similar to the
studies of crystalline orders.

Methods
X-ray projection imaging. We use X-ray projection absorption imaging to
measure the average packing fraction F. The granular particles used for all
experiments in this study are glass particles (Duke Scientific, USA) with
200±15mm particle diameter and a slight polydispersity of around 3%. The
experiment is conducted with a 27-keV monochromatic X-ray beam at the
BL13W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF). F are
measured at ten different tapping numbers (evenly spaced on the logarithmic scale)
for each compaction curve.

To obtain F, we also take flat-field images when the packing is outside the X-ray
field-of-view. The projection images with and without the packing have intensity
distributions I(x,z) and I0(x,z), respectively, where (x,z) denotes the coordinates of a
pixel. According to Beer’s light absorption law, F of the packing can be calculated as

F ¼
l0
RR

ln I0 x;zð Þ
I x;zð Þ dxdz

pR2H
; ð7Þ

where l0 is the attenuation length of glass at an X-ray energy of 27 keV, R and H are
the radius and height of the container in the field-of-view. The integration is taken
over the area covered by glass particles. The influence of the acrylic container has
also been corrected. The F values obtained are consistent with independent
tomography measurements as shown in Fig. 1c.

X-ray microtomography. We use microtomography to obtain the 3D packing
structures prepared by tapping, hopper deposition and flow pulse protocols.
These three protocols can cover a wide range of F from 0.572 to 0.634. Using
micro-tomography, we also investigate the correlation between dynamics and
structure by tracking the displacements of all particles and the corresponding
structural evolution of the packing for a consecutive number of tapping steps in the
tapping experiment.

In the tapping protocol, we fill a 9-mm ID acrylic cylindrical container with
particles to B1 cm in height, and we use an electromagnetic exciter to tap the
container. Packing with different F ranging from 0.618 to 0.634 is obtained by
varying the tapping intensity G, which is measured by an accelerometer as the ratio
between the peak-to-peak acceleration and the gravitational acceleration. The
tapping consists of a single cycle of 60-Hz sine wave spaced with 0.5 s intervals to
allow the system to relax completely. A total of 1,000 taps are applied on each
packing with different G to reach steady state. In the hopper deposition protocol,
we first place a hopper with its outlet touching the base of the cylindrical container,
and fill the hopper with particles. The hopper is then slowly lifted up with a step
motor to let the particles drain gradually from the outlet. The packing formed is
cylindrical at the bottom, with a conical top. The F prepared by this protocol is
0.598. In the flow pulse protocol, the particles are placed in an acrylic cylindrical
tube filled with water. The tube is sealed with a fine copper mesh at the bottom
from a water inlet. The packing is prepared by subjecting the particles to a sequence
of flow pulses generated from a syringe pump. The particles are allowed to fully
settle between pulses. F ranging from 0.572 to 0.588 are obtained by varying the
flow velocity.

The X-ray micro-tomography experiment is carried out at both the 2BM
beamline of the Advanced Photon Source (APS) at Argonne National Laboratory,
and the BL13W1 beamline of SSRF. At Advanced Photon Source, the ‘pink’ X-ray
beam from a bending magnet source with a median energy of 27 keV is used for the
high-speed tomography image acquisitions, and the single exposure time is 3 ms.
Each tomographic scan consists of 1,500 projection images. At SSRF, the
monochromatic 27 keV X-ray beam is used and the single exposure time is 40 ms.
Each tomographic scan consists of 720 projection images. The 3D structures are
first reconstructed using the conventional filtered back-projection algorithm.
A marker-based watershed image segmentation technique is then implemented to
obtain all particles’ positions and sizes.

For the packing prepared using the tapping and flow pulse protocols, each
reconstructed 3D structure consists of approximately 17,000 particles after
excluding particles within four particle diameters from the container boundary.
For the packing prepared using the hopper deposition protocol, B2,600 particles
are used after excluding those in the conical top and boundaries. For each
reconstructed packing structure, we conduct a Voronoi tessellation, and the
average packing fraction F is obtained by averaging the local packing fractions Floc,
which is defined as the ratio between the volume of each particle and its
Voronoi cell.
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Calculation of the convection displacement v(ri). We coarse-grain the whole
packing into sub-volumes of cubic shape with the size of each cube about three
particle diameters. Since the convection is steady after extensive tapping,
we calculate the convection displacement by simply averaging spatially and
temporarily of the displacements of all particles inside each cube during the
full tapping sequence. We also prove that the results are not sensitive to the coarse-
graining size by varying the cube size from two to five particle diameters, and it
turns out that the value of Dr2 only slightly depends on the cube size, and its
correlation with d remains approximately unchanged.

Percolation of various structural orders. Various structural mechanisms of the
glass transition have suggested the existence of different local structural orders,
such as icosahedral order, crystalline order as the driving mechanism of the glass
transition. To test all these different mechanisms, we define their corresponding
structural order parameters to determine whether there exist significant increases
in their spatial correlation lengths as F increases. The spatial correlations are
analysed based on percolation analyses on the Delaunay or Voronoi networks of
the packing. In both networks, each cell is identified as a site, and the common
surface between two sites as a bond. Sites are coloured according to the values of
various structural order parameters, or they are coloured randomly. Coloured sites
that are connected to each other through bonds can form clusters, and they finally
percolate the whole network when enough sites are coloured.

We define two structural order parameters, d and tetrahedricity D based on the
Delaunay cells23.

d¼ emax� 1, where emax is the longest tetrahedron edge in units of average
particle diameter.

Tetrahedricity D ¼
P

ioj
ðei � ejÞ2

15 eh i2 , where eh i ¼
P

i
ei

6 is the average tetrahedron
edge length.

We define the local packing fraction Floc and local contact number Z as two
possible order parameters for the free volume theory. We also calculate standard
bond orientational order (BOO) parameters that have been commonly used to
identify local crystalline or icosahedral orders55. Additionally, in our previous
study, we found that there exists correlation between the local anisotropy index b0;2

1
of the shape of the Voronoi cell and certain locally favoured structures with five-
fold symmetry19. We therefore also include it as a possible order parameter.

Local packing fraction Floc ¼ Vg

Vvoro
.

Local contact number Z. Neighbouring particles whose centre-to-centre
distance to one particle is shorter than a threshold rc¼ 1.011s are defined as its
contacting neighbours. s is the average particle diameter. rc is determined from a
previously established analysis protocol.

Bond orientational order. We use a modified definition of BOO in which each
bond is weighed by the area of its corresponding Voronoi facet56: Qlm ¼Pk

i¼1
Ai
A Ylmðyi;jiÞ where (yi,ji) is the angular position of the ith Voronoi

neighbour in the spherical system of the central particle, Ai is the area of the
Voronoi facet shared by the central particle and its ith neighbour, and A is the total
surface of the Voronoi cell. Ylm are spherical harmonics. The local BOO parameters

are defined as: ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
2lþ 1

Pl
m¼� l Qlmj j2

q
and

wl ¼
X

m1 ;m2 ;m3
m1 þm2 þm3¼0

l l l
m1 m2 m3

� �
Qlm1 Qlm2 Qlm3 ;

where ð l
m1

l
m2

l
m3
Þ are Wigner 3j symbols. Specifically, we calculated the BOO

parameters q4, q6, ŵ4 and ŵ6, where ŵl ¼ wl=ð
Pl

m¼� l Qlmj j2Þ3=2.
The local Voronoi cell anisotropy index b0;2

1 . It is calculated using a Minkowski
tensor W0;2

1 ¼
R

n � ndA, defined as the surface integral of the tensor-valued
self-product of the bounding surface normal n (ref. 57). b0;2

1 is defined as the ratio
of the smallest and largest eigenvalues of W0;2

1 . The value of b0;2
1 ranges from one

(isotropic shape) to zero (a line or a plane).
The purpose of the percolation analyses is to identify the spatial correlation

properties of these local structural order parameters, that is, whether they form
clusters or distribute randomly. To achieve this goal, we colour cells based on the
values of above structural order parameters. Although the exact nature of the
amorphous structural order remains unknown, it is reasonable to assume they are
locally compact. Therefore, they have smaller d and D, and larger Floc and Z. For
other structural order parameters, we calculated their Pearson correlation
coefficients with Floc and found that b0;2

1 and q6 show positive correlations,
whereas q4,ŵ4 and ŵ6 show negative correlations. Therefore, larger b0;2

1 and q6, and
smaller q4,ŵ4 and ŵ6 correspond to more compact local structures.

The colouring process works as follows: cells or simplexes with xo(4)xc

(o for d, D, q4, ŵ4 and ŵ6 while 4 for Floc, Z, b0;2
1 and q6) are coloured, where

x ¼ d;D;Floc;b
0;2
1 ; q4; q6; ŵ4; ŵ6 is one of the above structural order parameters,

and xc is the corresponding threshold. To compare with a random-colouring
process, for each xc value, we also color the same number of cells or simplexes as
those with xo(4)xc, except that these cells are chosen randomly.
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