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Abstract: Presently, biopreservation through protective bacterial cultures and their antimicrobial
products or using antibacterial compounds derived from plants are proposed as feasible strategies
to maintain the long shelf-life of products. Another emerging category of food biopreservatives are
bacteriophages or their antibacterial enzymes called “phage lysins” or “enzybiotics”, which can be
used directly as antibacterial agents due to their ability to act on the membranes of bacteria and
destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly
because they have a practically unique host range that gives them great specificity. In addition to
their potential ability to specifically control strains of pathogenic bacteria, their use does not generate
a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can
favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to
antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in
general all processes of manufacturing, preservation, and distribution of food. We present here an
overview of the scientific background of phages and enzybiotics in the food industry, as well as food
applications of these biopreservatives.
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1. Introduction

Food preservation by suitable means is key in food safety and quality. There are
several traditional and well-known physical preservation techniques such as refrigeration
and pasteurization, but the modern industry is always looking for new procedures for food
preservation to increase the product’s shelf-life by minimizing the loss of nutritional quality
and organoleptic properties. Presently, some modern biopreservation techniques rely on
naturally occurring microorganisms (i.e., lactic acid bacteria) and their metabolites. These
food preservatives are mainly used to produce safer food for the consumer, preventing
the action of pernicious microbes which can cause food deterioration or even toxicity and
therefore be dangerous to human health.

Moreover, bacteria -including multidrug-resistant bacteria- can reach food at differ-
ent points in the food supply chain, from farm to postharvest, and processing such as
slaughtering, fermentation, packaging and storage [1-5].

As most natural foods are highly perishable, by extending their half-life we can also
control their native microbiota for proper preservation, maintaining their safety and quality.
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As microorganisms produce a long list of molecules ranging from classic antibiotics to
antibacterial enzymes, the control of indigenous populations in food can be achieved by
adding these products directly. The paradigm of bacterial molecules used in the food in-
dustry as biopreservatives is Nisin, a bacteriocin produced by the Gram-positive bacterium
Lactococcus lactis, one of the lactic acid bacteria most extensively used for the manufacture of
dairy products [6]. Other well-known bacteriocins, such as Pediocin, Natamycin, Enterocin,
and Leucocin [7], also have inhibitory properties against other microorganisms which
makes them very interesting for use in the food industry. Some bacteria that produce these
compounds have been used as probiotics. Current research on probiotics is quite promising
and modern fashion trends push probiotics and bacteriocins from modulation of the gut
microbiota toward a wide range of other health-promoting activities away from food, such
as cancer treatment, skin health care, periodontal health, or allergies [8-11].

In addition, the use of bacteriocin producing strains or those that can compete against
pathogens in the context of the food industry needs new approaches, mainly due to the
increase in foodborne infections, the appearance of new production processes, the massive
demand for food, and the changing consumer trends. Moreover, the extensive use of
antibiotics against animal and human pathogens has also led to an increase in foodborne
pathogens resistant to antibiotics, which makes the picture not reassuring at all [12-14].

Goodridge and Abedon published an article in 2003 where they proposed to use the
terms “phage biocontrol” and “phage bioprocessing” to differentiate the application of
bacteriophages in the farm or crops from their use in the food industry [15]. Several years
later, Greer published a review of the control of foodborne bacteria using phages, including
the effects of these microorganisms on food storage and preservation [16].

At that time, the excellent properties of endolysins to kill bacteria were already known,
but their use to protect food from foodborne pathogens had not yet been effectively tested.
One of the first murein hydrolases to be studied concerning food-related bacteria was
that of the Lactobacillus helveticus bacteriophage 0303 [17]. This endolysin exhibited a
broad spectrum of activity, killing different bacterial species such Pediococcus acidilactici,
Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus
acidophilus, Bacillus subtilis, Enterococcus faecium, and several strains of Lactobacillus helveticus.

Problems of deterioration of the organoleptic properties have been described after
physical treatments; also, consumers are increasingly demanding low-processed foods. One
of the advantages of phages over the usual physical treatments is that phages do not modify
any organoleptic properties of foods. Moreover, even with common treatments such as heat,
team and UV light, a relatively high percentage of food products are lost due to subsequent
microbial spoilage or microbial contamination; when food becomes contaminated, it will
lead to food spoilage, and such food will no longer be fit for consumption.

Thanks to their ability to control or to inactivate spoilage and/or foodborne bacteria
selectively, bacteriophages have great potential as food biopreservatives. Additionally, in
terms of food biopreservation, enzybiotics are beginning to be increasingly studied in the
field of food microbiology, taking advantage of the pull that in vitro successes have dis-
played against very important multidrug-resistant human and animal pathogens [18-20].

In this review, we discuss the use of phages and their lytic enzymes as a tool to
eliminate or reduce spoilage bacteria and common foodborne bacterial pathogens.

2. Why Bacteriophages?

Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly
because they have a practically unique host range, which gives them great specificity. Apart
from their selective activity, bacteriophages have been successfully tested to eliminate or
weaken biofilms formed by different classes of both Gram-negative and Gram-positive
pathogens in the food industry [21-24]. Biofilms are consortia of bacteria that persist on
different surfaces or pipelines within the food industries that contaminate food at some
point in the processing or packaging chain.
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In addition to their potential ability to specifically control strains and biofilms of
pathogenic bacteria, their use does not generate a negative environmental impact like in the
case of antibiotics or disinfectants [25]. Other advantages of these viruses are: (i) safety—as
they are not toxic to eukaryotic cells, (ii) the preservation of the organoleptic properties of
food, and (iii) the control of multi-resistant bacteria since the tolerance of some strains to
phages can often be overcome with the use of phage cocktails [14]. In addition, phages can
be used in combination with antibiotics, bacteriocins, or even with probiotics.

The main limitations of bacteriophages as biopreservative tools in foods derive from
the scarce knowledge of their genetics since the use of strains that may contain virulence
factors, lysogeny, or antibiotic resistance genes is inadvisable. As an example, studies prior
to this decade did not have the modern and inexpensive sequencing techniques that almost
all laboratories can afford today. Furthermore, in some cases, it is necessary to use phage
cocktails that are more difficult to characterize than individual strains. Additionally, we
need to learn much more about their behavior within solid and liquid food matrices to
optimize the amount of phage to be used in each case. The method of releasing phages
on food is also important, since the phages must reach the largest number of bacteria
possible so that they can effectively control them and reduce their number to safe values. In
other words, phages and bacteria must be in contact with liquid but also with solid foods;
moreover, as much bacterial contamination occurs initially at low numbers (a minimum
bacterial density is a prerequisite) sometimes we must apply a large number of phages
to those foods. Knowing the optimal number of viral particles (multiplicity of infection,
MOQOI) to use for each food, as well as their infection kinetics in each food matrix, it is
essential to understand how these phages are acting on their target pathogens [26-32].
Minimum host threshold requirement has been demonstrated for phages of different food
pathogens [33,34]. As successful biopreservative agents, it is also important to consider
phages’ stability in food matrices under different environmental conditions such as water
activity, salinity, temperature, pH, osmotic shock, and light (visible and UV). According to
several authors, phages have a remarkable stability in foods [35-37]. Phage propagation
on a susceptible host, purification, and phage or cocktail formulation are very relevant
parameters too.

In some studies, in which a high number of phages are used, the bacterial lysis ‘from
without” can occur because many viral particles bind to the bacterial surface, leading to the
production of numerous holes in the cell wall [38,39]. All these concepts must be better
studied and understood in order to apply phages to food pathogens.

Although the application of phages will continue, there is a phenomenon that must
always be kept in mind, the emergence of phage-resistant strains. When infecting bacterial
cells, phages already face a range of antiviral mechanisms (i.e., restriction modification
systems/enzymes), and they have evolved multiple tactics to avoid these mechanisms.
In this co-evolution between bacteria and phages, most authors agree that phages can
effectively raise a counter-resistance. Therefore, finding a new phage that can infect a
bacterium will always be easier than finding an entirely novel family of antibiotics.

We do not know much about how often these resistant variants of phages used in the
food industry appear, as few publications include assays to study this phenomenon. It
is likely that researchers prioritize the study of efficacy over safety. Moreover, multidrug
resistance, where a bacterium has obtained resistance mechanisms against several different
families of antibiotics, is increasingly common, but this phenomenon does not occur when
phages are used. Additionally, many studies suggest that phage combinations can be
optimized to limit the emergence and persistence of resistance, therefore promoting the
long-term usefulness of phage therapy. With regards to this issue, enzybiotics offer the
advantage that they do not generate resistance because they act on essential targets for the
bacteria’s viability, so, it is difficult for bacteria to modify them.

The other most important issue in addition to the development of phage-resistant
strains is phage spread. As bacteriophages applied to food can be easily transferred
between facilities in the food industry, we must pay particular attention to the number of
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phages used, and above all, to how they are applied to food. An undesirable effect would
be the inactivation of starter cultures that initiate the fermentation processes. Despite the
narrow spectrum of a specific phage, the problem of the phages spread within the food
industries is real because it is not convenient; for example, to collaterally eliminate some
species of lactic acid bacteria that confer characteristic properties to the products in which
they are present [40].

As with isolated phages, phage cocktails can be used directly on food or surfaces and
food handling tools in chain processing plants. Another advantage of phage cocktails is
that they can be modified quickly and conveniently to deal with specific strains that may
appear in a particular food manufacturing facility [41]. No articles were reviewed here
where more than three bacteriophages or cocktails containing undefined strains were used
because in the last few years there have been excellent reviews on that scope [26,41-43].
Moreover, Theuretzbacher’s recent article in the currently available weaponry against
superbugs indicates that more than 20 different bacteriophage-based products have been
approved for the control of pathogenic bacteria related to the food industries or direct food
contamination [44].

Our review of approximately 100 bacteriophages indicates that three families (Myoviridae,
Siphoviridae, and Podoviridae) account for the majority of virulent phages for the most
common food-borne pathogen species. Much work has focused on the biocontrol or
biopreservation of foods with six of the most important food-borne pathogens: E. coli
(mainly serotype 015:H7), Listeria monocytogenes, Staphylococcus aureus, Clostridium spp.,
Campilobacter jejuni, and Salmonella spp., (Table 1). In addition to those six important food
pathogens, phages against many other bacteria capable of causing foodborne infections
should begin to be studied. This would allow us to identify not only new phages but also
interesting enzybiotics.
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Table 1. Phages tested against food-borne pathogens and their proposed use as food biopreservatives.
Target Bacteria Phage/s Source Charlellc;cflﬂ)z;tion Genome Length 2 Family Food Application Reference
AH-1 D ion of artificiall
Aeromonas hydrophila AH-4 Sewage samples TEM ND Myoviridae epuration of artificially [45]
AH-5 contaminated cockles
Bacillus cereus PBC1 Sewage sample TEM, sequencing 41,164 bp Siphoviridae Inhibition ggﬁ'effﬁgs growth in [46,47]
. Spoiled retail rib Control of bacterial
Brochothrix thermosphacta A3 steaks TEM ND ND strains during refrigerated storage [16,48]
L . Control of
Campylobacter jejuni Gj6 Unknown - ND ND pathogenglilnrﬁqloli d foods [36,49]
S iy Reduction of C. jejuni contamination
1 ~ Je
C. jejuni 2 Unknown dsDNA 140 kb Myoviridae of retail poultry products [50,51]
C. jejuni S8 Poultry excreta TEM, dsDNA ~140 kb Myoviridae Reduction of food-borne bacteria [52,53]
L TEM, DNA .. Reduction of bacterial contamination
C. jejuni 12673 NCTC (UK) sequencing ~135 kb Myoviridae on chicken carcass surfaces [54,55]
Clos;rlitéiucmstggrof;%rsicum CTP1 Landfill Fsr(fql\lférl?cﬁg 59,199 bp Siphoviridae Cheese manufacturing [56]
Cronobacter (Enterobacter) ESP 1-3 Sewage treatment Siphoviridae Control of E. sakazakii in reconstituted
sakazakii ESP 732-1 plant TEM, dsDNA ND Myoviridae infant formula (571
. . Bovine intestine TEM, DNA .. Biocontrol of E. coli STEC O157:H7
Escherichia coli PE37 samples sequencing 166,423 bp Myoviridae and ESBLEC. [58]
ECé6 Siphoviridae . . .
E. coli EC9 Sewage TEM, dsDNA ND Myoviridae Biocontrol against E. coli in UHT and [59]
EC11 Podoviridae raw bovine milk
E. coli (STEC) O145 Rol45clw No“'fs'zcrilpclg;“POSt Ee]fll\fézﬁ‘; 42,031 bp Siphoviridae Control of foodborne STEC 0145 [60]
. . vB_EcoS_FFH_1 Wastewater : 108,483 bp Siphoviridae Reduction of contamination in
E. coli O157:H7 _vB_EcoS_FFH_1 treatment plants TEM, sequencing 139,020 bp Myoviridae ground beef [61,62]
ell/2 Bovine farmyard ND Myoviridae Eliminati ducti £ E. coli
E. coli O157:H7 ed/1c Slurry samples TEM, dsDNA ND Siphoviridae Olsmration or reduction of £ cot [63-65]
PPO1 Swine stool samples ~140 kb Myoviridae : acteria from meat carcasses
E. coli O157:H7 FAHEc1 Raw screened TEM, dsDNA ~90 kb Myoviridae Inactivation of E. coli O157:H7 on beef [34,66]

sewage
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Table 1. Cont.

Characterization

cheese dairy factory

Target Bacteria Phage/s Source Method Genome Length 2 Family Food Application Reference
KH1 Elimination of O157:H7 from foods
E. coli O157:H7 KH4 C?éc’élael 22flnslllee:p - ND ND under refrigerated conditions. [67,68]
KH5 P Reduction of E. coli on surfaces.
ECML-4 157,308 bp Reduction of contamination of hard
E. coli 0157:H7 ECML-117 Frezﬂjifr‘grfgférn’:ter gfé\féﬁﬁ‘g 66,854 bp Myoviridae surfaces and foods contaminated by [69,70]
ECML-134 166,783 bp E. coli O157:H7
E. coli strains, Salmonella and C203 Cottage cheese and TEM, DNA . . Biocontrol agent
Shigella spp. P206 from poultry liver sequencing 138,073 bp Myoviridae against E. coli EHEC 0157 [37]
: S . DT1 Stool samples of Control of pathogenic E.coli in meat
h E. p .. p &
Eité?;;i?ﬁ%egr;ﬁic Ecocléli DT5 patients with TEM ND Myoviridae products and during milk [71,72]
] DT6 diarrhea fermentation
E_ coli strains includin Manure from cattle, Pulsed-field gel Reduction of E. coli in fresh
‘ serost le (s)l 5?71;171 & OSY-SP sheep, and horse electrophoresis ~150 Kb Myoviridae produce type (cut green pepper or [73]
yp : farms (PFGE) spinach leaves)
Lactobacillus brevis SA-C12 fresh silage TEM ND Myoviridae Control of L. brevis beer-spoilage [74]
Leuconostoc gelidum g8g vacuum-packaged TEM ND Siphoviridae Inhibition of Leuconostoc in raw pork [75]
pork
L. monocytogenes
® yrog -
Listeria monocytogenes A500 ATCC isolated from Guinea TEM 38,867 bp Siphoviridae Control of L-forms of L. monocytogenes [76,77]
23074-B1™ pig on surfaces
H387 . o Disinfection of working surfaces of
L. monocytogenes H387-A 2671 - TEM ND Siphoviridae food processing plants [78,79]
LiMN4L Seafood waste water Control of L. monocytogenes on
L. monocytogenes LiMN4p e tmont anit ND ND ND stainless steel in seafood processing [22]
LiMN17 environments
Sewage from a .
L. monocytogenes Ab511 sewage treatment Té)l\}}[age typing, 134,494 bp Myoviridae Ready-tf) -egt .fogdsl frqm pllelmt and [80-84]
plant , sequencing animal origin including cheeses
L. monocytogenes FWLLm1 Sheep feces TEM, ND ND Reduction of L. monocytogenes growth [85]
in ready-to-eat poultry products
Floor drain-water . o
L. monocytogenes IZSAM-1 from an Italian blue =~ TEM, sequencing ~50 kb Siphoviridae Biocontrol of L. monocytogenes within [86,87]
cheese industrial facilities




Molecules 2021, 26, 5138

7 of 24
Table 1. Cont.
Target Bacteria Phage/s Source Charﬂa/[cetfﬁi)z;tion Genome Length 2 Family Food Application Reference
Biocontrol of contaminated surfaces,
L Sewage effluent from . .. the surface of soft cheeses,
Listeria spp. P100 a dairy plant TEM, sequencing 131,384 bp Myoviridae ready-to-eat foods, fresh-cut fruit, and [88-92]
fruit juices, raw fish fillets,
Pseudomonas fragi Wy Ground Beef TEM, dsDNA ND - Reduction OfrI; v{/r filﬂll? refrigerated [93-95]
Pseudomonas sp. C35 spoiled retail beef - ND - Biological control of beef spoilage [96,97]
sludge
obtained after Control of P lactis i
Pseudomonas lactis HU1 pass.ing raw cow’s TEM, dsDNA ~48 Kb Podoviridae (I){r;wf\/OC%w;s 611\(;[illskm [98]
milk through a
centrifugal clarifier
Pseudomonas fluorescens PspYZU5415 . 39,636 bp Siphoviridae Growth inhibition of E. cloacae and P.
E. cloacae strains EcpYZUO1 Sewage samples TEM, sequencing 39,767 bp Corticoviridae fluorescens in [43]
Sewage R R
P. fluorescens IBB-PF7A & TEM, dsDNA ~42 kbp Podoviridae E e ﬁgt‘fﬁu gis 1N dairy [99,100]
treatment plant and other food industries
Salmonella Enteritidis, Chicken by—product . . .. Control Salmonella on chicken skin.
S. Typhimurium wksl3 samples TEM, sequencing 42,766 bp Siphoviridae from broiler carcasses [101]
. . Bi trol of Sal Ila in food
Salmonella serovars LPSEYT Water samples TEM, sequencing 53,387 bp Myoviridae matlg(cjce)gi;(;h? dfrfgn;rzﬁi Zrig lgt(;uce [42]
CAU-SEP-1
o CAU-SEP-2 . Myoviridae and Control of S. Enteritidis in chicken
Salmonella Enteritidis CAU-SEP-3 River water samples TEM ND Siphoviridae breast meat [102]
CAU-SEP+4
CNPSA 1 tailed dsDNA Reduction of
Salmonella Enteritidis CNPSA3 free-range chickens TEM, dsDNA ND haoes Salmonella Enteritidis in [103-105]
CNPSA4 phag Contaminated Chicken Cuts
Salmonella Enteritidis P29C Raw human sewage - ND Siphoviridae Reduction of bacterial contamination [54,106]
on chicken carcass surfaces
Poultry plaque . T
Salmonella spp. PSE5 slaughterhouse morphology and ND ND Reduction (C)}fﬁccokr;?rgglgznon fnraw [107]
wastewater

RAPD analysis
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Table 1. Cont.
Target Bacteria Phage/s Source Charﬂa/[cetfﬁi)z;tion Genome Length 2 Family Food Application Reference
LPSTLL . Siphoviridae Reduction of Salmonella counts in milk
Salmonella spp. LPST94 Evr;\;icl)‘nsr;rintlzlsly TEM ND Ackermannviridae  and chicken breast and on stainless [108,109]
LPST153 p Podoviridae still surfaces
. Environmental TEM, dsDNA, . .. Control of Salmonella in
Salmonella strains LPSE1 samples sequencing 41,854 bp Siphoviridae ready-to-eat foods [110]
. . . Suppression of Salmonella growth on
Salmonella strains Fehxo?_lE/zF elix Fecesg f g?f;g’sphmd TEM, Sequencing 86,155 bp/~84 kb Myoviridae chicken frankfurters, poultry [111-114]
p products, and ready-to-eat foods
: Wastewater _ Reduction of Salmonella growth
Salmonella strains PHL4 treatment plant ND ND poultry products [115]
. TEM, DNA . L. Biocontrol of Salmonella in
Salmonella strains vB_SalS_S]_3 Wastewater sequencing 162,910 bp Siphoviridae contaminated Eggs and Pork [116-118]
Salmonella strains Pu20 Sewage samples TEM, sequencin 59,435 b Podoviridae Growth inhibition of Salmonella [119]
& P +5€q & ¢ P strains in liquid egg white and yolk
- Environmental . gy Growth inhibition of Salmonella
Salmonella strains D1-2 samples TEM, sequencing 86,878 bp Myoviridae strains in liquid egg white and yolk [120]
Salmonella enterica :
: TEM, sequencing. .
Salmonella Typhimurium P22 [Argo4] subsp. enterica Reference strain 41,724 bp Podoviridae Prevention of attachment to food [121-124]
serovar ATCC® 97540™ surfaces and food matrices
Typhimurium
Salmonella Typhimurium p7 Unknown - ND ND Control of pathogens in liquid foods [36]
Salmonella serovars LPST153 Water samples TEM, sequencing 39,176 bp Autographivirinae Control Oifg&"ﬁgg?gg&g;ggg milk and [125]
S. enterica serovar UAB_Phi 20 Chicken Podoviridae Reduction of Salmonella on foods and
Typhimurium UAB_Phi78 Chicken T]sEeMl’JSISI]CDiEA’ 411’)80271) 5634‘5110 Podoviridae reduction of Salmonella Colonization [126-128]
S. enterica serovar Enteritidis UAB_Phi87 pig 1 J p o7 P Myoviridae of poultry
e Sp-1 Intestinal content of TEM, dsDNA, ~86 kb Podoviridae Biocontrol of Salmonella in cooked
Salmonella Enteritidis SP-3 broiler chickens PCR amplification ~88 kb Siphoviridae chicken meat [35,129,130]
Reduction of Salmonella counts in
Salmonella Enteritidis sp2 Chicken egg ND ND ND Cheddar cheese made from both raw [131]

and pasteurized milk, and in
contaminated eggs and pork
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Table 1. Cont.

Characterization

Target Bacteria Phage/s Source Method Genome Length 2 Family Food Application Reference
vBSenM-
PA13076 50 474 D Biocontrol of Salmonella in foods
Salmonella Enteritidis (PA13076) Chicken sewage TEM "ND p Myoviridae (chicken breast, pasteurized whole [132,133]
vBSenM-PC2184 milk, Chinese cabbage)
(PC2184)
Salmonella and E. coli Raw chicken . iy Reduction of viable counts on solid
0157:H7 PS5 products TEM, sequencing 158,400 bp Myoviridae and liquid foods [134]
. SSP5 Myoviridae Control of Salmonella Oranienburg on
Salmonella Oranienburg 3SP6 Sewage samples TEM ND Sipyhoviri e alfalfa seeds & [135]
S-STyEP]ZiE”:iZgé?Sm A sewage treatment TEM ND Myoviridae Control of Salmonella in mustard and [136]
S Montevideo B plant Siphoviridae broccoli seeds -
N . Microencapsulated bacteriophage
Salmonella strains, including T156 Waste water TEM, dsDNA, 123,849 bp Siphoviridae applied in skim milk and lettuce for [137]
MDR Salmonella sequencing .
biocontrol of Salmonella
Deposited by ATCC® . . . L
Staphylococcus aureus K EA Asheshov 19685-B1™ 139,831 bp Myoviridae Removing S. aureus biofilms [138,139]
H5 (phiPLASS) . TEM, dsDNA, 42,526 bp . L Curd manufacturing, fresh and .
S aureus A72 (phiPLA35) Raw milk sequencing 45,344 bp Siphoviridae hard-type cheeses [140-142]
Inactivation of S. aureus planktonic
S. aureus SA46-CTH2 Food samples TEM 17,505 bp Podoviridae cells in pasteurized milk and biofilms [143]
on stainless steel surfaces
Temperate phage Biocontrol of S. aureus in pasteurized
S. aureus SA13m SAl3isolated froma TEM, sequencing 42,652 bp Siphoviridae whole milk at refrigeration and [144]
goat fecal sample ambient temperatures
Wastewater SppYZUO01
Shewanella baltica SppYZUO01 to from freshwater and . (43,567 bp) Myoviridae Biopreservation of
and S. putrefaciens gppYZUlO marine product TEM, sequencing SppYZU05 Siphoviridae chilled channel catfish [145]
marketplaces (54,319 bp)
SF-A2 Spiced chicken TR )
. X - tivat f foodb Shigella
Shigella spp. SD-11 Pig farm effluent TEM ND Myoviridae hac lvarteoarclzl;-t(?-(éat ?}?c(i(en geliaon [146]
55-92 Pig farm effluent
vB_VpaS_OMN Inactivati (v h Iuticus i
Vibrio parahaemolyticus (designated as Sea water TEM, sequencing 42,202 bp Podoviridae nactivation o e para atemo yhicus m [147]
phage OMN) oyster mea

! Nuclease digestion tests and/or Random Amplified Polymorphic DNA Analyses (RAPD), 2 Family designated by the authors, ND: not determined, TEM: Transmission Electron Microscopy.
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According to the articles analyzed, the phages of the family Myoviridae were preferen-
tially used to control E. coli. Other important food pathogens such as C. jejuni, Salmonella,
L. monocytogenes, and S. aureus were controlled by Siphoviridae and Myoviridae. The an-
alyzed studies showed that the Podoviridae family can infect all these species, but fewer
phage strains of this family have been found to control bacteria in the different foods
tested. Comparative genomics and morphological observation by transmission electron
microscopy revealed that the phage LPSEYT, able to infect Salmonella, represents a new
genus within the Myoviridae family [42]. This last example shows that if we go a little
deeper into the genomic characterization of the isolated strains, we will be able to advance
in the knowledge of the taxonomy of phages. Most of the phages used to control these
pathogen species in food were isolated from wastewater, sewage, or other environmen-
tal samples; but many have also been isolated from different foods. One phage strain
(EcpYZUO01) of the Corticoviridae family was isolated from sewage samples and tested
against Enterobacter cloacae in cucumber juice [43]. Finally, a phage (LPST94) from the Acker-
mannviridae family isolated from water was effective against Salmonella in foods [108,109].
This newly assigned family was recently added to the list of the International Committee
on Taxonomy of Viruses ICTV catalog. The isolation of phages from sewage and water
samples is common due to their abundance in these ecosystems. However, Scattolini et al.,
pointed out that the search and characterization of phages isolated in the same foods in
which the pathogens can hide could be a good way “to integrate this control measure in an
innovative, cost-effective, safe and environmentally friendly way” [86]. Therefore, it seems
like a good idea to use phages in food safety which in turn come from food, especially for
the consumer, who can identify fewer drawbacks than when consuming phages or their
genetically manipulated enzybiotics.

Bacteriophages can also be used to prevent or to reduce colonization of domesticated
livestock with bacterial pathogens before they enter the production chain [148]. After that,
phages can be used to decontaminate inanimate surfaces made, for example, of stainless
steel or to fight bacterial biofilms. Finally, phages can be used directly on food, both in
unprocessed or ready-to-eat foods as well as processed foods, even stored at temperatures
ranging from 4 °C to 20 °C.

Several cofactors tested with phages used in the control of L. monocytogenes in the
food industry have been recently reviewed by Kawacka and coworkers [26,149]. Among
those factors, we can find other bacterial cultures such as Lactobacillus spp., Gluconocbacter
assii, the bacteriocins Nisin, Enterocin and Pediocin, and several compounds such as lauric
arginate, potassium lactate, sodium diacetate, sucrose monolaurate.

3. Spatial Distribution of Phages

Bacteriophages’ ubiquity is another advantage. It is estimated that there are 10 bacte-
riophages for every bacterium present on our planet, representing a virtually unlimited
source, not only of virions but also of lytic enzymes. Phages are especially abundant
in seawater and soil and have also been found in large quantities in wastewater. The
potential use of bacteriophages as indicators of environmental contamination has also been
investigated in the last few decades [150-155]. Perhaps the most impressive figures are
that phages kill bacteria at rates of up to 40% of the total population of marine bacteria per
day and that carbon flux through phage biomass is estimated at 145 gigatonnes per year,
playing a crucial role in our planet’s global carbon cycle [156,157]. They are also easily
found on any animal or plant surfaces as they are part of the microbiota of most living
things. Phages have also been isolated from a variety of foods, including ready-to-eat
foods, fish and shellfish, milk products, meat, and vegetables [33,158-162]. Because of
this, consumers are already in contact with food bacteriophages every day. Therefore, if
researchers could offer an adequate explanation, it would help consumers to increase their
acceptance of the use of food bacteriophages. In other words, they should accept their use
as biopreservatives if we can explain well what this class of virus really is and how exactly
they are used to fight “bad” bacteria in food.
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1. Samples:
Food sample

Animals
Environment
(wastewater)

4. Morphology and Classification

Initially, phages were characterized by transmission electron microscopy (TEM), fol-
lowed by pulse-field gel electrophoresis and restriction endonuclease analysis. However,
although TEM continues to be essential in publications on bacteriophage viruses, the
quality of the images in many of the articles is questionable [163]. Most studies use the
work of Ackermann or the criteria of the International Committee on Taxonomy of Viruses
(ICTV) [164] to identify their phage isolates [165-167]. For further taxonomic classification
and phage characterization, more detailed information, such as genomic data, has begun
to be included in scientific publications [168-171].

Most phages belong to the order Caudovirales. Based on the tail morphology, Caudovi-
rales are divided into three families: Myoviridae, Siphoviridae, and Podoviridae. Myoviridae
phages are characterized by long straight contractile tails, Siphoviridae phages possess long
flexible non-contractile tails, and Podoviridae phages have short, non-contractile tails [172].

Alternatively, we can also use the PCR technique and subsequent sequencing to
partially characterize the isolated phages. For example, some authors used specific primers
to detect the Major Capsid Protein (MCP) of reported Salmonella phages [158,159].

Augustine et al., also used PCR or multiplex PCR to perform a screening of virulence
factors in DNA obtained from phages [35]. Tomat et al. used PCR to detect virulence factor
genes (from diarrheagenic E. coli toxins) in two phages (DT1 and DT6) isolated from stool
samples of patients with diarrhea [72].

Presently, full genome sequencing and analysis provide the key tool for taxonomic
classification and for alerting the presence of “dangerous” genes that phage genomes may
contain. We believe that it is necessary to sequence phage genomes to obtain information
on the presence of antibiotic-resistant genes or virulence factors before determining their
suitability for food applications. An outline with the steps followed for the isolation and
characterization of phages for food biopreservation is shown in Figure 1.
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Figure 1. Steps followed for the isolation and characterization of phages.

DNA genomes of Caudovirales range in size from about 15 up to 500 kbp [173].
The study of the genome of phages is crucial today, but most investigations analyzed
before to the last 10 years do not include the sequencing or annotation of these genomes.
The complete genomes of phages are already included as a technique of characterization
and phylogeny, but the in-depth analysis of these genomes has only been carried out
very recently; this even allows us to discover new subfamilies and new genera of phages
infecting food pathogens [43,125].
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5. Phage’s Life Cycle

To perpetuate themselves, phages must infect their host bacteria by binding to specific
receptors on them. After injecting their nucleic acid into the bacterium’s cytoplasm, phages
can hijack the bacterium’s cellular machinery to induce their own replication, through a
process called the “lytic cycle”, giving rise to hundreds or thousands of complete viral
particles that will leave the cell after killing it (Figure 2). Alternatively, if the phage nucleic
acid is inserted into the chromosome or within a plasmid of the bacterium, it can remain
in a kind of dormant state known as the “lysogenic cycle,” which will not produce new
virus particles until conditions are favorable, or their genes are activated by some external
stimulus. Lytic bacteriophages are the first choice to selectively kill bacteria in foods
because lysogenic phages remain in the bacterial chromosome and will not multiply until
the environment in which the bacterium is found allows for it, making lysogenic phages
difficult to control.

Figure 2. Gram-negative bacterium after lysis by phages. Numerous complete or incomplete phage
heads and tails can be seen in the image. Inset: Detail of the boxed area showing two phages of the
Siphoviridae family. Original magnification x25,000.

6. Enzybiotics

There are three classes of bacterial cell wall hydrolases: animal lysozymes, bacterial
autolysins, and phage lysins. All animal lysozymes share the ability to hydrolyze the 3-(1,4)-
glycosidic bond between the alternating N-acetylmuramic acid and N-acetylglucosamine
residues of the bacterial cell wall polymer called peptidoglycan. Their biological role is
mainly antibacterial defense, but some lysozymes also work as food digestive enzymes
in animal guts [174]. Bacterial cell wall hydrolases are involved in carefully remodeling
the cell wall to maintain cell integrity but also participate actively in processes such as cell
division, bacterial surface appendages’ assembly, and the facilitation of bacterial secretion
systems’ stabilization [175,176]. Most of these autolysins are peptidoglycan hydrolases
(PGHs) that can provoke bacterial autolysis, so their expression and activity need to be
tightly regulated.

The third class of cell wall hydrolases are phage endolysins, enzymes that directly
target bonds in the peptidoglycan of the bacterial cell wall. These so-called enzybiotics
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(for ENZYme antiBIOTICS) are synthesized at the end of the bacteriophage lytic cycle
to lyse the bacterium they parasitize, producing a lysis “from within” in Gram-negative
bacteria [177]. Most endolysins contain one or two enzymatically active domains (EAD) in
the N-terminus (which cleave one of the bonds in the bacterial peptidoglycan) and one cell
wall-binding domain (CBD) in the C-terminal region (which is involved in host bacterial
recognition). Based on their EAD, enzybiotics can be broadly divided into three types:
endopeptidases, amidases, and glycosidases.

On the other hand, in Gram-positive bacteria, endolysins are also able to lyse bacteria
“from outside” during the phage adsorption at the bacterial surface [178,179].

Endolysins have an extensive structural variation and a diverse cleavage predilec-
tion for the molecules with glycosidic, amide, or peptide bonds present in the bacterial
peptidoglycan [180,181]. The structure of endolysins can be either globular or modular.
Globular endolysins are unique for phages infecting Gram-negative bacteria, whereas
modular endolysins are found in phages with a Gram-positive host. Another class of
phage enzymes is virion-associated peptidoglycan hydrolases which share a similar mode
of action on the bacterial peptidoglycan [182-185]. A good example of these newly stud-
ied antibacterial molecules is the virion-associated peptidoglycan hydrolase HydH5 of
Staphylococcus aureus bacteriophage vB_SauS-philPLA88 [186]. Additionally, some phages
can produce depolymerases to overcome bacterial protective layers such as proteinaceous
S-layers [187] or polysaccharide capsules [188].

Among the advantages of enzybiotics, we include the possibility of totally or partially
breaking the structure of bacterial biofilms. A biofilm can be defined as a structured com-
munity of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an
inert or living surface. Growth in biofilms enhances the survival of bacterial populations in
the food industry environments, increasing the probability of causing food-borne infections.
Due to the presence of extracellular material that protects biofilms, many phages have
limited access to bacteria inside these structures. This can be solved using phages ex-
pressing exopolysaccharide depolymerases and endolysins. Endolysins can act effectively
irrespective of the metabolic status of the cells (exponential and stationary phase cells) and
are capable of killing planktonic cells as well as sessile cells. In this way, phage endolysins
have been shown to be effective in eliminating biofilms formed by tenacious pathogens on
different surfaces commonly used in the food industry [189-192]. Moreover, endolysins
can be evaluated in combination with depolymerases or even with antibiotics to kill the
underlying pathogen that formed the biofilm. On the other hand, as many pathogens
build their biofilms based on different substances that form the biofilm matrix, it would
be advisable to evaluate the activity of endolysins against biofilms that present a different
proportion of proteins, nucleic acids, sugars or lipids.

Additionally, endolysins can kill “persister” bacteria that escape conventional antibi-
otics and even can kill the dreaded multi-resistant strains. Although there are not many
studies in this regard, endolysins also offer the possibility of being used in combination
with other molecules or with other solutions for the food industry, such as bacteriocins or
probiotics. Furthermore, as gene-encoded proteins, enzybiotics are amenable to bioengi-
neering strategies, both to optimize specificity and to increase yields [193,194]. An example
is the construction of hybrid proteins consisting of LysSA11 -an endolysin of the S. aureus
phage SA11 and the enzymatically active domain of LysB4- and endolysin from the Bacillus
cereus phage B4 [195].

The search, characterization, and practical use of these phage-derived lysins have
received less attention than phages, basically because they are more difficult for many
laboratories to study. However, there is a growing body of work on these enzymes,
particularly in the field of human and animal pathogens, which has encouraged researchers
in other fields, including food safety, to begin promising work with enzybiotics. Not
surprisingly, many enzybiotics have been successfully tested as biopreservatives or have
been proposed by their discoverers as good candidates to be used in food against Gram-
negative and Gram-positive bacteria (Table 2). The study of these enzymes in phages that
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do not belong to the “selective group” of food pathogens could provide a wide range of
new proteins with different properties and varied spectra.

Table 2. Enzybiotics tested against food-borne pathogens and their proposed use in foods.

Target Bacteria Enzybiotic Source Food Application Reference
Bacillus cereus, B. subtilis and antibacterial agent to control
L. monocytogenes LysB4 B. cereus phage B4 foodborne pathogens. 1961
Clostridium tyrobutyricum and CtolL Bacteriophage CTP1 isolated from Cheese manufacture, reduction of [56,197]
C. sporogenes p landfill clostridial activity in cheese o
C. tyrobutyricum Lytic bacteriophage (ATCC® . L L
C. acetobutylicum CS74L §074-B1™) of C. Sporogenes Biocontrol of clostridia strains in foods [198]
C. perfringens Ply3626 C. perfringens ATCC 3626 Control of anaerobic spore-formers [199]
. . Inhibition of C. perfringens in
C. perfringens LysCPAS15 C. perfringens phage CPAS-15 Sterﬂizej’m{qké’ [200]
Bacillus subtilis ; ; :
B. megaterium PLY%{% EI-} f{ 500 Phages from Listeria monocytogenes Produit.mn of airy starter cultgres with [201-203]
L. monocytogenes iopreservation properties
. : . Reduction of E. coli O157:H7 on
E. coli O157:H7 PlyEc2 Phage from E. coli contaminated lettuce [204]
%zcéflizictfgzsalgg% gj}gggggg: LysA2 L. casei bacteriophage A2 Ripening of fermented products [205]
Lactobacil.li, lactococci,
pBe dSIOZ?; <l Mur-LH Phage 0303 from Lactobacillus helveticus Preventing the growth of [17]
0. OUBLILS | CNRZ 303 spoilage microbes
Brevibacterium linens
Enterococcus faecium
L. monocytogenes Antimicrobial biopreservative in
B. su tillgs PlyP100 Phage from L. monocytogenes fresh cheese. [206]
L. monocytogenes LysZ5 Phage from L. monocytogenes Control pathogens in soya milk [207]
ytog y 8 Ytog pathog y
. Proposed control of L. monocytogenes in
L. monocytogenes PlyLM Phage from L. monocytogenes strain 4b food matrices and processing facilities [208]
Reduction of L. monocytogenes viable
L. monocytocenes HPLI%E;LI;ELSOO Recombinant endolysins from counts in iceberg lettuce. Promising [201,209,
' yros HPLP35 L. monocytogenes phages perspectives in production and 210]
packaging environments
Methicillin-resistant . Biopreservative in whole and
Staphylococcus aureus LysGH15 Phage isolated from Sewage samples okim milk [211,212]
methicillin-resistant S. aureis LvsSA11 Staphylococcus aureus Biocontrol of S. aureus on strain in [213]
' Y phage SA11 pasteurized milk or ham and utensils
S. aureus L H]%IE]EI/SD- Phage SA11 from S. aureus phage B4 S Biocontrol of S. aureus and B. cereus in [195]
Bacillus cereus {;SS A1l from B. cereus boiled rice ;
. Disinfection process of industrial food
S. aureus LysH5 Staphyl}(:ic_%ccaéﬁ;itzlggphage facilities. Elimination of S. aureus in [190,214]
phizsau pasteurized milk
Chimeric protein (CHAP domain from
peptidoglycan hydrolase HydH5 and . Lo
S. aureus CHAPSH3b the SH3b cell wall-binding domain S. aureus biofilm elimination [215]
from lysostaphin)
Truncated derivative of the phage . s Lo
- Reduction of biofilm formation in
S. aureus CHAP lysin LysK from the staphylococcal : 189
K y Y bacteriophagepKy processing systems [189]
HydH5
HydFH5Lyso S. aureus bacterio i
. phage Biocontrol of S. aureus ;
S aureus Cgﬁgﬁgﬁi B vB_SauS-philPLASS in dairy products [216]
lysostaphin
Streptococcus agalactiae (serotype III Inactivation of Strepcococcus spp. in
Streptococciis spp- ASA2 GBS strain 3330) bacteriophage B30 cow milk [217,218]
. . . . Combating S. Typhimurium biofilms
S. Typhimurium LysSTG2 Salmonella-lytic bacteriophage STG2 in food industries [219]
Salmonella strains LysSE24 Salmonella phage LPSE1 Food Control of Salmonella strains [220]
Several Gram-negative o . .
pathogens, particularly against Lys68 Salmonella phage phi68 isolated from Combat Gram-negative pathogens in [221]
feces from a poultry farm

Salmonella Typhimurium

the food industry
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Furthermore, enzybiotics can improve the narrow host spectrum of phages against
both Gram-positive and Gram-negative bacteria. Therefore, the narrow host range of
phages should be used to control specific spoilage or pathogenic bacteria, while the broadest
spectrum of enzybiotics can be used to control different strains or species. Some of the
newly isolated and characterized endolysins have a broad spectrum so they could be
candidates for use in the food industry. An example is endolysin M4Lys, which has a
peculiar mosaic structure [222].

The main limitation in the use of phage enzybiotics in food is their complicated
production and purification, since relatively large amounts of proteins are needed even to
be studied in in vitro assays. Another problem is their low resistance to high temperatures
used in different processes in the food industry, such as disinfection. However, the search
for new enzymes with new properties will make it possible to find thermostable and easy-to-
produce forms in heterologous hosts such as E. coli and Lactococcus lactis [21,221,223-225].

7. Concluding Remarks

Many natural and eco-friendly methodologies for food preservation have been pro-
posed in the last few years, but only limited data are available about the usefulness of
most of them under industrial scale conditions, which needs proper attention to satisfy
the requirements of the industry as well as the demand of the consumers [226-230]. Con-
sequently, studies about the ability of the reported biopreservative agents to control the
development of undesirable microorganisms when applied at the industrial scale are
greatly required.

Studies on the biocontrol of food-borne pathogens in foods have generally produced
very good results. However, not all are lights in the use of phages against pathogenic
bacteria in food, there are also shadows. There are assays in which it was not possible to
reduce the number of pathogenic bacteria in food using bacteriophages [136,231,232].

The use of phages in human and veterinary medicine has received much more atten-
tion than their use in the food industry; but the increasing appearance of antibiotic-resistant
strains in the food industry has begun to make these viruses be seriously taken into account
when seeking their (application for food safety), also in this context. Similarly, their lytic
enzymes have not been sufficiently exploited in the food industry to date. However, this
is beginning to change; indeed, after the successful use of lysozyme (animal) or Nisin
(bacteria), enzymes are beginning to be seriously valued in the food industry. Phages offer
new and interesting possibilities when planning the control of annoying microorganisms
in food manufacturing, food biopreservation, or food processing. Additionally, their lytic
enzymes, easily modifiable through molecular biology processes, offer a very wide range
of possibilities both for direct application against bacteria, as well as for inclusion in food
matrices or the preparation of antibacterial surfaces generated by biotechnology [233].

Virulent bacteriophages are naturally present in foods, therefore both phages and their
enzybiotics would be exploited in different ways for food safety as the consumer demand
for the use of ecofriendly biopreservatives is increasing. Contamination of ready-to-eat
products with pathogenic bacteria is a more serious problem than the contamination of food
that will then be cooked before being consumed since many of the cooking methods reduce
the number of these bacteria. In this context, both phage and enzybiotics have been tested
in ready-to-eat meals. However, not only is the use of phages and their enzymes in food
is not only an area of incipient research, but the whole biology of phages is experiencing
a new boom in all domains of research, mainly in human and veterinary health, where
spectacular achievements have already been reached in some patients and farm animals.

Along with this increasing amount of isolation and characterization of phage strains
capable of controlling important food-borne pathogens—it is always desirable to increase
our armament against superbugs—we must make a parallel effort to understand more in-
depth their interaction with target pathogens, as well as their biology and ecology in food
if we want to apply them in the different stages of the production chain, increasing their
biopreservation capacity. At the molecular level, we must better characterize enzybiotics,
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study the possibility of applying them in different processes, and optimize their production
so that their application is profitable for food producers and does not raise the price too
much for consumers.

Furthermore, the safety and ubiquity of phages must be well explained to both food
producers and consumers to avoid rejection of “the unknown” [234,235]. Bacteriophages
are the most abundant microorganisms on the planet and even in our guts, with approxi-
mately 10'* phage particles in our body [236]. As we have seen in this review, phages and
their enzybiotics can be found in the environment, in animals, and in food we eat every
day. Finally, some phage-based products for the control of pathogens in food are already
being used in different countries after being approved by competent authorities, even in
ready-to-eat products. Those products mainly include a cocktail of phages, for example
against E. coli (EcoShield™), L. monocytogenes (ListShield™ and PhageGuard Listex™), and
Salmonella spp. (SalmoFresh™) [237].
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