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Summary  
The goal of this study was to identify the differences of intracellular signals between the processes 
of thymic positive and negative selection. The activation of calcineurin, a calcium- and calmodulin- 
dependent phosphatase, is known to be an essential event in T cell activation via the T cell receptor 
(TCR). The effect of FK506, an inhibitor of calcineurin activation, on positive and negative 
selection in CD4 * CD8 + double positive (DP) thymocytes was examined in normal mice and 
in a TCR transgenic mouse model. In vivo FKS06 treatment blocked the generation of mature 
TCRhishCD4+CDS- and TCRhishCD4-CD8 + thymocytes, and the induction of CD69 ex- 
pression on DP thymocytes. In addition, the shutdown of recombination activating gene 1 (R.AG-1) 
transcription and the dowuregnlation of CD4 and CD8 expression were inhibited by FKS06 
treatment suggesting that the activation of calcineurin is required for the first step (or the very 
early intracellular signaling events) of TCR-mediated positive selection of DP thymocytes. In 
contrast, FK506-sensitive calcineurin activation did not appear to be required for negative selection 
based on the observations that negative selection of TCRol/~ T cells in the H-2 b male thymus 
(a negative selecting environment) was not inhibited by in vivo treatment with FKS06 and that 
there was no rescue of the endogenous superantigen-mediated clonal deletion of VB6 and V/511 
thymocytes in FK506-treated CBA/J mice. DNA fragmentation induced by TCR activation of 
DP thymocytes in vitro was not affected by FKS06. In addition, different effects of FK506 from 
Cyclosporin A on the T cell development in the thymus were demonstrated. The results of this 
study suggest that different signaling pathways work in positive and negative selection and that 
there is a differential dependence on calcineurin activation in the selection processes. 

T he developmental fate of individual T cells maturing 
in the thymus is determined by the specificity of the TCRs 

they express. The maturation of thymocytes expressing TCRs 
with potential reactivity with self-ligands is aborted by a pro- 
cess termed negative sdection (1-5), whereas the maturation 
of thymocytes expressing TCRs that are potentially reactive 
with foreign antigens presented by self-MHC-encoded mol- 
ecules is promoted by a process called positive selection (6-10). 
Because intrathymic selection events are clonally restricted 
and TCR specific, they are thought to be a consequence of 
TCR-mediated signals stimulated by interaction with thymic 
stromal cells bearing self-ligands. We have been investigating 
the nature of events in the TCR-mediated selection process 
in the thymus. 

Recently, we demonstrated that thymocytes undergoing 

positive sdection can be identified on the basis of the expres- 
sion of an "early activation marker" CD69, on their surface 
(11). Analysis of other surface markers in combination with 
CD69 revealed that the CD69-positive thymocytes consisted 
of several distinct populations based on surface phenotypes, 
suggesting that positive selection involves multi-step processes. 
The first population identified appeared as CD691~ l~ 
CD4t~ l~ cells of the CD4+CD8 § double positive 
(DP) 1 thymocyte subpopulation (11). The next phenotypic 

1Abbreviations used in this paper: APC, allophycocyanin; [Ca2+]i, 
intracellular calcium; DN, double negative; DP, double positive; EtBr, 
ethidium bromide; FCM, flow cytometry; H-YTg, anti-H-Y TCRo~ 
transgenic; PI, propidium iodide; KAG-1, recombination activating gene 
1; SEB, staphylococcal enterotoxin B; SP, single positive. 
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change was the concomitant increase in surface expression 
of CD69 and TCR. Further development to CD4 or CD8 
single positive (SP) thymocytes began just after the increase 
of TCR and CD69 expression, and resulted in the appear- 
ance of either CD4~ghCD8 l~ or CD41~ h cells. These 
cells apparently were destined to become CD4+CD8 - or 
CD4-CD8 + SP thymocytes, respectively. Finally, the SP 
thymocytes lost the expression of CD69 and heat stable an- 
tigen, acquired Qa-2, and became very mature SP thymo- 
cytes in many criteria (11-14). 

In support of our hypothesis that positive selection involves 
multi-step processes, several investigators have recently reported 
that the thymic positive selection consisted of at least two 
distinct stages (15-19). T cell development up to CD4hi8 h 
CD8 l~ or CD41~ h DP thymocyte stages was medi- 
ated by CD4- and CD8-independent signals (stochastic events) 
(15-19), and further development to mature CD4+CD8 - 
and CD4-CD8 + SP thymocyte stages was mediated by 
signals dependent on CD4 and CD8 molecules, because no 
mature CD4 + CD8- or CD4-  CD8 + SP thymocytes were 
generated in MHC class II or I knockout mice, respectively. 

Although the molecular mechanisms in each step of the 
positive selection have not been fully resolved, there are 
emerging views from recent published reports. When the 
TCR on DP thymocytes were engaged with anti-TCR mAb 
in vitro, transcription of recombination activating gene 1 
(RAG-l) and RAG-2 in DP thymocytes was turned off (20, 
21), expression of CD4 and CD8 was downregulated (11, 
22), and surface expression of CD69 was induced (11). These 
changes appeared to take place in the first step of thymic posi- 
tive selection within the DP thymocyte population, because 
the first distinct population observed during positive selec- 
tion was comprised of CD69-positive CD41~176 DP 
thymocytes. We wished to gain a better understanding of 
the intracellular signaling events in the first step of positive 
selection. 

The effect of the immunosuppressive drug, Cyclosporin 
A (CsA), on T cell development in the thymus has been in- 
vestigated by several groups (23-25). CsA and FKS06 are 
known to bind immunophilins (cyclophilin and FKBP, respec- 
tively) (reviewed in 26) and have been shown to inhibit the 
activation of calcineurin, a calcium- and calmodulin-dependent 
phosphatase, resulting in the inhibition of T cell activation. 
In vivo treatment of mice with CsA was shown to inhibit 
the generation of SP thymocytes (23-25). The mechanism 
by which CsA blocks this process has not been fully inves- 
tigated. It was of interest to determine whether the blockade 
of SP thymocyte generation could be due to interfering signals 
occurring in the positive selection process of the DP thymo- 
cyte population. We were also interested in determining 
whether the effect of FK506 on T cell development might 
differ from that of CsA, since the pharmacology of FK506 
and CsA is quite different (26). 

In this study, we have examined the effect of FK506 on 
thymic positive and negative selection in several different 
systems that involve the use of normal mice and a H-Y-specific 
TCRo~fl transgenic mouse model. The results show that 

FK506 blocked the generation of mature SP thymocytes by 
inhibiting the first step of positive selection in the DP thymo- 
cyte population. In contrast, FK506 treatment had no effect 
on negative selection events. 

Materials and Methods 

Animals. C57BL/6 (B6) young adult mice and B6 and CBA/J 
pregnant females were purchased from Japan SIC Inc. (Shizuoka, 
Japan). Anti-H-Y TCR~fl transgenic (H-YTg) mice (5) and Vf18.2 
TCR transgenic (Vfl8Tg) mice (27) were established by Drs. H. 
yon Boehmer and M. Steinmetz (Basel Institute, Basel, Switzer- 
land), and provided by Dr. Alfred Singer (National Cancer Insti- 
tute, Bethesda, MD). All mice used in this study were maintained 
under specific pathogen-free conditions. 

Reagents and Cell Lines. A hamster anti-mouse CD69 mAb 
(H1.2F3) was kindly provided by Dr. E. M. Shevach (National In- 
stitutes of Health, Bethesda, MD) (28). FITC-conjugated anti- 
CD69 (H1.2F3-FITC) and biotinylated anti-CD69 (H1.2F3-biotin), 
anti-TCRc~B-FITC (H57-597-FITC) (29), allophycocyanin (APC)- 
conjugated anti-CD8 (53-6.72-APC) (30), anti-TCRc~ of H-YTg 
TCR mAb-FITC (T3.70-FITC) (31) and anti-TCRo~ of 2B4 T cell 
hybridoma mAb-FITC (A2B4-FITC, as a negative control) (32) 
were prepared in our laboratory (University of Tokyo). PE- 
conjugated anti-CD4 mAb (GK1.5-PE) was purchased from Becton 
Dickinson & Co. (Mountain View, CA). PE-conjugated strep- 
toavidin (PE-avidin) was purchased from Bethesda R~search Labora- 
tories (Gaithersburg, MD). Anti-TCRV/36 mAb (44-22-1) (33), anti- 
TCRVf111 mAb (RR3-15) (34), and anti-TCRVfl8.2 mAb (F23.2) 
(35) were used as culture supernatants. Goat anti-mouse IgG-FITC 
and goat anti-rat IgG-FITC were purchased from Southern Bio- 
technology Associates (Birmingham, AL). 

Cell lines used in this study were the FcR + B cell line LK35.2 
(36), I-E k transfected L cell line DCEK (37), and the T cell hy- 
bridoma line 68-41 (38). 

Immunofluorescent Staining and Flow Cytometry Analysis. Freshly 
prepared thymocytes from FK506-treated mice and in vitro cul- 
tured thymocytes were suspended in PBS supplemented with 2% 
FCS and 0.1% sodium azide. In general, one million cells were 
incubated on ice for 30 min with the appropriate staining reagents 
using a standard method as previously described (39). For mul- 
ticolor flow cytometry (FCM) analyses, electronic compensation 
was performed using cell mixtures of positive and negative cell popu- 
lations in each fluorescence emission. FCS analysis was performed 
on FACStar Plus*, using FACStar Plus* and Consort 30 software 
programs (Becton Dickinson & Co.) for data collection and anal- 
ysis. Fluorescence data were collected as a list mode on 20,000 viable 
cells as determined by light scatter parameters and propidium io- 
dide (PI) exclusion. 

In Vivo Treatment with FK506 and CsA. Neonatal B6, CBA/J, 
or H-YTg mice were injected intraperitoneally daily with FK506 
(Fujisawa Pharmaceutical Co., LTD, Osaka, Japan) or CsA (San- 
dozpharma, Basel, Switzerland) for 7 or 14 d beginning at day 0 
(within 24 h). FK506 was suspended in PBS and CsA in olive oil. 
20 h after the last injection, thymocytes were prepared from in- 
dividual thymi and subjected to three-color FCM analysis. 

Purification of CD4+CD8 + (DP) Thymocytes. DP thymocytes 
were isolated by adherence to plates coated with anti-CD8 mAb 
(83-12-5) (40), and were >96% CD4*CD8 + as described (41). 

In Vitro Stimulation of Thymocytes with Immobilized anti-TCR 
mAb. B6 whole thymocytes or purified DP thymocytes were 
stimulated in vitro with immobilized anti-TCR mAb (H57-597) 
for the times indicated at 37~ in 24-well culture plates (model 
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3424; Costart Corp., Cambridge, MA) in 2 ml of ILPMI 1640 
(GIBCO BRL, Gaithersburg, MD) culture medium, supplemented 
with 10% (vol/vol) FCS, 1 mM r-glutamine, antibiotics (penicillin 
and streptomycin), and 5 x 10 -S M 2-mercaptoethanol. The 24- 
well culture plates were preincubated for 1 h at 37~ with 100 
/~g/ml of H57-597 and then washed with RPMI 1640 culture 
medium before adding cell suspension. Viability of thymocytes at 
the end of the stimulation culture was determined to be >85% 
by three criteria: trypan btue exclusion, PI exclusion, and forward 
light scatter. 

Northern Blot Analysis. Total RNA was prepared by the acid 
phenol extraction procedure as described (42). Total RNA (20 #g) 
isolated from the purified DP thymocytes stimulated with immobi- 
lized anti-TCR was separated on 1% agarose gels, and transferred 
to Biodyne membrane filters (Pall BioSupport, East Hills, NY). 
The filters were hybridized with 32p-labeled mouse CD69 (43) or 
RAG-1 (44) probes. The mouse CD69 probe was kindly provided 
by Dr. S. Ziegler (Immunex Corp., Seattle, WA) and the RAG-1 
probe was kindly provided by Dr. F. A. Alt (Harvard Medical School, 
Boston, MA). After overnight hybridization, the filters were washed 
twice in 2 x SSC at room temperature for 15 rain and then in 0.2 x 
SSC at the same temperature for 15 min. The filters were subjected 
to autoradiography. 

Measurement of Intracellular Calcium Concentration ([Ca2+]~) by 
Fluorescence Microscopy and l~'gital Image Analysis. The fluorescence 
digital image processing system used is called IMRAS (45) and is 
similar to that described by Dr. Carl H. June (46). The hardware 
of IMRAS consisted of a modified image processor ARGUS-100 
(Hamamatsu Photonics, Hamamatsu, Japan), an inverted micro- 
scope (Nikon, Tokyo, Japan) with a stage incubator (Tabai Espec, 
Osaka, Japan), an image intensifier with an electronic zooming 
camera (Hamamatsu Photonics), and a light house producing double 
beams (340 _+ 10 nm and 380 _+ 10 nm) in a modified spectro- 
fluorometer (model CAM220; Nippon Bunko, Tokyo, Japan) con- 
nected to the microscope. The image processor and spectrofluorom- 
eter were interfaced to a personal computer (EPSON, Tokyo, Japan). 
The images were averaged and the background was subtracted (46, 
47). 

Purified B6 DP thymocytes (10 7) were precultured in single cell 
suspensions at 37~ for 2 h, and then washed in Hanks' solution 
supplemented with 0.1% FCS (Fura-2 medium). The calls were 
then loaded with 4.4 #M pura-2, AM (Molecular Probes, Inc., Eu- 
gene, OR) at 37~ for 30 min (46). They were washed three times 
with Fura-2 medium, incubated at 37~ for 5 min, and then placed 
on a glass slide in a reaction chamber on the stage of an inverted 
microscope. The Fura-2-1oaded responder thymocytes (10,000 cells) 
were overlaid with an excess number (100,000) of unloaded FcR + 
LK35.2 cells. After the chamber was filled with I ml of 37~ Fura-2 
medium, measurement of [Ca2+]i in the responder thymocytes was 
started by using a two wavelength (340 and 380 nm) method as 
described (46). [Ca~+]i was monitored every 15 s for 8 min at 
37~ Stimulation of T cells was done by adding anti-CD3 mAb 
(145-2Cll, 50 #g/ml) (48) to the chamber I min after starting the 
measurement. Temperature of the medium in the reaction chamber 
was controlled at 37~ throughout the measurement by a ther- 
mostat. 

Immunoblotting. Immunoblottings with anticalcineurin anti- 
bodies were done by the method described (39, 41). In brief, thymo- 
cytes from male or female H-YTg mice were lysed in 1% NP-40 
containing lysis buffer (39). The lysates and purified bovine cal- 
cineurin as a control (#14-104; Upstate Biotechnology, Inc., Lake 
Placid, NY) were subjected to 12.5% SDS-PAGE under reducing 
conditions and electrotransferred to a nylon membrane. The mem- 

branes were then immunoblotted with polyclonal anticalcineurin 
antibody (#06-144) or a monodonal anticalcineurin ~ antibody (#05- 
187). These antibodies were purchased from Upstate Biotechnology, 
Inc. A chemoluminescence detection system (ECL; Amersham In- 
ternational, Amersham, Bucks, UK) was used for visualization. 
The band intensities were measured by a densitometer, and an ar- 
bitrary densitometric unit was listed under each band. 

DNA Fragmentalion and Thymocyte Death Assay. B6 or V~8Tg 
DP thymocytes (107) were first precultured in a single cell suspen- 
sion in 24-well culture plates at 37~ for 2 h. The precultured 
DP thymocytes (107) were then stimulated with anti-TCR mAb 
and FcR+ LK35.2 cells (106), or with staphylococcal enterotoxin 
B (SEB) (10 #g/ml) and I-E + transfected L cells, DCEK, as de- 
scribed (49). 68-41 T hybridoma cells (106) were stimulated with 
immobilized anti-TCR mAb (H57-597) for 24 h. FKS06 (10 nM) 
or CsA (100 riM) was added at the beginning of precultures. 
Genomic DNA from the stimulated cells was separated as described 
(49). The DNA samples were run on 0.8 or 2% agarose gels con- 
taining 0.5/~g/ml ethidium bromide (EtBr; Sigma Chemical Co., 
St. Louis, MO) at 10 V for 16 h. The gels were photographed using 
ultraviolet light illumination. 

For the thymocyte death assay using EtBr (50, 51), B6 thymo- 
cytes were stimulated as above and harvested. Where indicated, 
FK506 (10 nM), CsA (100 riM), EGTA (5 mM), EDTA (5 mM), 
hydrocortisone (1 #M), or thapsigargin (15-150 nM; Sigma Chem- 
ical Co.) was added at the beginning of precultures. The cultured 
ceils were first stained with anti-CD4-PE and anti-CD8-APC, 
washed, and then stained with EtBr (1 #g/m1) for 30 min. After 
washing extensively, the cells were subjected to three-color FCM 
analysis. LK35.2 stimulator ceUs were excluded from FCM anal- 
ysis by using forward scatter during acquisition. Percentages of 
EtBr + ceils (both EtBr ~' and EtBr hlsh cells) in electronically gated 
DP thymocytes were determined. 

Results 

In Vivo Treatment with FK506 Inhibits the Generation of SP 
Thymocytes. It has been previously reported that the gener- 
ation of CD4 and CD8 SP thymocytes is inhibited by the 
in vivo treatment of mice with CsA (23-25). Given that both 
CsA and FK506 are immunosuppressive drugs with similar 
modes of action, it was of importance to determine whether 
FK506 would have a similar effect on the generation of SP 
thymocytes in view of the differences in the pharmacology 
of these two drugs. Therefore, neonatal B6 mice (three mice 
per group) were treated daily for 7 d beginning at day 0 (within 
24 h of birth) with 1, 3, 10, or 30 #g of FK506 in PBS, 
or with 3, 10, 30, or 100 #g of CsA in olive oil. 20 h after 
the last injection, the mice were killed and thymocytes were 
individually prepared and stained with anti-CD4-PE and anti- 
CD8-APC for FCM analysis. Yields of thymocytes, numbers 
of C D 4 - C D 8 -  double negative (DN) thymocytes, CD4 + 
CD8 + DP and CD4 + CD8- (CD4 SP) thymocytes from the 
treated mice are shown in Fig. 1. Total numbers of thymo- 
cytes from the mice treated with 1, 3, or 10/~g of FK506 
were not changed compared with those of PBS-treated mice 
(Fig. 1 A). In contrast, the mice treated with CsA showed 
decreased numbers of thymocytes in a dose-dependent manner. 
Next, the numbers of DN, DP, and CD4 SP thymocytes 
present in the thymus of the mice treated with FK506 and 
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Figure 1. Effect of in vivo treatment with FK506 and CsA on the T 
cell development in B6 neonatal mice. Neonatal B6 mice (three mice per 
group) were treated daily for 7 d beginning at day 0 (within 24 h of birth) 
with indicated doses of FKS06 in PBS or CsA in olive oil. Thymocytes 
were individually prepared and stained with anti-CD4-PE and anti-CD8- 
APC. Yields of thymocytes (mean) are depicted with standard deviations 
(A). The number of CD4-CD8-  DN, CD4+CD8 + DP, and 
CD4+CD8- (CD4 SP) thymocytes were estimated by using the number 
of the yield of thymocytes and the CD4/CD8 profile of each mouse (B). 
The mean values are shown with standard deviation. 
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CsA were estimated by using the CD4 and CD8 staining 
profiles. As shown in Fig. 1 B, no effect of FKS06 on the 
generation of DN and DP thymocytes and dose-dependent 
inhibition of the generation of CD4 SP thymocytes was de- 
tected, whereas CsA did inhibit both DP and CD4 SP thymo- 
cyte generation. These results indicate that FKS06 treatment 
inhibits T cell development of CD4 SP from the DP stage 
but does not appear to affect the development of thymocytes 
through the DP stage. Since CsA appeared to block T cell 
devdopment to the DP thymocyte stage, the decreased number 
of CD4 SP thymocytes detected in the CsA-treated mice could 
be a reflection of the inhibition of DP thymocyte generation. 
Thus, to evaluate the role of calcineurin activation during 
thymic selection events, we chose FK506 for further ex- 
periments. 

The Expression of CD69 in DP Thymocytes Is Inhibited by 
Treatment with FK506 In Vivo. CD69, an early activation 
antigen expressed on ~10% of normal thymocytes, was 
shown to be a marker of thymocytes undergoing TCR- 
mediated thymic selection (11, 52, 53). All CD69 + thymo- 
cytes express TCRo~ and they include a portion of the DP 
thymocytes and ~50% of the CD4 and CD8 SP thymocytes 

(11). Consequently, we examined the CD69 expression on 
thymocytes of mice treated with FK506. The CD4/CD8 and 
TCR~B/CD69 profiles of thymocytes of normal mice treated 
with 1 or 10/~g of FKS06 are shown in Fig. 2. CD4/CD8 
profiles show that the inhibition of CD4 SP thymocytes was 
dose dependent. Dose-dependent decreases in the numbers 
of CD69 + cell and TCRc~B + cell populations were also 
noted in the FKS06-treated mice. In fact, few TCRo~/3 T 
cells were observed in the 10-/~g treated group, consistent 
with the inhibition of the generation of SP thymocytes. 

The CD69 expression on DP thymocytes of the FK506- 
treated mice was determined by three-color FCM analysis with 
anti-CD4, anti-CD8, and anti-CD69 mAb. The CD69 ex- 
pression on the electronically gated DP thymocytes of the 
FK506-treated mice are depicted in the right panels of Fig. 
2. The numbers of CD69 + cells in the DP thymocyte popu- 
lation were decreased in a dose-dependent manner in the 
FK506-treated mice. This result indicated that the treatment 
with FK506 also caused the inhibition of CD69 expression 
by DP thymocytes. Similar observations have been obtained 
in experiments using fetal thymus organ cultures in the pres- 
ence of FK506 or from adult mice treated in vivo with an 
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Figure 2. Effect of in vivo treatment of 
FK506 on T cell development in the thymus. 
B6 neonatal mice (five to seven mice per group) 
were treated daily for 7 d beginning at day 0 
(within 24 h of birth) with 1 or 10/~g of FK506 
in PBS. 20 h after the last injection, the mice 
were killed and thymocytes were individually 
prepam:l for FCM analysis with anti-CD4-PE, 
anti-CD8-APC, and anti-CD69-FITC, or with 
anti-TCR-FITC and anti-CD69-biotin followed 
by PE-Avidin. Representative patterns of the 
CD4/CD8 profiles, the TCP, c~B/CD69 
profiles, and the CD69 expression levels (solid 
lines) on electronically gated CD4*CD8 + 
(DP) thymocytes (upper right quadrants in the 
CD4/CD8 profiles) are shown with back- 
ground stainings (shaded areas). The percentages 
of cells present in each area are also indicated. 

equivalent dose (per body weight) of FKS06 for 1 wk (data 
not shown). Data are not shown, however, CsA showed a 
similar effect on the expression of CD69 on DP thymocytes. 
In the case of the adult mice experiments, no toxic effect of 
FK506 on mature cells was noted since normal numbers of 
mature T cells were recovered from FKS06-treated animals 
(data not shown). 

The surface expression of CD69 on DP thymocytes in the 
thymus is thought to be a consequence of intracellular sig- 
naling events initiated by TCK engagement of ligands on 
thymic stromal cells (11, 52, 53). We have demonstrated that 
DP thymocytes express CD69 within a few hours after in 
vitro stimulation with immobilized anti-TCR mAb (11). 
Thus, we evaluated the effect of FK506 on the expression 
of CD69 in anti-TCK-activated DP thymocytes. Normal B6 
thymocytes were stimulated in vitro with immobilized anti- 
TCK mAb (H57-597) in the presence or absence of 10 nM 
of FK506 for 14 h at 37~ The addition of 10 nM of FK506 
is known to inhibit completely the anti-TCR-induced prolifer- 
ative response of thymocytes, mature splenic T cells, or T 
cell clones (data not shown). The cultured thymocytes were 
harvested, washed, and then stained with anti-CD4-PE, anti- 
CDS-APC, and anti-CD69-FITC. Dead cells were excluded 
from the FCM analysis by the use of PI. CD4/CD8 profiles 
and CD69 profiles of total, electronically gated DP, CD4SP, 
and CD8SP thymocytes are shown in Fig. 3 A. The induc- 
tion of CD69 on DP thymocytes was found to be markedly 
inhibited by FKS06. In addition, the expression of CD69 
on mature SP thymocytes was inhibited by FK506. A similar 
effect of CsA was observed (data not shown). 

We tested also the effect of FK506 on the CD69 induction 
at the mKNA level. Purified DP thymocytes were stimulated 
with immobilized anti-TCR mAb in the presence of 10 nM 
of FK506 for 0.5 and 1.0 h. Northern blot analysis was per- 
formed using a probe for mouse CD69. As shown in Fig. 

3 B, CD69 mRNA was induced within one-half hour in DP 
thymocytes after anti-TCR stimulation, and this induction 
was inhibited significantly but not completely by the addi- 
tion of FKS06. Therefore, we conclude on the basis of these 
collective results that the expression of CD69 in DP thymo- 
cytes is partially dependent on the FK506-sensitive calcineurin 
activation. 

The Effect of FK506 on the Downregulation of CD4 and CD8 
Expression and the Shutdown of RAG-I Transcription in DP 
Thymocytes after Anti-TCR Stimulation In Vitro. The treat- 
ment of DP thymocytes in vitro with anti-TCR, mAb has 
been shown to also result in the downregulation of CD4 and 
CD8 expression (11, 22) and the shutdown of the transcrip- 
tion of the RAG-1 and RAG-2 genes (20, 21). As these events 
occur in the early steps of thymic positive selection, we in- 
vestigated the effect of FK506 treatment on these events. The 
CD41~ CD8 I~ phenotype is characteristic of the first dis- 
tinct population of thymocytes undergoing positive selection, 
i.e., CD69 + CD41~ l~ DP thymocytes (11). As shown 
in Fig. 4, increased numbers of CD41~176 DP thymo- 
cytes are observed in the anti-TCR mAb-treated cultures of 
purified DP thymocytes. Since these cells were not stained 
by PI and trypan blue, and survived for more than 48 h (data 
not shown), they did not appear to be under the negative 
selection process. This phenotypic change was observed also 
in the unseparated thymocytes stimulated with anti-TCg mAb 
(arrow, Fig. 3, CD4/CD8 profiles). However, in the FK506- 
treated cultures, no increase in thymocytes with this pheno- 
type was detected. Yields of viable thymocytes were similar 
in the range of >90% of the input number of thymocytes. 
Thus, it would appear that the downregulation of CD4 and 
CD8 expression on DP thymocytes, which occurs as a conse- 
quence of TCK-mediated signaling events, involves calcineurin 
activation. 

Next, we determined the effect of FK506 treatment on 
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Figure 3. Effect of FK506 on the cdl surface expression and transcrip- 
tion of CD69 in DP thymocytes stimulated with anti-TCR mAb in vitro. 
(A) Normal B6 thymocytes were stimulated in vitro with immobilized 
anti-TCg mAb (H57-597) in the presence or absence of 10 nM of FKS06 
for 14 h at 37~ The cultured thymocytes were washed and then sub- 
jected to three-color FCM analysis with anti-CD4-PE, anti-CD8-APC, 
and anti-CD69-FITC. Dead cells were excluded from the FCM analysis 
using Pl. CD4/CD8 profiles (left) and CD69 profiles of total, electroni- 
cally gated CD4 + CD8 + (DP), CD4 + CD8 - (4SP), and CD4- CD8 + 
(8SP) thymocytes from cultures with immobilized anti-TCR mAb (broken 
lines), immobilized anti-TCR mAb with 10 nM FK506 (solid lines), and 
medium alone (dotted lines) are demonstrated with background stainings 
(shaded areas). The percentages of cells present in each area are shown. 
The mean channel numbers of CD4 and CD8 fluorescence intensity of 
DP thymocytes were 283/2,811 in the control, 167/2,086 in the anti-TCR 
alone, and 197/2,342 in the anti-TCR and FKS06 treated group. (Arrow) 
CD41~ l~ DP thymocytes generated in the culture with anti-TCR. 
(B) Purified B6 DP thymocytes were stimulated in vitro with immobi- 
lized anti-TCR mAb in the presence or absence of 10 nM of FK506 for 
0.5 or 1 h at 37~ Total RNA was prepared from the stimulated DP 
thymocytes and subjected to Northern blot analysis with CD69 and ~- 
actin probes. Arbitrary units are listed under each group as a ratio normal- 
ized by the corresponding signal of B-actin. 

the shutdown of tLAG-1 transcription in DP thymocytes 
treated with anti-TCR. Purified DP thymocytes were treated 
with immobilized anti-TCR mAb for 4, 8, and 16 h in the 
presence or absence of FK506. Northern blot analysis was 
done with a probe specific for RAG-1. As can be seen in Fig. 

5, the decrease of RAG-1 transcription after TCR stimula- 
tion was significantly inhibited with FK506. Thus, this event 
in the developmental processes occurring during positive se- 
lection of DP thymocytes appears also to be partially depen- 
dent on calcineurin activation. 

Effect of FKS06 on the Rapid Elevation of[Ca t +1, Induced by 
Anti-TCR mAb in DP Thymocytes. The rapid elevation of 
[Ca2+]i induced by anti-TCR mAb, which is an upstream 
signaling event and is required for calcineurin activation, was 
not blocked by CsA or FKS06 in mature T cells (reviewed 
in 26). However, the effect of FK506 on the elevation of 
[Ca2+]i in immature DP thymocytes has not been previously 
addressed. Thus, we wished to determine the effect of FKS06 
on the elevation of [Ca2+]i in immature DP thymocytes. 
Most freshly prepared DP thymocytes express low levels of 
TCR, and they are poorly functional in response to stimula- 
tion with anti-TCg mAb as assessed by calcium mobiliza- 
tion. However, after single cell suspensions of DP thymo- 
cytes are cultured in vitro at 37~ for a few hours, they will 
express increased numbers of TCR and they become compe- 
tent to mobilize calcium in a manner similar to that of ma- 
ture T cells (39). Using competent DP thymocytes prepared 
by this manipulation, we tested the effect of FK506 on the 
TCg-mediated elevation of [Ca 2 + ]i. 

B6 DP thymocytes were separated by panning and precul- 
tured in single cell suspensions at 37~ for 2 h. FK506 (10 
riM) was added at the beginning of the preculture period when 
it was to be included in the culture. The precultured DP 
thymocytes were then loaded with Fura-2, and placed in the 
reaction chamber of the IMRAS unit. 5 min after overlaying 
an excess amount of unloaded FcR + LK35.2 cells over the 
Fura-2-1oaded responder thymocytes, [Ca2+]i measurements  
were collected. At the 1-min time point, anti-CD3 mAb (145- 
2Cll, 50/zg/ml) was added to the cell mixture to activate 
the thymocytes. FKS06 (10 nM) was included in the reaction 
mixture as well, where appropriate. A representative result 
of [Ca 2+ ]i in responder DP thyrnocytes before and 2 rain 
after adding anti-CD3 mAb is shown in Fig. 6. About one 
half of DP thymocytes expressed high levels of [Ca 2+ ]i in 
cultures not treated with FK506. This response was not al- 
tered by the addition of FKS06. We did not observe any 
significant difference in either the frequency of responding 
cells or the magnitude of [Ca 2+ ]i in the responding cells in 
five independent experiments (data not shown). Thus the rapid 
elevation of [Ca2+]i in DP thymocytes, which occurs as a re- 
sult of activation by TCR ligation, did not appear to be sen- 
sitive to FK506. Similarly, CsA had no effect on the Ca re- 
sponse (data not shown). 

Effect of FK506 on T Cell Development in an H-YTg 
Model. Another system that allows for the evaluation of the 
effect of FKS06 on selection events in the thymus involves 
the use of transgenic mice that express TCR derived from 
a H-Y-specific H-2Db-restricted CTL clone whose ligand is 
the male antigen H-Y in the context of H-2D b (5). In the 
H-2 b female H-YTg mouse, thymocytes expressing the 
transgenic TCR are subject to positive selection in the thymus, 
whereas the transgene-expressing thymocytes are subject to 
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Figure 4. Effect of FK506 on 
downregulation of CD4 and CD8 
expression in DP thymocytes stimu- 
lated with anti-TCR mAb in vitro. 
Purified B6 DP thymocytes were 
stimulated in vitro with immobi- 
lized anti-TCR, mAb for 14 h in the 
presence of 10 nM FK506. The 
stimulated cells were stained with 
anti-CD4-PE and anti-CD8-APC. 
Dead cells were ex_cluded from the 
FCM analysis using PI. CD4/CD8 
profiles are shown. The mean 
channel numbers of CD4 and CD8 
fluorescence intensity of DP thymo- 
cytes were 344/196 in the control, 
263/189 in the anti-TCR, alone, and 
328/217 in the anti-TCR- and 
FKS06-treated group. (Arrow) Live 
CD41~ DP thymocytes 
generated in the culture with 
anti-TCR. 

Figure 5. Effect of FKS06 on the shutdown of RAG-1 mRNA in DP 
thymocytes after stimulation through TCR. Purified B6 DP thymocytes 
were stimulated in vitro with immobilized anti-TCR mAb in the presence 
or absence of 10 nM of FK506 for 4, 8, or 16 h at 37~ Total RNA 
was prepared from the stimuhted DP thymocytes and subjected to Northern 
blot analysis with RAG-1 and ~-actin probes. Arbitrary units are listed 
under each group as a ratio normalized by the corresponding signal of 
B-actin. 

negative selection in the male thymus because of the expres- 
sion of both D b and H-Y antigens. In the H-2 a mouse that 
bears the TCR transgene, no selection takes place in the thymus 
because the appropriate restricting element D b is absent (5). 

We investigated the effect of FK506 and CsA on thymo- 
cyte development in H-2 b female, H-2 b male, and H-2 d fe- 
male Tg mice. Tg mice were treated daily with 10/~g of FK506 
or 30/~g of CsA for 2 wk from birth. CD4/CD8 profiles 
of electronically live-gated Tg TCRo~ + (T3.70 +) thymocytes 
were obtained by three-color FCM analysis with anti-CD4- 
PE, anti-CD8-APC, and anti-T3.70-FITC. As shown in Fig. 
7, top, the generation of Tg CD8 SP thymocytes in H-2 b 
female mice was severely inhibited by the treatment of FK506. 
Yields of thymocytes between PBS- and FK506-treated groups 
were similar. Therefore, similar to the result obtained in normal 
B6 mice treated with FK506, positive selection of the H-YTg 

Figure 6. Effect of FK506 on the rapid elevation of 
[Ca2+]i induced by anti-CD3 mAb in DP thymocytes. 
Purified B6 DP thymocytes were cultured in single suspen- 
sions in vitro at 370C for 2 h. The cultured cells were loaded 
with Fura-2, placed on a reaction chamber, and then overlaid 
with an excess number of FcR+ LK35.2 cells. Stimulation 
was done by adding anti-CD3 mAb (145-2Cll) to the reac- 
tion mixture. [Ca2+]i of responder DP thymocytes was de- 
termined by fluorescence microscopy and digital image anal- 
ysis. [Ca 2 + ]i of DP thymocytes before (Before) and 2 rain after 
the stimulation (After) are demonstrated. The hue of the cells 
in the picture represents [Ca2+]i, whose scale (nanomolar) 
is shown on the right. 



Figure 7. Effect of FK506 and CsA on T cell development in H-YTg thymus and the amount of calcineurin in H-YTg thymocytes. H-2 b female, 
H-2 b male, and H-2 a female H-YTg neonates were treated daily with 10 #g of FK506 or 30/~g of CsA for 2 wk. Thymocytes were stained with 
anti-CD4-PE, anti-CDS-APC, and anti-T3.70-FITC. CD4/CD8 profiles of electronically gated Tg TCRot + (T3.70 +) thymocytes are depicted. The 
yield of thymocytes in each mouse is shown as boxed numbers. The percentage of cells present in each area are also shown. (B) NP-40 lysate of thymocytes 
(107 cells/lane) from H-2 b male and female H-YTg mice, and purified bovine calcineurin (0.1/zg) were subjected to immunoblotting with antical- 
cineurin antibodies. (Arrows) A and B subunits. (Left) Position of molecular weight markers (kilodahons). Arbitrary densltometric units are listed under 
each band. 

Table  1. Effect of FK506 on the Intrathymic Deletion of V~6 and V$I 1 Cells in CBA/J Mice 

Percentage of TCRVfl  positive cells in CD4 SP thymocytes 
Mouse Dose of Percentage of CD4 SP 
strain FK506 thymocytes V36 Vf111 Vf18.2 

/*g 

Exp. 1 

B6 0 6.3 6.4 4.2 9.7 

CBA/J 0 4.7 +_ 0.9 0.25 -+ 0.4 0.58 + 0.4 11.8 _+ 1.4 

CBA/J 1 3.6 -+ 1.4 0.23 -+ 0.3 0.13 + 0.2 12.7 _+ 1.2 

CBA/J 3 1.9 -+ 0.3 0.06 + 0.1 0.27 -+ 0.3 13.6 -+ 2.5 

Expt. 2 

B6 0 5.7 7.7 3.6 6.8 

CBA/J 0 5.7 -+ 2.7 0.13 + 0.1 0.74 + 0.1 12.4 + 2.2 

CBA/J 1 2.9 _+ 1.2 0.21 _+ 0.2 0.23 +_ 0.2 15.9 +_ 0.5 

CBA/J 3 2.0 _+ 0.1 0.22 + 0.4 0.21 _+ 0.3 12.4 _+ 1.6 

A B6 neonatal mouse and CBA/J neonates (four neonates per group) were treated with indicated doses of FK506 for 2 wk. Thymocytes were stained 
with and-CD4-PE, anti-CDg-APC, and one of the culture supernatants of mAb specific for TCRVfl6 (44-22-1), TCRVflll (KR3-15), and TCRVflS.2 
(F23.2). Goat anti-rat Ig-FITC was used for anti-TCRVB6 and anti-TCRV/~11 stainings. Goat anti-mouse Ig-FITC was used for anti-TCRVfl8.2 
staining. Percentages of CD4 SP thymocytes were calculated from 20,000 viable ceils. Percentages of Vfl6, Vflll,  and V/38.2 cells in CD4 SP thymo- 
cytes are demonstrated with standard deviations. 
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T cells appeared to be sensitive to FK506-dependent calcineurin 
activation. More interestingly, treatment with FKS06 did not 
affect CD4/CD8 profiles of thymocytes of H-2 b male Tg 
mice (Fig. 7, middle). Since the development of DP thymo- 
cytes in H-2 b or H-2 a female Tg mice (Fig. 7, bottom) was 
not inhibited by FK506 treatment, the most straightforward 
explanation of the result in male mice was that negative se- 
lection of the H-YTg TCR + cells was not inhibited by 
FK506 treatment. A small amount of CD4 SP thymocytes 
present in H-2 b female and H-2 a female mice was most 
probably Tg TCRc~- cells which could not be excluded by 
gating with T3.70 staining (data not shown). The develop- 
ment of this CD4 SP population was inhibited in mice treated 
with FK506. 

In contrast to the yields of thymocytes in the FK506-treated 
group, those from CsA-treated animals were about 1/6 to 
1/10 in number. Although certain proportions of CD8 SP 
and DP thymocytes were observed in CsA-treated Tg male 
mice, the absolute number of the cells present in the thymus 
was not significantly higher than that in the PBS-treated group. 
Taken together, these results suggested that the effect of CsA 
was on the generation or survival of DN thymocytes rather 
than a rescue of Tg TCR + thymocytes from negative selec- 
tion by H-Y antigen. 

Expression of Calcineurin in Thymocytes from 1-1-2 b Male and 
Female H-YTg Mic~ Next, the amount of calcineurin present 
in thymocytes from H-2 b male and female H-YTg mice was 
determined by immunoblotting. NP-40 lysates of thymocytes 
from H-2 b male and female H-YTg mice and purified bo- 
vine calcineurin (as a positive control) were subjected to SDS- 
PAGE and, after electrotransfer, the blots were probed with 
anticalcineurin antibodies. The amounts of A and B subunits 
present in the lysates of thymocytes were determined by den- 
sitometric analysis of autoradiographs and are demonstrated 
in Fig. 7 B. Thymocytes from male mice contained higher 
amounts of both calcineurin A and B subunits. 

Effect of FK506 on the Intrattrymic Deletion of VB6 and VBll 
Cells in CBA/J Mice. Negative selection of self-reactive T 
cells in the thymus is also a result of TCR ligation of self- 
peptides presented on MHC molecules on thymic stromal 
cells. We continued to examine the requirement of calcineurin 
activation in negative selection using other experimental 
systems. One system involves the intrathymic clonal deletion 
of VB6 cells and VB11 cells in CBA/J mice (Mls-IL I-E +) 
(4). Since FKS06 treatment blocks the generation of mature 
SP thymocytes, we treated CBA/J neonates with suboptimal 
doses of FK506 in order to assess the effect of FK506 on the 
selection of specific VB-bearing thymocytes. Three-color FCM 
analysis was done with anti-CD4, anti-CDS, and mAb specific 
for TCRVB6, VBll, or VBS.2. Percentages of CD4 SP cells 
and percentages of VB6, VB11, and V~8.2 cells in the CD4 
SP cells were calculated. The generation of CD4 SP thymo- 
cytes was inhibited partially but, nevertheless, in a dose- 
dependent fashion by FK506 (Table 1). In contrast to the con- 
trol B6 mice, only a small number of VB6 and VB11 cells 
in CD4 SP thymocytes was observed among CBA/J thymo- 
cytes. No detectable rescue of CD4 SP thymocytes expressing 

VB6 or VBll TCR was observed under these conditions. 
Percentages of VBS.2 cells in the FK506-treated groups did 
not differ from those of untreated mice. Thus, intrathymic 
donal deletion of VB6 and V~11 cells in CBA/J mice ap- 
peared to be resistant to FKS06 treatment. 

Effect of FK506 on Anti-TCR mAb- and SEB-induced DNA 
Fragmentation in DP Tbymocytes. Another system to evaluate 
the effect of FK506 on negative selection of thymocytes is 
through the analysis of in vitro experimental models of negative 
selection (49). Consequently, we examined the effect of FK506 
on DNA fragmentation in DP thymocytes induced by stim- 
ulation through the TCR in vitro. Purified DP thymocytes 
from normal B6 mice were first precultured for 2 h and then 
stimulated for 4 h by FcR + LK35.2 cells preincubated with 
anti-TCRcr (H57-597) or anti-CD3 mAb (145-2Cll) 
as described (49). Another group of precuhured DP thymo- 
cytes was treated with 1/~M hydrocortisone. When FK506 
was included, it was added at the beginning of the precul- 
ture at a dose of 10 ruM. Genomic DNA from the stimulated 
DP thymocytes was extracted and analyzed on 0.8% agarose 
gels. As shown in Fig. 8 A, DNA fragmentation was in- 
duced in DP thymocytes stimulated with anti-TCRcz~ mAb 
or anti-CD3 mAb in the presence of FcR + cell line LK35.2. 
The DNA fragmentation induced by these TCR stimulations 
was not affected by FK506. In addition, steroid-induced 
DNA fragmentation also appeared to be resistant to FK506 
treatment. 

In a second model, DP thymocytes were stimulated with 
the superantigen SEB, and the effect of FK506 was exam- 
ined. To increase the number of SEB-reactive cells, DP thymo- 
cytes were purified from TCRV~8.2 Tg mice. These cells were 
subsequently stimulated with SEB and I-E k transfectant 
DCEK cells as described (49). As shown in Fig. 8 B, DNA 
fragmentation was observed in the cells stimulated with SEB 
plus DCEK, and this was not inhibited in the presence of 
FK506. In another experiment, the effects of CsA and EGTA 
were examined (Fig. 8 C). As expected, no effect of CsA on 
the DNA fragmentation in DP thymocytes induced by anti- 
TCR mAb was detected. In the same stimulation cultures, 
partial inhibition of DNA fragmentation in DP thymocytes 
was observed with EGTA. Since EGTA abrogates extracel- 
lular calcium ions, this result suggests that calcium influx 
may play an important role in DNA fragmentation in DP 
thymocytes. As a positive control of treatment of FK506 and 
CsA, we performed similar experiments using T cell hy- 
bridoma 68-41. In contrast to the results with DP thymo- 
cytes, both FKS06 and CsA blocked the anti-TCR-induced 
DNA fragmentation in the T cell hybridoma 68-41 (Fig. 8 
D). This is consistent with previous reports (54, 55). Taken 
together, the DNA fragmentation induced in DP thymocytes 
by anti-TCR mAb, anti-CD3 mAb, SEB, or steroid appears 
to be independent of calcineurin activation. In addition, it 
is interesting that the DNA fragmentation that occurs in ma- 
ture T cells (in this case a T cell hybridoma) as a result of 
anti-TCR induction is sensitive to FK506 and CsA, and thus 
appears to be dependent on calcineurin activation. Thus, the 
results demonstrated in Fig. 8 suggest that the signal trans- 
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Figure 8. Effect of FK506 and CsA on DNA fragmentation in DP 
thymocytes. Purified DP thymocytes (107) were first precultured for 2 h 
and then stimulated for 4 h with 106 FcR+ LK35.2 cells preincubated 
with anti-TCRotB mAb (H57-597) or anti-CD3 mAb (145-2Cll) (A), 
or with SEB (10/~g/ml) and 106 I-E k transfected L cells DCEK (B). As 
a positive control, 1 #M hydrocortisone was used. FK506 (10 nM) was 
added at the beginning of the preculture. (C) 10 nM of FKS06, 100 nM 
of CsA, and 5 mM EGTA were added to the culture of DP thymocytes 
stimulated with LK35.2 preincubated with anti-TCRot~ mAb. (D) 68-41 
T hybridoma cells (106) were stimulated with immobilized anti-TCP, mAb 
(H57-597) for 24 h with indicated doses of FK506 and CsA. Genomic 
DNA was separated from each stimulation culture and DNA samples (10 
#g/lane) were run on 0.8% (A-C) or 2.0% (D) agarose gels containing 
0.5 #g/ml EtBr at 10 V for 16 h. The gel was photographed using ultraviolet 
light illumination. The positions of molecular size markers (in kilobase 
pairs) are indicated on the right. 

duction pathways leading to D N A  fragmentation in imma- 
ture DP thymocytes are different from those in mature T 
cell hybridomas. 

To address the effect of  these inhibitory drugs on apop- 
totic cell death of DP thymocytes more quantitatively, we 
used a thymocyte death assay using EtBr and FCM as de- 
scribed (50, 51). EtBr is rapidly taken up by thymocytes that 
are destined to die, and binds to nucleic acid. The fluores- 
cence emitted can be measured on a single cell basis by FCM 
analysis. EtBr § cells fluoresce with two different intensities 
(EtBr int and EtBrhish), both  of which represent dying cells 
in which D N A  fragmentation is present (50, 51). Precultured 
thymocytes (2 h at 37~ were stimulated by LK35.2 cells 

preincubated with ant i -TCR or anti-CD3 in the presence 
of the indicated drugs for another 4 h. Where  indicated, the 
precultured thymocytes were stimulated with  thapsigargin, 
which causes release of Ca 2+ from intracellular stores. The 
stimulated cells were stained first with anti-CD4-PE and anti- 
CD8-APC,  and then stained with 1 /xg /ml  of  EtBr for 30 
min. Percentages of  EtBr + cells in electronically gated DP 
cell populations are shown in Fig. 9 . 2 5 - 3 0 %  o f D P  thyrno- 
cytes stimulated with ant i -TCR mAbs for 4 h were positive 
for EtBr. The addition of FK506 or CsA had no effect on 
these cultures. In contrast, the addition of either EGTA or 
EDTA inhibited the TCtL-induced increase of  EtBr + cells to 
the background level. This is consistent with the data presented 
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Figure 9. Cell death ofDP thymocytes 
stimulated with TCR/CD3 complexes as- 
sayed by EtBr staining and FCM analysis. 
Precultured thymocytes (2 x 106, 2 h at 
37~ were stimulated by 4 x 105 LK35.2 
cells preincubated with anti-TCR (H57- 
597) or anti-CD3 (145-2Cll) for 4 h at 
37~ Indicated drugs were added at the 
beginning of each preculture. Where indi- 
cated, the precultured thymocytes were 
stimulated with graded doses of thap- 
sigargin (Thapsi.), which causes the release 
of Ca 2+ from intracellular stores. The 
stimulated cells were harvested, stained with 
anti-CD4-PE and anti-CD8-APC, and then 
exposed to 1/~g/ml of EtBr for 30 min at 
4~ Percentages of EtBr + cells in elec- 
tronically gated DP cell population are 
shown. 

in Fig. 8 C. In addition, treatment with thapsigargin induced 
apoptotic cell death quite strongly. Therefore, calcium- 
dependent intracellular enzymes other than calcineurin may 
be involved in the signal pathway that leads to events resulting 
in apoptotic cell death accompanied by DNA fragmentation. 

D i s c u s s i o n  

Selection of the TCR repertoire has been quite paradox- 
ical because of its contradictory nature. T cells that recog- 
nize self-MHC molecules are deleted during development in 
the thymus in a process referred to as negative selection. How- 
ever, recognition of self-MHC molecules is also required for 
positive selection. One explanation of this paradox is that 
the aftinity of  the TCIL for peptide presented on MHC mol- 
ecules determines the fate of T cells, i.e., positive or negative 
selection. Weak interactions between TCR and peptide-MHC 
would be sufficient to mediate positive selection, whereas, 
higher affinity interactions would lead to negative selection 
(56). A second model proposes that both positive and nega- 
tive selection are induced by high affinity interactions but 
that there are qualitative differences between the peptide/MHC 
complexes-that mediate positive and negative selection (57). 
There are many experiments that support the notion that 
the thymic epithelial cells are responsible for positive selec- 
tion, whereas the bone marrow-derived cells mediate nega- 
tive selection (reviewed in 56, 57). If thymic epithelial cells 
express a distinct set of peptide/MHC complexes, positive 
selection could be mediated by qualitatively different pep- 
tide/MHC complexes. This view would provide a resolu- 
tion of the paradox in which both positive and negative se- 
lection result from the recognition of self-MHC molecules 
in the thymus. Recently, experiments using antigenic pep- 
tides in fetal thymus organ cultures of TCR transgenic and 
MHC-deficient mice have been carried out by several groups 
(58, 59), and the results supported the former so called "atranity 
model" It was demonstrated clearly that low concentrations 
of peptide induced positive selection, whereas high concen- 
trations of the same peptide induced negative selection. Thus, 
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thymocytes responded with qualitatively different outputs to 
different intensity signals. It is possible that thymocytes can 
be induced to mature (positive selection) by a weak interac- 
tion whereas strong interactions may activate apoptotic cell 
death (negative selection). Therefore, it is important to in- 
vestigate the nature of the intraceUular signals generated during 
thymic selection processes, and the differences that determine 
the positive and negative selection. 

In this report, we examined TCR-mediated early signaling 
events in CD4+CD8 + DP thymocytes during positive and 
negative selection by using an inhibitor of calcineurin activa- 
tion, FKS06, to specifically address the role of calcineurin 
activation in the selection process. Two major findings were 
demonstrated. First, calcineurin activation induced by stim- 
ulation through the TCR in DP thymocytes is an essential 
event for the maturation of SP cells, and is required for the 
first step (or the very early intracellular signaling events) of 
the positive selection processes. During the first step of posi- 
tive selection, induction of CD69 molecule, downregnlation 
of CD4 and CD8 expression, and shutdown of RAG tran- 
scription take place. These changes were significantly inhibited 
by the treatment with FK506. Second, different signaling 
pathways are operative between thymic positive and negative 
selection in terms of the dependency on calcineurin activa- 
tion. In contrast to the effect on positive selection, negative 
selection in the thymus and in vitro-induced DNA fragmen- 
tation in DP thymocytes were not affected by the treatment 
with FK506. 

As we reported recently (11), the thymocyte subpopula- 
tion undergoing positive selection can be identified as CD69- 
positive DP thymocytes with increased expression of TCK 
and decreased expression of both CD4 and CD8 molecules. 
DP thymocytes with this phenotype were induced by stimu- 
lation with anti-TCK mAb in vitro (11). RAG-1 and RAG-2 
transcription was detected in immature TCK l~ DP thymo- 
cytes but not in TCR int DP thymocytes or mature SP 
thymocytes, and the transcription of these genes were shut- 
down upon stimulation with anti-TCK mAb in vitro (20, 
21). Therefore, the induction of CD69, downregnlation of 



CD4 and CD8 expression, and the decrease of the RAG ex- 
pression in DP thymocytes are thought to be consequences 
of TCR-mediated signals. As we demonstrated, the CD69 + 
DP thymocyte subpopulation was not detected in the thymus 
of mice treated with FK506 (Fig. 2). Transcription and cell 
surface expression of CD69 were induced in DP thymocytes 
within a few hours after anti-TCR stimulation in vitro, and 
these events were significantly inhibited by FK506 (Fig. 3). 
The decrease in cell surface expression of both CD4 and CD8 
that is induced by the anti-TCR stimulation in vitro was 
also blocked by FK506 (Fig. 4). Furthermore, the shutdown 
of RAG-1 transcription in the stimulated DP thymocytes was 
significantly inhibited by FKS06 (Fig. 5). Taken together, these 
results suggest that FK506 blocks the generation of mature 
T cells by inhibiting the calcineurin activation pathway in 
DP thymocytes activated through the TCR, which is required 
for the first step of thymic positive selection. Partial inhibi- 
tions observed in in vitro experiments (Figs. 3 and 5) might 
reflect redundancy of signal transduction pathways. 

Both thymic positive and negative selection are thought 
to be consequences of intracellular signaling events initiated 
by TCR engagement of ligands on thymic stromal cells. We 
examined the effect of FKS06 on thymic negative selection 
using three different experimental systems. First, we tested 
the effect of FKS06 on negative selection in a H-YTg model. 
In the H-YTg male mice, male antigen-specific Tg TCR- 
positive T cells are deleted in the thymus, and only CD4- 
CD8- thymocytes are detected (5). If this negative selection 
is blocked by FK506, the appearance ofDP thymocytes would 
be the anticipated result because the generation of these DP 
thymocytes is not affected by the treatment with FK506. We 
did not detect any rescue of DP thymocytes in the FK506 
treated H-YTg neonates (Fig. 5). These results suggest that 
calcineurin activation is not critical for negative selection. 
In terms of the interpretation of the results with CsA (Fig. 
7 A, right), we drew different conclusions from those of Ur- 
dahl et al. (60). Both they and we observed a certain per- 
centage of DP thymocytes in H-YTg male mice treated with 
CsA. Since the absolute numbers of the DP thymocytes present 
in the CsA-treated neonates were not significantly higher than 
those in the untreated group, we did not interpret the result 
to indicate any rescue or delay of negative selection by the 
treatment with CsA. Urdahl et al. (60) concluded that CsA 
delays negative selection of H-YTg thymocytes in H-2 b male 
mice. The reason for the discrepancy is not clear, although 
it could be due to the use of different experimental systems. 
In this study, neonatal H-YTg mice were used whereas Ur- 
dahl et al. (60) used adult H-YTg mice. In any case, it may 
be more appropriate to use FK506 rather than CsA for inves- 
tigating the role of calcineurin activation in thymic selection 
process. It is clear that the FKS06-sensitive calcineurin is not 
involved in the negative selection of H-YTg thymocytes. The 
differences in effect of CsA and FK506 on DN thymocytes 
are discussed below. 

The second system in which the effect of FK506 on nega- 
tive selection was tested involved the clonal deletion of VB6- 
TCR, VB11-TCR positive cells in CBA/J (Mls-1 ~, I-E +) 

mice. In CBA/J (Mls-1 ~, I-E +) mice, V/86-TCR, VB11- 
TCR positive cells are deleted within the DP thymocyte popu- 
lation because of the ligation of the TCR with the endoge- 
nous superantigen, and no V~6 + or V311 + SP thymocytes 
is detected (4). We did not detect rescue of V~6 + or VB11 + 
cells in CD4 SP thymocyte subpopulation in FK506-treated 
CBA/J mice (Table 1). Jenkins et al. (24) reported the pres- 
ence of undeleted mature SP thymocytes, i.e., V~17a + cells, 
in CsA-treated C57BR (I-E +) syngeneic mouse bone marrow 
chimeras. Gao et al. (23) also reported incomplete deletion 
of peripheral TCR V311 + T cells in I-E-bearing CsA- 
treated syngeneic mouse bone marrow chimeras. In contrast, 
Prud'homme et al. (61) reported that there were no significant 
numbers of T cells bearing forbidden TCRs in the spleen 
of either CsA-treated CBA/J, C57BR, or DBA/2 syngeneic 
bone marrow chimeras. Bryston et al. (62) also reported that 
deletion of various V3s in DBA/2 mice was not blocked by 
CsA. The reasons for the discrepancies of results among the 
different experimental systems are not clear. One explana- 
tion is that a small number of undeleted TCR Vfl-bearing 
T cells detected in the periphery by Gao et al. (23) might 
be a consequence of the blocking of activation-induced cell 
death of mature T cells (54, 55). In fact, DNA fragmenta- 
tion in T cell hybridoma 68-41 was sensitive to either FK506 
or CsA (Fig. 8). 

Thymocytes are thought to be deleted by apoptosis, a pro- 
cess characterized by DNA fragmentation (63). Consequently, 
we examined the FK506 effect on DNA fragmentation in 
DP thymocytes by TCR stimulation in vitro. The results 
presented in Fig. 8 clearly demonstrated that DNA fragmen- 
tation in DP thymocytes induced by stimulation with anti- 
TCR mAb, anti-CD3 mAb, superantigen SEB, or steroid 
was not affected by treatment with FK506. Therefore, from 
the results obtained in these three different systems, we con- 
clude that FK506-sensitive calcineurin activation was not re- 
quired for negative selection of thymocytes. 

Since fragmented DNA is produced by the activation of 
calcium-dependent endonucleases (reviewed in 64), the in- 
creased level of [Ca2+]i is thought to be important for apop- 
totic cell death. After stimulation through the TCR, rapid 
increase in [Ca2+]i was detected in DP thymocytes if they 
were desensitized by a 37~ preculture (39 and Fig. 6). In 
addition, the frequencies of cells expressing high [Ca ~ +]i are 
increased in the thymus of TCR Tg mice that bear a nega- 
tively selecting environment (46). Abrogation of extracel- 
lular Ca 2§ by addition of EGTA inhibited the DNA frag- 
mentation (Fig. 8 C) and TCR-induced cell death of DP 
thymocytes (Fig. 9). Thapsigargin, which causes release of 
the intracellular calcium stores, induced cell death in DP 
thymocytes (Fig. 9). The rapid increase in [Ca2+]i after stim- 
ulation through the TCR on DP thymocytes was not affected 
by treatment with FKS06 (Fig. 6). Taken together, signaling 
pathways leading to DNA fragmentation in DP thymocytes 
appeared to be dependent on an increase in [Ca2+]i but not 
on calcineurin activation. 

In experiments examining in vitro DNA fragmentation, 
another interesting result was observed in that FK506 and 
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CsA showed different effects on DNA fragmentation induced 
in DP thymocytes as compared with that induced in T hy- 
bridoma cells. DNA fragmentation induced in T hybridoma 
cells by stimulation through the TCR was shown to be blocked 
by CsA (54, 55). This observation was confirmed in our study 
also. However, since DNA fragmentation in DP thymocytes 
induced by stimulation through the TCR was not inhibited, 
calcineurin activation events may differentiate signaling path- 
ways in the DNA fragmentation process in T ceils as well. 

If thymic negative selection is mediated by so-called high 
affinity interactions and relatively weaker stimulations result 
in positive selection, it is also possible that the signals gener- 
ated during negative selection processes are strong enough 
to overcome the blocking effect of calcineurin activation by 
FK506. In fact, the amount of calcineurin present in H-YTg 
male thymocytes appeared to be higher than that in H-YTg 
female thymocytes. However, this possibility is unlikely be- 
cause the dose of FK506 used in this study is at least 100 
times higher than that in which a complete inhibition of 
proliferation of mature T ceils is observed. 

The CD41~ l~ phenotype and expression of CD69 
in DP thymocytes are characteristic of the cells undergoing 
negative as well as positive selection (11). Although FK506 
inhibited the generation of these ceils both in vivo and in 
vitro (Figs. 2-4), negative selection appeared not to be in- 
hibited. Therefore, the downmodulation of both CD4 and 
CD8 molecules and the induction of CD69 expression might 
not be essential events for proceeding thymic negative selection. 

The final point which should be discussed is the difference 
in effect of CsA and FK506 on T cell development in the 
thymus. CsA and FK506 are quite different in structure, and 
their binding proteins, cyclophylin and FK_BP, respectively, 
are also very different in character. However, both drug-pro- 
tein complexes were found to block calcineurin activation 
(reviewed in 26), a surprise for researchers in the rid& Here, 
we demonstrated some differences in the effects of FK506 
and CsA on T cell development in the thymus. As shown 
in Fig. 1, yields of thymocytes were decreased when neonatal 
mice were treated with CsA but not with FK506. CsA blocked 
the generation of DP thymocytes. This was not observed with 
FK506. In addition, CsA showed an inhibitory effect on the 
generation or survival of DN thymocytes, that was observed 
in both normal B6 (Fig. 1) and H-YTg neonates (Fig. 7 A). 
Thus, CsA-sensitive signaling pathways appeared to be re- 
quired for T cell maturation to DP thymocytes, and impor- 
tant for the generation of DN thymocytes. FK506 did not 
show these effects, and therefore CsA might have other un- 
known consequences in immature thymocytes. 

In summary, the role of caMneurin activation during thymic 
selection events was investigated through the use of the 
inhibitor, FK506. The results obtained demonstrated that 
TCR.-mediated calcineurin activation in DP thymocytes is 
an essential event in the first step of the TCR~-spedfic posi- 
tive selection processes, and that calcineurin activation is not 
required for negative selection of immature DP thymocytes. 
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