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The new technologies for next-generation sequencing (NGS) and global gene expression
analyses that are widely used in molecular medicine are increasingly applied to the field
of fish biology. This has facilitated new directions to address research areas that could not
be previously considered due to the lack of molecular information for ecologically relevant
species. Over the past decade, the cost of NGS has decreased significantly, making it pos-
sible to use non-model fish species to investigate emerging environmental issues. NGS
technologies have permitted researchers to obtain large amounts of raw data in short peri-
ods of time. There have also been significant improvements in bioinformatics to assemble
the sequences and annotate the genes, thus facilitating the management of these large
datasets.The combination of DNA sequencing and bioinformatics has improved our abilities
to design custom microarrays and study the genome and transcriptome of a wide variety
of organisms. Despite the promising results obtained using these techniques in fish stud-
ies, NGS technologies are currently underused in ecotoxicogenomics and few studies have
employed these methods. These issues should be addressed in order to exploit the full
potential of NGS in ecotoxicological studies and expand our understanding of the biology
of non-model organisms.
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INTRODUCTION
Research in fish physiology, genetics, evolution, immunol-
ogy, and endocrinology using non-model species has seen a
marked increase in the utilization of genomic information over
the last decade. Traditionally, obtaining genomic information
was achieved through Sanger sequencing methods which uti-
lizes fluorescent dye-labeled dideoxynucleotide triphosphates as
DNA chain terminators. However, Sanger sequencing is limiting
because of the high cost and labor intensity. The develop-
ment of next-generation sequencing (NGS) technologies has
facilitated the collection of large amounts of nucleotide infor-
mation in sequence read-length from 30 to 1,500 nucleotides
(nt) for hundreds of thousands to millions of DNA molecules
simultaneously. In parallel, the bioinformatics tools required to
analyze these large datasets and identify unique gene sequences
have also significantly improved. The different steps involved
in NGS studies are illustrated in Figure 1. NGS technolo-
gies are already considered revolutionary tools in the fields of
eukaryotic microorganism (Nowrousian, 2010), plant (Bräutigam
and Gowik, 2010), animal, and human genomics (Pareek et al.,
2011) and their application has demonstrated great potential
to study genome evolution (Holt et al., 2008), gene expres-
sion profiling (Wang et al., 2008), and gene regulation (e.g.,
DNA methylation; Pomraning et al., 2009). With regard to
fish studies, the number of publications using NGS technolo-
gies has increased approximately 10-fold in the last 3 years
(Figure 2).

Researchers in fish biology stand to gain a great deal of
insight using NGS to learn more about genome-wide and
transcriptome-wide control of biological processes, discover
novel biomarkers for ecotoxicological applications, character-
ize toxicity pathways, and investigate evolutionary questions
to a greater degree of resolution than previously provided by
using more traditional population genetic markers such as DNA
microsatellites. In ecotoxicogenomics, gene expression profil-
ing using techniques such as microarrays plays a key role for
biomarkers characterization and discovery of toxicity pathways
(Denslow et al., 2007; Ju et al., 2007). But research in this field
often requires the analysis of complex genomic events using
extensive time course and dose response studies in multiple
tissues of teleost fish, which can be difficult due to logistics
and cost. Fortunately the cost of sequencing is now decreas-
ing, permitting the analysis of many biological replicates (i.e.,
multiple individual genomes) in a single study. The applica-
tion of NGS technologies will permit to better link knowl-
edge of individual genotype to phenotype and transcriptomic
responses under varying environmental conditions and experi-
mental paradigms.

This review describes the latest NGS platforms available and
bioinformatics tools that can be employed to examine the tran-
scriptome of non-model fish species. Specifically, we aim to
discuss the possible factors involved in platform selection for
researchers working with non-model fish species. Studies that
have utilized NGS technologies using fish species are also reviewed
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FIGURE 1 | Flowchart of the different steps involved in NGS based studies in fish ecotoxicology. AOPs, adverse outcome pathways; GO, gene ontology;
GSEA, gene set enrichment analysis; IPA, ingenuity pathway analysis; PTA, paracel transcript assembler; SNPs, single nucleotide polymorphism.

with the conclusion that NGS data can contribute significantly
to our understanding of the detrimental effects of aquatic
pollution.

PLATFORMS AND TECHNOLOGY
There are five leading instruments that can be classified as part of
the NGS technologies: the 454 GS FLX, the Ion Torrent, the SOLiD,
the Illumina, and the more recently released PacBio instrument.
These can be distinguished from each other based on the chemistry
employed for sequencing, the amount of sequence information
produced, the length of each sequence read, and the overall price
per nt. While next-generation sequencers are reviewed for gen-
eral purposes elsewhere (e.g., Mardis, 2008), we provide a brief
description of the various technologies followed by a discussion
of the relative advantages of each platform for fish toxicogenomics
research.

454 GENOME SEQUENCER-FLXTM

The 454 pyrosequencer, manufactured by Roche1, is the NGS
instrument most utilized in fish genomics research (Table 1). This
platform operates on a principle referred to as “pyrosequencing,”
a method of detecting single nucleotide addition by capturing the
emission of light produced from the release of the by-product

1www.454.com

pyrophosphate during the polymerization of the DNA molecule
(Droege and Hill, 2008; Rothberg and Leamon, 2008). During 454
sequencing, DNA is fragmented and ligated to sepharose beads
with one DNA fragment per bead, optimally. This DNA library is
then amplified using a process called emulsion PCR (emPCR),pro-
ducing many copies of a unique single-stranded template on each
bead. Following amplification, a single DNA bead and enzyme
beads (sulfurylase, luciferase) are deposited in each well of a
picotiter plate where as many as one million sequencing reac-
tions – one per bead – occur in parallel. For each nucleotide
added during the polymerization reaction, inorganic pyrophos-
phate and proton by-products are released, which interact with the
luciferase to produce a pulse of light that is read by a high-density
camera.

ION TORRENT SEMICONDUCTOR SEQUENCER
The Ion Torrent is a modified version of the 454 pyrosequencing
approach and operates based on the same sequencing chemistry,
except that it makes use of the H+ that is released with every
nucleotide incorporated, instead of the pyrophosphate (Rothberg
et al., 2011). To detect the H+ released, the picotiter plate sits
on top of a massively parallel semiconductor-sensing device or
ion chip. The integrated circuits take advantage of metal-oxide
semiconductor technology, which significantly reduces the cost of
sequencing since luciferase and other costly enzymes and scanners
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FIGURE 2 | Number of publications using next-generation sequencing

(NGS) with non-model fish species in the last 4 years. Keywords used
for PubMed query include: fish, next-gen sequencing, high throughput
sequencing, and toxicology.

are not needed. To date, this instrument can sequence about 100 nt
but it should soon be able to read sequence lengths up to 200 nt
(Ion Torrent System, Inc.2). Modifications of this technology to
increase the length of the sequences produced will likely increase
the use of the Ion Torrent in fish ecotoxicology.

SOLiDTM SYSTEM
The SOLiD genome sequencer from Applied Biosystems uses an
emPCR process similar to 454, but parallel DNA sequencing is
achieved by repeatedly ligating two-nucleotide probes instead of
a sequencing reaction catalyzed by DNA polymerase (Morozova
and Marra, 2008). The two-nucleotide probes are used to query
adjacent bases on the DNA fragment, therefore each nucleotide is
actually probed twice. This system is designed to make sequence
calls on two signals per base, rather than one, resulting in a lower
error rate (for more information on this process, see Morozova
and Marra, 2008; Rusk and Kiermer, 2008). Originally, SOLiD
technology could only read approximately 35 nucleotides (Moro-
zova and Marra, 2008), but current versions of the instrument
have increased the read-length to about 50 nucleotides (Applied
Biosystems3).

ILLUMINA GENOME ANALYZER
The Illumina/Solexa technology is the second most utilized in
fish genomics research (Table 1). This sequencing platform differs
from 454 and SOLiD in terms of its amplification strategy. Rather
than amplifying DNA-covered beads by emPCR, the Illumina tech-
nology amplifies clusters of DNA fragments that are affixed to a
glass slide using a strategy called bridge amplification. The parallel
sequencing process uses dye-labeled nucleotides (one fluorophore
per base) that are added simultaneously, rather than sequentially

2www.iontorrent.com
3www.appliedbiosystems.com

as in the 454 process. The DNA clusters are then subjected to laser
excitation that cleaves the dye and permits the addition of the next
nucleotide. In 2008, Illumina sequencer projects reported reads of
25–50 nt. Base-calling algorithms have been improving to increase
read-length and base-calling confidence (Rougemont et al., 2008;
Smith et al., 2008). Currently, the Illumina sequencer can produce
longer reads of 100 nt (Illumina, Inc.4).

PacBio RS
The PacBio is a single-molecule sequencing approach that has
been developed to further reduce the cost and time required to
obtain the sequence of a genome or transcriptome. It is thought
of as a “third generation” sequencing platform. This instrument
has recently become commercially available and only a few institu-
tions have used it. The PacBio works based on a nanophotonic tool
called zero-mode waveguide (ZMW; Levene et al., 2003). ZMW
technology allows for a DNA polymerase to work in real time
using fluorescently labeled nucleotides and tracks synthesis of a
single molecule per DNA fragment (Eid et al., 2009). Like the 454
and Illumina instruments, the PacBio sequences by measuring the
burst of light produced when the pyrophosphate and fluorescent
label are released during the polymerization reaction. This instru-
ment is able to sequence single molecules up to 1500 nt long,
but the error rate (around 15%) is still relatively high (Pacific
Biosciences5). However, pairing this instrument with other more
robust sequencers can be a real advantage for non-model species,
as one can get a relatively long intact scaffold against which
to build and assemble genomes or transcriptomes for species
of interest.

ADVANTAGES AND DISADVANTAGES OF
SEQUENCING PLATFORMS
The instruments described above use different technologies and
each approach has its advantages and disadvantages. Currently,
Illumina sequencing produces short reads of about 100 nt in length
but has the ability to do this from each end of the DNA molecule
when paired ends are used. The SOLiD likewise produces reads of
approximately 35–60 nt in length. The short sequences yielded by
Illumina and SOLiD platforms have proven useful for the detec-
tion of miRNA (small RNA molecules of about 22 nt; Chi et al.,
2011; Johansen et al., 2011) and comparative genome analysis of
different fish populations (Chi et al., 2011). They could also be
useful to design microarrays probes for a variety of non-model
fish species. However the use of short sequence reads can be chal-
lenging for de novo sequencing, sequence assembly and accurate
annotation of the genes. It must be noted that the Illumina and
SOLiD are working toward increasing the number of base pairs
reads and this will improve in the future.

The DNA sequencing techniques employed in Illumina and
SOLiD technologies are effective to assess genetic variations in fish
at individual (i.e., single nucleotide polymorphisms, SNPs) and
population level (Liu et al., 2011). Indeed, while the 454 pyrose-
quencer determines the length of homopolymers in one step based
on the intensity of the light signal (Morozova and Marra, 2008),

4www.illumina.com
5www.pacificbiosciences.com
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the Illumina reads all nucleotides individually. In addition, the
SOLiD sequencing system can more reliably distinguish between
true sequence polymorphisms and sequencing errors. In SOLiD
sequencing, each base is probed twice in two independent ligation
reactions, rather than one synthesis reaction. If one of the two lig-
ation reactions gives an unexpected nucleotide, this is recognized
as an error. If a consistent result is found for both ligation reac-
tions, it is recognized as a polymorphism (Morozova and Marra,
2008). This distinction is paramount for fish genetics studies due
to the increased polymorphic loci resulting from genome dupli-
cation events. It should also be mentioned that the newer SOLiD
instrument is organized in such a way that individual lanes can
be run, without having to fill an entire plate which may improve
accessibility for smaller projects in non-model fish.

The new Ion Torrent instrument is relatively inexpensive and
will allow individual researchers to have one in their laboratories,
much like they do for qPCR. However this instrument also pro-
duces relatively short reads. The 454 pyrosequencer and the PacBio
are superior in term of read-length and are capable of producing
up to 700 and 1,500 nt per read respectively, making them ideal
techniques for de novo sequencing of fish species as a scaffold is
required. The 454 pyrosequencing technology has already shown
great potential for whole transcriptome analysis using non-model
fish (Garcia-Reyero et al., 2008; Jeukens et al., 2010). We should
point out that the PacBio is still in its infancy and the platform still
requires a lot of care. With improvements, this instrument will
surely become a mainstay for de novo sequencing of non-model
fish species.

Researchers should consider carefully each sequencing plat-
form based on the aims of the project (i.e., assessment of genetic
variation, de novo sequencing or transcriptome sequencing). In
toxicogenomics studies with non-model fish species, it may be
more beneficial to use a hybrid sequencing strategy. For exam-
ple, combining the short pair-ends reads of the Illumina with the
longer single-end reads of the 454 will likely enhance sequence
assembly and gene annotation. This was demonstrated recently by
Jiang et al. (2011). The authors used Illumina and 454 sequenc-
ing to investigate the genome of the channel catfish (Ictalurus
punctatus), and demonstrated that sequencing data from two
NGS platforms improved the sequencing depth and increased the
number of contigs assembled.

BIOINFORMATICS: EXTRACTING INFORMATIVE
TOXICOLOGICAL INFORMATION FROM NGS
BASED STUDIES IN NON-MODEL FISH
Next-generation sequencing technologies produce massive
amounts of data that need to be processed, annotated, and aligned
to the genome before expression analysis (Garber et al., 2011).
This is a significant obstacle for ecotoxicogenomics because many
researchers are using non-model fish species to study the impacts
of aquatic pollutants. Therefore, the advances in DNA sequencing
technologies require corresponding improvements in bioinfor-
matics approaches to better manage and interpret genomic and
transcriptomics data. There are new algorithms, such as GENE-
counter (Cumbie et al., 2011) that can assist with processing and
managing the data but these methods have not been tested with
non-model fish species. The process to align reads in NGS will not

be covered here and there are a number of pipelines for obtaining
meaningful sequencing data in order to quantitate transcriptome
data (Goncalves et al., 2011). Although some algorithms incorpo-
rate splicing events of transcripts into the analysis, the detection of
splice variants could be more challenging in teleosts because there
are multiple copies of genes. For example, in some teleost species
there are four gene variants of the estrogen receptor that show
differences in ontogeny and sex expression (Boyce-Derricott et al.,
2010). The ER isoforms show high conservation in the DNA and
ligand binding domains and are more variable in other regions.
Sequencing a gene with multiples isoforms in the conserved region
by chance could make interpretation and quantitation difficult,
especially when counting differentially expressed tags in RNA-seq
studies.

In recent years, there has been a movement away from single
gene characterization and toward the integration and quantifi-
cation of high-throughput sequencing data in ecotoxicology. To
supplement and enhance biologically relevant observations made
from gene expression analysis using NGS, bioinformatics algo-
rithms have been developed to consider all affected genes, many
of which appear functionally unrelated, and to identify cellu-
lar processes and molecular functions perturbed by toxicants.
This approach circumvents concerns with multiple hypotheses
testing of both microarray and RNA-Seq data which severely
restrict expression data because genes are grouped into larger cate-
gories resulting in fewer comparisons. Bioinformatics approaches
implemented for fish ecotoxicogenomics experiments include
functional enrichment, gene set enrichment, pathway analysis, and
reverse engineering. We provide some brief examples of their use
in ecotoxicology.

GENE ONTOLOGY
Gene ontology (GO) is a manually curated database of genes using
a standardized vocabulary that includes biological process, molec-
ular function, and cellular component. Using NCBI PubMed for
a literature search, more than 40 scientific publications investi-
gating the impact of aquatic pollutants in fish have characterized
differentially expressed transcripts using GO to identify function-
ally enriched biological processes. As an example, there has been
valuable insight obtained into the effects of endocrine disrupt-
ing chemicals that mimic estrogens. Many studies with different
experimental paradigms reported common biological processes
and molecular functions affected by environmental estrogens,
despite the variety of genes that were differentially regulated.
These include electron transport, amino acid synthesis, pri-
mary metabolism, cell communication and signaling, steroid
binding, and steroid metabolism (Martyniuk et al., 2007; Ben-
ninghoff and Williams, 2008; Hoffmann et al., 2008; Garcia-
Reyero et al., 2009).

GENE SET ENRICHMENT ANALYSIS
In contrast to functional enrichment that utilizes a user defined
gene list based on predetermined criteria (i.e., fold change or p-
value cutoff), Gene set enrichment analysis (GSEA) considers the
entire list of genes in the analysis (Subramanian et al., 2005) and
can be used for microarray and RNA-seq data. GSEA is a compu-
tational method that determines whether an a priori defined set
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of genes shows statistical differences in rank order in a list based
on differential gene expression. The advantage of GSEA is that it
identifies pathways and cell processes more robustly by reducing
the signal-to-noise ratio in a dataset, and there is higher resolution
and ability to identify regulated gene groups. GSEA has been uti-
lized in toxicogenomics, for example to study the neurotoxic effects
of aquatic pollutants such as fluoxetine, venlafaxine, and carba-
mazepine (Thomas et al., 2012). In this study, GSEA identified
central nervous system development, axonogenesis, brain devel-
opment, and neurogenesis as the main biological pathways altered
in fathead minnows exposed to these three neuroactive contami-
nants. Until now, GSEA has had limited use in fish transcriptomics
studies but it promises to be an important bioinformatics method-
ology to characterize adverse outcome pathways (AOPs). Another
enrichment analysis method called sub-network enrichment anal-
ysis (SNEA) can be used in fish transcriptomics studies (Trudeau
et al., 2012), but it is not yet widely utilized in fish ecotoxicol-
ogy. This approach identifies gene regulatory pathways underlying
chemical perturbation and one can construct informative gene
networks in a method similar to pathway analysis (outline below)
but the networks are constructed in a post hoc fashion. GSEA
and SNEA have shown high potential to characterize biological
pathways affected by contaminants but their application remains
limited for examining NGS data in fish toxicology as they require
high quality gene annotation.

PATHWAY ANALYSIS
Biochemical pathways are important for characterizing AOPs in
toxicogenomics. A number of bioinformatics tools are available
to link transcriptomics data to pathway categories such as dis-
ease progression, drug effects, and biochemical processes among
others. These tools include the Database for Annotation, Visual-
ization and Integrated Discovery (DAVID6), Connectivity Map7,
and the Kyoto Encyclopedia of Genes and Genomes (KEGG8). Of
interest to ecotoxicogenomics, KEGG MAPPER and Babelomics
can be used to integrate metagenomic and transcriptomics with
chemical and pathway information (Kawashima et al., 2008; Med-
ina et al., 2010; Kanehisa et al., 2012). Other programs used for
pathway analysis in fish ecotoxicology studies include Ingenuity
Pathways Analysis (Ingenuity� Systems) and Pathway Studio�

(Nikitin et al., 2003; Ariadne Genomics). Networks are built
based upon relationships extracted from primary literature and
algorithm searches for entity connections based on regulation,
interaction, and binding between proteins or cell processes. In
ecotoxicology studies, pathway analysis has been used with success
to explore relationships among genes that are impacted by aquatic
pollutants. Gene interaction pathways have been constructed after
exposure to pollutants of concern such as ethinylestradiol, 17β-
trenbolone, and fipronil in the hypothalamic–pituitary–gonadal
axis of zebrafish (Wang et al., 2010), the pesticide methoxychlor
in largemouth bass liver (Martyniuk et al., 2011) and environ-
mental estrogens in fathead minnow ovary (Garcia-Reyero et al.,
2009). NGS approaches in ecotoxicogenomics will benefit from

6http://david.abcc.ncifcrf.gov/
7www.broadinstitute.org/cmap/
8www.genome.jp/kegg/

these bioinformatics tools to integrate both DNA and transcrip-
tomics data and better predict the adverse effects in non-target
aquatic organisms.

The successes of building meaningful interaction pathways in
fish toxicology reported in the literature are impressive as genomics
information is limited for non-model fish species. Researchers
using fish model in genomics studies have to consider the fact that
many gene–gene interaction pathways are based on mammalian
literature. Therefore, to extract significant functional gene infor-
mation for pathway analysis, mammalian homologs for fish genes
must be retrieved. Fish specific databases for model fishes such as
the zebrafish, are currently under development and will include
gene information not found in mammals.

REVERSE ENGINEERING
Reverse engineering offers a new way of characterizing AOPs in
fish toxicology (Perkins et al., 2011). The theory behind reverse
engineering and the potential applications in ecotoxicology are
well described by Garcia-Reyero and Perkins (2011). Generally,
the process of reverse engineering, borrowed from computing
sciences and engineering, is to identify the working parts of
a system in order to better understand how it functions. This
methodology increases the potential to study this system in a dif-
ferent context. In toxicogenomics, multiple Omics datasets can
be statistically evaluated to identify key nodes (genes or proteins)
that regulate gene networks. A framework for reverse engineer-
ing of AOPs in ecotoxicology has been introduced by Perkins
et al. (2011). This framework consists of building and integrat-
ing gene networks, interrogating the networks with chemical
perturbations, defining the AOPs, and predicting phenotypic con-
sequences to the perturbation. The authors provide an example
using an impressive 868 microarray datasets from female fat-
head minnow ovary to investigate environmental contaminants
able to disrupt the hypothalamic–pituitary–gonadal axis. The
analysis permitted to identify gene networks affected by the anti-
androgen flutamide, which were composed of several signaling
and receptor genes (both estrogen and androgen responsive) and
associated with cell regeneration, development, and antioxidant
response. Some of the network nodes included activin A receptor
(type 1), aryl hydrocarbon receptor (AHR) interacting protein,
and Wnt1 inducible signaling pathway protein 1. This approach
offers unique biological perspective on the regulatory pathways
affected by flutamide.

Some challenges for reverse engineering, and other meth-
ods such as SNEA, have been addressed over a decade ago
in the early stages of transcriptomics and network analysis
(Szallasi, 1999). These include the stochastic nature of the
transcriptome (or variation in the time sequences of gene acti-
vation/inhibition), the effective size of the network (i.e., how
many interacting entities comprise a “network”), the compart-
mentalization of genetic networks (e.g., a highly compartmen-
talized gene network will have few regulators and may be more
“buffered” from environmental perturbations), and informa-
tion content of gene expression matrices (i.e., what information
is present on a temporal scale about variation in gene–gene
or gene–protein relationships). Despite these challenges, there
have been great strides in adopting reverse engineering into
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aquatic toxicology. It should also be noted that many of the
algorithms described above depend upon, by definition, the
annotations and curated gene descriptions available. Never-
theless, fish ecotoxicogenomics studies using high-throughput
transcript sequencing have benefited tremendously from these
bioinformatics approaches and they have been extremely use-
ful for characterizing genes and pathways altered by aquatic
pollutants.

RESEARCH IN NON-MODEL FISH SPECIES USING
NEXT-GENERATION SEQUENCING
Over the last few years, NGS has been used to examine DNA
and RNA from over 20 fish species including Atlantic salmon
(Salmo salar), bighead carp (Hypophthalmichthys nobilis), Euro-
pean seabass (Dicentrarchus labrax), lake sturgeon (Acipenser
fulvescens), mangrove killifish (Kryptolebias marmoratus), pygmy
perch (Nannoperca spp.), and spotted gar (Lepisosteus oculatus;
Table 1). Most fish sequencing projects have employed the 454
pyrosequencer and have been successful using multiple tissue types
(e.g., liver, gonad, kidney, brain) as well as different life stages (e.g.,
adult versus embryo). This demonstrates that NGS platforms are
versatile and can be used to address a range of biological questions
in fish. To date, only a few studies have used NGS technologies
to research the impact of environmental contaminants in aquatic
organisms. Below, we discuss the application and advantages of
these methodologies in fish toxicogenomics.

NGS IN FISH TRANSCRIPTOMIC ANALYSES
Next-generation sequencing has already started to have a pos-
itive impact in the field of fish transcriptomics. Microarrays
are frequently used in the field of fish ecotoxicology (Douglas,
2006; Falciani et al., 2008; Garcia-Reyero et al., 2009; Villeneuve
et al., 2010; Gust et al., 2011; Sellin Jeffries et al., 2012). Typi-
cally microarray probes were designed based on cDNA contigs
produced by suppressive subtractive hybridization (SHH) and
cDNA libraries (Blum et al., 2004; Williams et al., 2006; Larkin
et al., 2007; Cairns et al., 2008; Katsiadaki et al., 2010). However,
a few studies have applied NGS technology to produce oligonu-
cleotide microarrays. Because NGS platforms can generate high
numbers of reads, the resulting sequences are often extended
which increases the chance to find matching reads and correctly
annotate them. Garcia-Reyero et al. (2008) used 454 pyrosequenc-
ing technologies to build a 44,000-oligonucleotide microarray for
largemouth bass (Micropterus salmoides). This approach resulted
in obtaining 31,391 unique sequences, which were compiled with
sequences from SHH to produce nearly 16,000 gene sequences
(half of them were annotated). The custom-designed microarray
was then tested by assessing the impact of 17β-estradiol expo-
sure on endocrine disruption and hormone signaling in adult
largemouth bass. The combination of NGS and microarray anal-
yses permitted characterizing several pathways perturbed by the
estrogenic compound including gonad development, sex differen-
tiation, signal transduction, and cell communication. In another
study, Mirbahai et al. (2011) used NGS technology in combination
with methylated DNA immunoprecipitation to design a 14,919-
oligonucleotide microarray. This permitted to examine hepatic
DNA methylation changes in common Dab (Limanda limanda)

living in polluted environments and to correlate methylation levels
with gene expression levels.

Recently, RNA-seq analyses are increasingly used (Xiang et al.,
2010; Fraser et al., 2011) and the results suggest that this method
could replace array-based technology in toxicogenomics research.
Indeed, RNA-seq presents the advantage to quantify directly the
expression level of mRNAs across the transcriptome from the
number of reads for a particular cDNA contig in a sequencing
run, allowing for the quantification of low-expressed transcripts.
While currently cost-prohibitive, RNA-seq analysis can potentially
provide a greater degree of resolution than microarrays and help
to identify splice variants. Oleksiak et al. (2011) utilized this tech-
nique in supplement to a microarray experiment to determine the
genomic differences between a polychlorinated biphenyl (PCB)
sensitive and a PCB resistant population of Atlantic killifish (Fun-
dulus heteroclitus). Using 454 pyrosequencing technology, they
demonstrated that NGS data can be used to extend the length
of array probes, which helped to find new matching sequences
and to annotate previously unannotated probes. The RNA-seq
study corroborated most of the microarray results and suggested
that AHR regulatory pathway may be responsible for the PCB
resistance of one of the killifish population. In another study,
Whitehead et al. (2011) applied similar techniques to examine the
effects of the Deepwater Horizon oil spill on Gulf killifish. RNA
sequencing data was acquired using the Illumina platform and
over 6000 unique EST sequences were obtained. Both microar-
ray and RNA-seq analyses identified zona pellucida, choriogenin,
and vitellogenin as PCB-responsive genes. These early studies
provide strong evidence that RNA-seq methods are suitable to
investigate the adverse effects of pollutants present in the aquatic
environment.

The usefulness of this approach was further demonstrated by
Pierron et al. (2011) who conducted RNA-seq to examine the
effects of chronic metal exposure in four wild populations of yel-
low perch. NGS data generated from the yellow perch yielded
over 9,000 gene sequences among which 6,000 were annotated. As
mentioned previously, annotating EST sequences from non-model
fish species is one of the main challenges for fish biologists and
NGS technologies could facilitate this task. Pierron et al. (2011)
were able to establish relationships between the hepatic expres-
sion levels of specific transcripts and the concentrations of copper
and cadmium measured in the fish as well as to identify poten-
tial adverse effects. In general, these studies have successfully
shown that NGS is a powerful technique to study the ecotoxi-
cological responses of non-model fish species living in polluted
environments.

NGS IN FISH EVOLUTION AND PHYSIOLOGY
Interestingly, most of the research published on the application of
NGS in fish has focused on different aspects of fish evolution such
as genome evolution (Hale et al., 2010; Amores et al., 2011), phe-
notypic evolution (Elmer et al., 2010; Goetz et al., 2010; Jeukens
et al., 2010), and evolution of immune system (Star et al., 2011;
Zhang et al., 2011a). This subject area is outside of the scope of
this article, but a few of these studies are reviewed below.

Next-generation sequencing technologies have had a significant
impact in the field of ecological divergence and have contributed
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in elucidating the links between genetic and environmental fac-
tors leading to species evolution (Elmer et al., 2010). Most of
the research in this field used the 454 GS FLX pyrosequencer
for RNA-seq analyses to uncover the molecular basis for the
phenotypic and ecological divergences between endemic species.
For example, Jeukens et al. (2010) employed this methodology
to investigate the genomic differences behind the phenotypic
divergence of two populations of lake whitefish (Coreons clu-
peaformis spp.). The authors discovered that dwarf fish had an
over-representation of genes linked to immunity, DNA replica-
tion and repair while normal fish over-expressed genes linked to
protein synthesis. Elmer et al. (2010) used the same approach to
correlate the genomic and phenotypic differences between crater
lake cichlids: the benthic species Amphilophus astorquii and the
limnetic species Amphilophus zaliosus. Their study revealed that
a number of transcripts associated with development, biosynthe-
sis, and metabolic processes were differentially expressed between
the two species. Other studies have employed NGS technologies
to characterize fish immune system and its evolution. All these
studies have concluded that NGS technologies provide a greater
scope of understanding of the genetic events that preceded natural
selection and fish species evolution. The significant advance-
ment made in these disciplines may provide valuable genetic
insights to facilitate ecotoxicogenomic analyses. For example,
studies on the Atlantic killifish (Oleksiak et al., 2011) combined
principles in ecotoxicology and evolution to better understand
adaptation of fish in polluted environments. Combining data on
both genetic variation (SNPs) in fish genomes and transcriptomic
responses will lead to the characterization of expression quan-
titative trait loci (eQTL) and genetic architecture that underlies
adaptation.

CONCLUSION
There is great promise for toxicogenomics in non-model fish
species. Fish offer unique challenges compared to mammals due to
genome duplication events and the presence of multiple isoforms
for many genes. Nevertheless, teleost fish are important model
organisms for assessing the impact of anthropogenic pollutants
in the environment as well as studying certain human diseases
(Albertson et al., 2009; Zhang et al., 2010). As the costs for DNA
and RNA sequencing decrease, the combination of several NGS
platforms should facilitate whole genome sequencing projects and
expand our knowledge of ecologically relevant species. Under-
standing the relationships between environmental chemical expo-
sure and gene expression will provide valuable data for environ-
mental risk assessments (ERA). In 2011, Piña and Barata reviewed
the potential for ecotoxicogenomics studies to improve the tests
necessary for ERA by discovering biological assays and biomark-
ers relevant to environmental conditions (Piña and Barata, 2011).
Thus, the development of ecotoxicogenomics and bioinformatics
tools will greatly benefit the assessment of the impacts of environ-
mental pollutants. In the future, it will be necessary to integrate
the extensive genomic data gathered from transcriptomics, gene
regulation, and evolutionary biology into a working framework in
order to propose new hypotheses in fish research.
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