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Exercise-induced autophagy is associated with physiological left ventricular hypertrophy
(LVH), and a growing body of evidence suggests that microRNAs (miRNAs) can regulate
autophagy-related genes. However, the precise role of miRNAs in exercise induced
autophagy in physiological LVH has not been fully defined. In this study, we investigated
the microRNA–autophagy axis in physiological LVH and deciphered the underlying
mechanism using a rat swimming exercise model. Rats were assigned to sedentary
control (CON) and swimming exercise (EX) groups; those in the latter group completed a
10-week swimming exercise without any load. For in vitro studies, H9C2 cardiomyocyte
cell line was stimulated with IGF-1 for hypertrophy. We found a significant increase in
autophagy activity in the hearts of rats with exercise-induced physiological hypertrophy,
and miRNAs showed a high score in the pathway enriched in autophagy. Moreover, the
expression levels of miR-26b-5p, miR-204-5p, and miR-497-3p showed an obvious
increase in rat hearts. Adenovirus-mediated overexpression of miR-26b-5p, miR-204-5p,
and miR-497-3p markedly attenuated IGF-1-induced hypertrophy in H9C2 cells by
suppressing autophagy. Furthermore, miR-26b-5p, miR-204-5p, and miR-497-3p
attenuated autophagy in H9C2 cells through targeting ULK1, LC3B, and Beclin 1,
respectively. Taken together, our results demonstrate that swimming exercise induced
physiological LVH, at least in part, by modulating the microRNA–autophagy axis, and that
miR-26b-5p, miR-204-5p, and miR-497-3p may help distinguish physiological and
pathological LVH.
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INTRODUCTION

The two types of left ventricular hypertrophy (LVH), namely
physiological and pathological LVH, differ greatly in the left
ventricular phenotype. Both of them have an increased myocyte
volume and heart size. The difference is that physiological LVH is
induced by aerobic exercise training, postnatal growth, and
pregnancy, and characterized by unchanged fetal and apoptosis
gene expression and increased cardiac function while
pathological LVH is stimulated by pressure or volume overload
or cardiomyopathy, and characterized by apoptosis and fibrosis
and depressed cardiac function (Bernardo et al., 2010; Nakamura
and Sadoshima, 2018; Oldfield et al., 2019). For example, LVH
induced by swimming exercise training is an adaption for a
chronic increase in hemodynamic overload (Xiao et al., 2014;
Bernardo et al., 2018), whereas myocardial infarction induced
pathological LVH is associated with increased fibrosis, lowered
aerobic capacity, and maladaptive remodeling (McMullen and
Izumo, 2006; Dorn, 2007; Schiattarella and Hill, 2015). The
physiological LVH exerts cardioprotection in patients with
cardiovascular diseases. However, the mechanism of exercise-
induced LVH remains unclear.

Physical exercise has been identified as an inducer of
autophagy (Halling and Pilegaard, 2017; Martin-Rincon et al.,
2018). Exercise was reported to induce autophagy in several
organs such as cardiac tissue, skeletal muscle, liver, pancreas,
hippocampus, and adipose tissue (Brandt et al., 2018; Li et al.,
2018b). Induction of skeletal and cardiac muscle autophagy
during endurance training triggers beneficial adaptive changes
in mitochondrial metabolism and is associated with enhanced
physical fitness (Lira et al., 2013). Autophagy is required for
exercise training-induced skeletal muscle adaption and for the
improvement of physical performance (Gottlieb and Mentzer,
2013; Fritzen et al., 2016; Sanchez, 2016). However, the
mechanism of exercise-induced autophagy remains unknown.

Accumulated evidences showed that microRNA (miRNA,
miR) networks changed in response to exercise contributed to
physiological cardiac hypertrophy (Carè et al., 2007; Fernandes
et al., 2011; Fernandes et al., 2015). However, different types of
exercise training have been reported to cause changes in different
miRNAs (Martinelli et al., 2014; Melo et al., 2015; Ramasamy
et al., 2015). MiRNAs could target autophagy-related genes and
negatively regulate their activities (Shen et al., 2016; Aredia and
Scovassi, 2017; Chen et al., 2017). MiRNAs modulate autophagy
at different stages, such as at autophagic induction, vesicle
nucleation, and vesicle elongation and completion stages, by
targeting autophagy-related genes or autophagy complexes
(Martinelli et al., 2014; Zhang and Chen, 2018). Although a
growing body of evidence indicates that miRNAs regulate
autophagy-related genes, their precise role in autophagy
pathways has not been fully defined in physiological cardiac
hypertrophy. Therefore, we established physiological in vitro and
in vivo LVH models to investigate the microRNA–autophagy
axis in physiological hypertrophy.
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MATERIALS AND METHODS

Animal Care and Exercise Protocols
All care policies and procedures in this study conformed to the
Guide for the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH publication No. 85–23,
revised 1996) and were approved by the Ethics Committee for the
Use of Experimental Animals at Shanghai Normal University,
China. FemaleWistar rats (200 ± 20 g, n = 32) were fed a standard
diet, exposed to a 12-h light–12-h dark cycle, and maintained in a
constant room temperature (22 ± 2°C) and humidity (50 ± 10%)
(Fernandes et al., 2011). The rats were randomly assigned to two
groups: 1) sedentary control (CON, n = 16) and 2) swimming
exercise (EX, n = 16). For 10 weeks, from Monday to Friday, the
rats in the EX group completed a 1-h swimming exercise schedule
without any load. The exercise training was performed by placing
the rats in a swimming pool (150 cm × 60 cm × 70 cm) filled with
warm water to a depth of 60 cm. The pool was divided by plastic
barriers into eight lanes. The water temperature was maintained at
31 ± 1°C. All the animals were weighed once a week. In contrast,
rats in the CON group were exposed to the water twice weekly—
they were placed in the swimming pool at these junctures for 10-
min sessions. The O2 uptake for rats swimming individually was
about 50–65% of the maximum oxygen uptake. This low-intensity,
long-period swimming exercise protocol is effective for promoting
cardiovascular adaptations and for increasing muscle oxidative
capacity. These protocols were previously reported by Fernandes
et al. (2011) and Oliveira et al. (2009).

Measurement of Blood Pressure and Heart
Rate
Blood pressure (BP) and heart rate (HR) were measured after 24 h
of the last exercise session. The hemodynamic parameters of rats
were measured with a blood pressure analyzer (BP-98A; Softron,
Tokyo, Japan), after they had been placed undisturbed in a
restrainer for a minimum of 5 min, following the tail-cuff
method. The recorded data indicated the average of all values of
systolic blood pressure (SBP), diastolic blood pressure (DBP), HR,
and mean arterial pressure (MBP) over the entire recording time of
20 min.

Measurement of Cardiac Hypertrophy
The rats were euthanized by cervical dislocation under anesthesia
induced by intraperitoneal injection of 3% sodium pentobarbital.
To measure the cardiac function, the hearts were stopped at
diastole by perfusion of 14 mM KCl. After the heart weight
(HW) was measured, the left ventricle (LV) was dissected
corresponding to the remaining tissue upon the removal of both
atria and the free wall of the right ventricle (RV). The
interventricular septum remained as part of the LV. Left cardiac
hypertrophy was assessed by determining the ratio of LV weight to
HW (HW/BW) (Fernandes et al., 2011). Then the LVs were fixed
with 10% formalin and embedded in paraffin. Heart sections (5 mm
in thickness) were made and stained with hematoxylin and eosin
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(HE) for imaging the heart structures. Four random sections from
each heart were visualized using light microscopy at 40X
magnification. Myocytes with a visible nucleus and intact cellular
membrane were chosen for determination of the myocyte
diameter. The width of individually isolated cardiomyocytes were
displayed on a viewing screen that was manually traced, across the
middle of the nuclei, with a digitizing pad and determined using a
computer-assisted image analysis system (ScopePhoto 3.0 for
Scope Technology). For each group, 20 visual fields were assayed.

Transmission Electron Microscopy
Transmission electron microscopy was performed by the method
described by Nadal and Gold (2012). In brief, freshly prepared
cardiac tissues were fixed overnight in 2% glutaraldehyde at 4°C.
Thereafter, the sections were immersed in 1% buffered osmium
tetroxide for 2 h. The specimens were then dehydrated through a
graded series of ethanol and embedded in an epoxy resin. The
specimens were then sliced into ultrathin sections (80 nm) with
0.1% citrate lead and 10% uranium acetate. The sections were
examined under a transmission electron microscope (Hitachi,
Tokyo, Japan).

Cell Culture
The rat H9C2 cells were purchased from the cell bank of the
Chinese Academy of Sciences (Shanghai, China) and cultured in
Dulbecco's modified Eagle 's medium (Gibco, USA),
supplemented with 100 U/ml penicillin–streptomycin, and 10%
fetal bovine serum (BSA) in a 5% CO2 humidified atmosphere at
37°C. The cells were grown at a density of 4 × 105 cells/ml. For
the hypertrophy model, cells were grown with 10 mM insulin-like
growth factor (IGF-1, Sigma-Aldrich, MO, USA) for 48 h at 37°C
in a 5% CO2 incubator.

Immunofluorescence Staining
For immunofluorescence analysis, H9C2 cells were fixed with 4%
paraformaldehyde for 15 min, permeabilized with 0.1% Triton
X-100 in PBS for 10 min, and blocked with 3% BSA solution for 1
h. These cells or paraffin-embedded sections were incubated
overnight with a microtubule-associated protein 1 light chain
3B (LC3B) antibody (Cell Signaling Technology; 1:200) at 4°C,
washed, and stained with a fluorescent dye (Alexa Fluor 555)-
conjugated secondary antibody (Cell Signaling Technology;
1:200). The tissue sections or cells were subsequently mounted
with a fluorescent mounting medium (Beyotime Biotechnology,
Shanghai, China) and coverslips were placed over them.
Immunofluorescence was analyzed with a fluorescence
microscope (Carl Zeiss, Germany), and the number of LC3
puncta was determined using Image-Pro Plus 6.0 software.

Ribonucleic Acid Extraction and
Microribonucleic Acid Microarray
Total RNA and miRNAs were extracted using TRIzol (Invitrogen,
Waltham, MA) and miRNeasy mini kit (QIAGEN, Germany),
respectively, according to the manufacturer's instructions. After
quantitating the RNA with NanoDrop 1000 spectrophotometer
(NanoDrop Technologies, USA) and standard denaturing agarose
Frontiers in Genetics | www.frontiersin.org 3
gel electrophoresis, samples from two animals in each group were
pooled and labeled using the miRCURY™ Hy3™/Hy5™ Power
Labeling Kit (Exiqon, Vedbaek, Denmark). They were then
hybridized on the miRCURY™ LNA Array (v.16.0) (Exiqon,
Vedbaek, Denmark). Next, the slides were scanned using the
Axon GenePix 4000B Microarray Scanner (Axon Instruments,
Foster City, CA). The scanned images were then imported into
GenePix Pro 6.0 software (Axon) for grid alignment and data
extraction. Replicated miRNAs were averaged and miRNAs that
intensities ≥ 30 in all samples were chosen for calculating
normalization factor. Expressed data were normalized using the
Median normalization. After normalization, significant
differentially expressed miRNAs between two groups were
identified through Fold change (≥1.5) and P-value (P ≤ 0.05).
An electronic link to the miRNA microarray platform is available
at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL11434.

Bioinformatics
After microarray analyze, predicted target genes of candidate
miRNAs were determined using three bioinformatics prediction
tools: miRBase (http://www.mirbase.org/), TargetScan (http://
www.targetscan.org, Jacobsen et al., 2013), and miRDB (http://
www.mirdb.org/miRDB/, Liu and Wang, 2019). MiRBase was
used to define the miRNA sequences, and TargetScan and
miRDB were used to predict the target genes of miRNAs. The
predicted miRNA target genes were then subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses using DAVID (http://david.abcc.
ncifcrf.gov/) online (Han et al., 2012). Eighty-three pathways
were enriched with the miRNA target genes and the autophagy
pathway was the second pathway of the top 10. The autophagy
pathway included 16 miRNAs. Among them, one most
upregulated (fold change >2.5) and four most downregulated
(fold change <0.25) miRNA were selected and homology was
analyzed. Again, TargetScan and miRDB were used to predict the
target genes of the selected miRNAs, and the information from
the two databases were integratively considered.

Quantitative Real-Time Polymerase Chain
Reaction Analysis of Messenger
Ribonucleic Acid and Microribonucleic
Acid Expression
For reverse transcription, total RNA was prepared from cells
using the TRIzol reagent according to the manufacturer's
instructions (Invitrogen). Total RNA (2 µg) was reverse
transcribed using the PrimeScript™ RT Master Mix Kit
(Takara, Kusatsu, Japan) and Mir-X™ miRNA First-Strand
Synthesis Kit (Clontech, USA) for SYBR Green PCR,
respectively. Quantitative real-time PCR (qRT-PCR) was
performed in triplicate using the ABI 7500 System (ABI, New
York, USA) in a 20-ml reaction volume. The real-time PCR and
data collection were subsequently performed, as described
previously (Ma et al., 2013). The relative expression levels of
the indicated mRNAs normalized against glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) mRNA were calculated
using the 2−DDCT method. The primer sequences used for RT-
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qPCR are listed in Supplementary Table 1. For microRNAs, the
expression level of U6 was used as an internal control.
Protein Extraction and Western Blot
Analysis
Western blotting was performed following the standard method.
Briefly, the samples were placed in protein extraction solution
(RIPA) and ultrasonicated at maximum speed at 4°C for 30 s
(Sonics, Newtown, USA). The homogenate was centrifuged at
12,000 × g at 4°C for 30 min. After denaturation, the samples
were subjected to 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and the resolved proteins were
transferred onto polyvinylidene fluoride membranes (Millipore,
Billerica, USA). The membranes were blocked for 1 h with 5%
milk and then probed with anti-LC3B (cat. no. 3868; 1:1,000),
anti-Beclin 1 (cat. no. 3495; 1:1,000), anti-unc-51 like autophagy
activating kinase 1 (ULK1) (cat. no. 8054; 1:1,000), anti-Atg4B
(cat. no. 5299; 1:1,000), anti-Atg5 (cat. no. 12994; 1:1,000), anti-
Atg7 (cat. no. 2631; 1:1,000), anti-Atg12 (cat. no. 4180; 1:1,000),
anti-ANP (cat. no. 209232, 1:1,000), anti-brain natriuretic
peptide (BNP) (cat. no. 19645, 1:1,000), or anti-SQSTM1 (cat.
no. 39749; 1:1,000) antibodies, which were all purchased from
Cell Signaling Technology, MA, USA, at 4°C overnight. After
washing three times with TBST (Thermo Fisher Scientific, Inc.,
Waltham, MA), the membranes were incubated with the
corresponding horseradish peroxidase-conjugated secondary
antibodies (goat anti-rabbit; cat. no. ab6721; 1:2,000; Cell
Signaling Technology) for 2 h at room temperature. The
immunoreactive protein bands were visualized with Pierce ECL
Plus Western Blot Substrate (Thermo Fisher Scientific, Rockford,
IL, USA). GAPDH was used as an internal loading control. The
band intensity was quantified using ImageJ software (NIH) and
was defined as fold-change relative to the band intensity in the
CON samples after normalization against GAPDH.
Adenovirus-Mediated Microribonucleic
Acid Infection
We performed adenovirus-mediated infection of H9C2 cells for
overexpression of miR-26b-5p (Ad-26b-5p), miR-204-5p (Ad-
204-5p), miR-497-3p (Ad-497-3p), let-7a-5p (Ad-7a-5p), and
miR-181a-5p sponges (Ad-181a-5p) (Vigenebio, Shandong,
China) at a multiplicity of infection 10, respectively. After 48 h
of infection, the cells were collected for RT-qPCR and western
blot assays.
Statistical Analysis
Data were presented at mean ± SD. Statistical analysis was
performed using Prism Software (GraphPad Prism 5.0). For
analysis of two groups, Student's t-test was used; for
comparison of three or more groups, one-way ANOVA
followed by Bonferroni's post-test was applied. For each
analysis, P < 0.05 was considered significant.
Frontiers in Genetics | www.frontiersin.org 4
RESULTS

Ten-Weeks Swimming Exercise Induces
Physiological Cardiac Hypertrophy in Rats
To evaluate whether 10-week swimming exercise induced LVH,
the systolic, diastolic, and mean blood pressure, and heart rate
were measured for rats in the CON (n=16) and EX groups
(n=16) (Figures 1A, B). There were no differences in the blood
pressure between the two groups (P > 0.05), but the heart rate in
the EX group was significantly lower than in the CON group
(304.6 ± 12.1 bpm vs. 348.8 ± 11.7 bpm; P < 0.05) after 10-week
swimming exercise. The LV/BW and HW/BW ratios were used
to evaluate LVH. Compared with the CON group, the HW/BW
ratio was markedly increased in the EX group (4.73 ± 0.42 vs.
2.17 ± 0.14 for EX vs. CON; P < 0.05, n = 16; Figure 1C). The
value of LV/BW in the EX group was 1.37-fold (2.97 ± 0.19; P <
0.01, Figure 1D), which was also higher than in the CON group
(2.17 ± 0.14). Moreover, as evident from the HE staining (Figure
1E), in the CON group, the myocardial cells were arranged
orderly and there was less amount of extracellular matrix,
whereas in the EX group, the myocardial fibers were evenly
colored, the myocardial cells were arranged more orderly, the
number of nuclei was increased, and the structure was normal.
Furthermore, when compared with the CON group, a significant
increase in the diameter of the LV myocytes was observed in the
EX group (14.77 ± 1.64 vs. 12.15 ± 1.42 mm for EX vs. CON; P <
0.05, n = 16; Figure 1F).

The indices of pathological cardiac hypertrophy (Lowes et al.,
1997; Weinberg et al., 1999), such as the atrial natriuretic
polypeptide (ANP), sarco-endoplasmic reticulum Ca2+-ATPase
(SERCA-2a), the skeletal muscle a-actin, and the ratio of a/b-
myosin heavy chain (a/b-MHC), were not altered in the EX
group compared to those in the CON group (Figures 1G–J).
Diagram depicting the experimental process of this study was
shown in Figure 1K.
Autophagy Is Markedly Enhanced in
Swimming-Induced Physiological Cardiac
Hypertrophy in Rats
To detect the activation of autophagy, the expression levels of
LC3, Beclin 1, and SQSTM1 mRNAs and proteins were assessed
by RT-qPCR and western blot analyses, respectively. The mRNA
levels of LC3 II and Beclin 1 in the EX group (n=16) were
obviously increased, by 2.53± 0.15- (P < 0.01) and 2.09 ± 0.13-
fold (P < 0.01), respectively, compared to the respective levels in
the CON group (n = 16), whereas the level of SQSTM1 mRNA
was significantly decreased (P < 0.01) (Figure 2A). Furthermore,
the expression levels of LC3 II and Beclin 1 proteins were
upregulated in the EX group (the increase was by 1.93 ± 0.17-
and 1.86 ± 0.12-fold compared with the respective levels in the
CON group, and in both cases, the increase was significant at P <
0.01); the SQSTM1 protein level showed an obvious decrease
with respect to its level in the CON group; P < 0.01 (Figures
2B, C).To further confirm the swimming exercise induced
February 2020 | Volume 11 | Article 78
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autophagy, the protein levels of Atg4B, Atg5, Atg7, Atg12, and
ULK1 in the LV were determined by western blot analysis. As
shown in Figures 2D, E, the expression levels of these five
proteins were significantly increased by 1.3 ± 0.18- (P < 0.05),
1.44 ± 0.12- (P < 0.01), 1.52 ± 0.16- (P < 0.01), 1.35 ± 0.11- (P <
0.01), and 1.21 ± 0.1- (P < 0.05) fold, respectively, in the EX
group compared to their levels in the CON group. In addition,
the ultrastructure of rat hearts were observed by electron
mic ro s copy . The doub l e membrane s t ruc tu r e o f
autophagosomes was observed in the EX group, whereas in the
Frontiers in Genetics | www.frontiersin.org 5
CON group, we did not observe the typical structure of
autophagosomes (Figure 2F).

Microribonucleic Acid Targeting the
Autophagy Pathway Are Significantly
Downregulated in Physiological Cardiac
Hypertrophy
Through miRNA microarray analysis, we found 216 differential
miRNA (77 upregulated, 139 downregulated) between normal and
exercised heart. GO analyses showed that most of the miRNA
FIGURE 1 | Ten-weeks swimming exercise induces physiological cardiac hypertrophy in rats. (A), The systolic blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MBP) in the control (CON) and swimming exercise (EX) groups. (B), The heart rate (HR) in the EX group. (C, D), Ten-week swimming exercise
increased the HW/BW and LV/BW ratios in the EX group. BW, body weight; LV, left ventricular weight; HW, heart weight. (E, F), Hematoxylin staining of LV myocytes in the
CON group and EX group. Images were obtained at a magnification of ×400. (G–J), The levels of atrial natriuretic polypeptide (ANP) and the skeletal muscle a-actin (a-actin),
and the ratio of a/b-myosin heavy chain (a/b-MHC) and levels of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA-2a) in the CON group and EX group. (K), Diagram
depicting the experimental process of this study. * P < 0.05, ** P < 0.01, EX group (n=16) vs. CON group (n=16). Data are presented as mean ± SD. Statistical significance
was evaluated with the two-tailed Student's t test.
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target gene was enriched in cell membrane structure (Figure 3A).
A total of 83 pathways were enriched and we listed the top 10
pathways in the decreasing order of their enrichment scores. The
autophagy pathway was the second most enriched pathway
(Figure 3B, Supplementary Table 2). The autophagy pathway
included 16 miRNAs (Figure 3C). Among them, one most
upregulated (fold change >2.5) and four most downregulated
(fold change <0.25) miRNA were selected and homology was
analyzed. After analyzing the gene homology among rat, rhesus,
and human sequences (Figures 3D–H) using DNAMAN
software, we found that miR-26b-5p, miR-204-5p, miR-497-3p,
let-7a-5p, and miR-181a-5p in rat were highly homologous to
their human counterparts. We further analyzed these five miRNAs
using RT-qPCR and found that miR-26b-5p, let-7a-5p, miR-204-
5p, and miR-497-3p were significantly downregulated in the EX
group (P < 0.01), whereas miR181a-5p was upregulated in the EX
group (1.86-fold increase over expression in the CON group; P <
0.05) (Figure 3I).
Overexpression of miR-26b-5p, miR-204-
5p, and miR-497-3p Attenuates IGF-1
Induced Cardiomyocyte Hypertrophy by
Suppressing Autophagy
H9C2 cells were incubated with IGF-1 (10 mM) for 48 h to induce
cardiomyocyte hypertrophy. As shown in Figures 4A, B, the cells
stimulated with IGF-1 were markedly hypertrophic. However,
IGF-1 upregulated the mRNA level of ANP and BNP (P < 0.05),
but not a-actin (Figure 4C) (P > 0.05). Meanwhile, IGF-1
promoted autophagy activity with increased LC3II and Beclin1,
and decreased SQSTM1 protein levels (P < 0.01, respectively)
Frontiers in Genetics | www.frontiersin.org 6
(Figures 4D, E). Then, the IGF-1 treated H9C2 cells were
subjected to adenovirus-mediated miRNA infection. The cell
surface area showed a significant decrease in the IGF-1+Ad-26b-
5p, IGF-1+Ad-204-5p, and IGF-1+Ad-497-3p groups
(Figure 4F, G) (P < 0.01, P < 0.05, P < 0.01, respectively), but
no significant changes were observed in the other groups (P >
0.05). In addition, overexpression of miR-26b-5p, miR-204-5p,
and miR-497-3p attenuated IGF-1 induced cardiomyocyte
hypertrophy by downregulating ANP and BNP in both mRNA
(Figures 4H, I) and protein levels (Figures 4K–M), while leaving
a-actin unchanged (Figures 4J, K, N). These data indicated that
IGF-1 stimulation obviously induced cardiomyocyte hypertrophy
and that miR-26b-5p, miR-204-5p, and miR-497-3p could
inhibit it.

To gain insights into the effects of miRNAs on IGF-1-induced
autophagy, we performed immunofluorescence staining and
western blot analysis. As shown in Figures 5A, B, Ad-26b-5p,
Ad-204-5p, and Ad-497-3p infections significantly decreased the
IGF-1 induced expression of LC3 II in cardiomyocyte hypertrophy,
as reflected by reduced fluorescence (P < 0.01, P < 0.05, P < 0.01,
respectively). The results of the western blot assay were consistent
with those of immunofluorescence staining (Figures 5C, D). The
infection with Ad-26b-5p, Ad-204-5p, and Ad-497-3p significantly
decreased the IGF-1-induced expression of LC3 II and Beclin 1
proteins in cardiomyocyte hypertrophy (P < 0.01). Moreover, a
marked increase in SQSTM1 was also observed (P < 0.01). In
contrast, the levels of LC3 II, Beclin 1, and SQSTM1 were not
changed significantly in cells infected with Ad-7a-5p and Anti-
181a-5p (P > 0.05).

In addition, to investigate the mechanism of miR-26b-5p,
miR-204-2p, and miR-497-3p mediated amelioration of
FIGURE 2 | Autophagy is markedly enhanced in swimming-induced physiological cardiac hypertrophy in rats. (A), Real-time quantitative (RT-q)PCR analysis for
mRNA expression of LC3B, Beclin 1, and SQSTM1 (relative to b-actin). (B, C), Western blot analysis for LC3B, Beclin 1, and SQSTM1 (relative to b-actin). (D, E),
Western blot analysis of samples from CON and EX group detected Atg4B, Atg5, Atg7, Atg12 and ULK1. (F), Representative transmission electron microscopic
images of autophagosomes. Autophagosomes (red arrows). Images were obtained at a magnification ×13,000. Scale bar, 2 mm. ** P < 0.01, EX group (n=16) vs.
CON group (n=16). Data are presented as means ± SD. Statistical significance was evaluated with the two-tailed Student's t test.
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cardiomyocyte hypertrophy induced by IGF-1, we predicted that
the autophagy-related genes, ULK1, LC3B, and Beclin 1, were the
target genes of miR-26b-5p, miR-204-5p, and miR-497-3p,
respectively (Supplementary Table 3). The predicted binding
sites of miR-26b-5p, miR-204-5p, and miR-497-3p in the 3′-
UTR of ULK1, LC3B, and Beclin 1, respectively, are listed in
Figure 5E. The western blot analysis showed that in the
cardiomyocytes infected with Ad-26b-5p, Ad-204-5p, and Ad-
497-3p, the protein levels of these predicted target genes were
markedly decreased (P < 0.01) (Figures 5F–H). These data
indicated that IGF-1 induced cardiomyocyte hypertrophy was
Frontiers in Genetics | www.frontiersin.org 7
significantly suppressed by miR-26b-5p, miR-204-5p, and miR-
497-3p through autophagy inhibition.
DISCUSSION

The degree of physiologic hypertrophy is associated with the
intensity and duration of the exercise training and is also related
to the aerobic or anaerobic metabolism (de Bold et al., 2001).
Although cardiac hypertrophy induced by treadmills is widely
observed, it has failed to induce cardiac hypertrophy in some
FIGURE 3 | MicroRNAs (miRNAs) targeting the autophagy pathway are significantly downregulated in physiological cardiac hypertrophy. (A), Gene ontology (GO)
analyses showed that most of the miRNA target genes were enriched in cell membrane structure. (B), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.
Horizontal axis indicates pathway enrichment score; vertical axis indicates the pathway name. The data label on the right stands for the differentially expressed (DE)
gene number associated with the pathway. (C), Heat map for clustering analysis of miRNA expression data in the CON (n = 2) and EX (n = 2) groups; the miRNAs in
the red box are those that bind to the autophagy-related genes in LVH. (D–H), The sequence homology among rat, rhesus, and human miRNAs; the blue shading
area represents the same sequence. (I), Determination of miRNAs by real-time (RT)-qPCR. Targeted miRNAs were normalized with respect to the U6 levels. ** P <
0.01, EX group (n=16) vs. CON group (n=16). Data are presented as means ± SD. Statistical significance was evaluated with the two-tailed Student's t test.
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cases (Wang et al., 2010). Accumulated evidences demonstrated that
swimming training leads to LVH (Geenen et al., 1996; Pelliccia and
Maron, 1997; Medeiros et al., 2004) and the degree of the
hypertrophy is associated with the endurance (Kaplan et al., 1994;
Evangelista and Krieger, 2006). Indeed, some researchers have
observed that the swimming training induces robust cardiac
hypertrophy when compared to treadmill training in rats and
mice (Medeiros et al., 2004; Evangelista and Krieger, 2006;
Oliveira et al., 2009; Wang et al., 2010; Soci et al., 2011). Thus, we
chose the swimming training to study the mechanisms of
physiological LVH. To induce physiological LVH in rats, we
Frontiers in Genetics | www.frontiersin.org 8
referred to the Bedford animal exercise load standard for setting
the exercise intensity (Bedford et al., 1979). The 60-min swimming
exercise employed in the present study was of moderate intensity for
the rats. The 10-week moderate-intensity swimming exercise
enlarged and thickened cardiomyocytes. Although an increase in
cardiomyocyte volume is also observed in pathological
cardiomegaly, increased fetal gene expression such as ANP, BNP,
b-MHC were also significantly upregulated in pathological LVH
(Swynghedauw, 1986; Dorn et al., 1994; Bernardo et al., 2010;
Nakamura and Sadoshima, 2018; Oldfield et al., 2019). In our
swimming exercise-induced cardiomyocyte hypertrophy, the
FIGURE 4 | Overexpression of miR-26b-5p, miR-204-5p, and miR-497-3p attenuates IGF-1 induced cardiomyocyte hypertrophy. (A, B), The morphology of H9C2 cells
treated with IGF-1 (10 µM)for 48 h. (C), The messenger RNA (mRNA) levels of atrial natriuretic polypeptide (ANP), brain natriuretic peptide (BNP), and a-actin in H9C2 cells
treated with IGF-1 (10 µM). (D, E), The protein expression of autophagy maker (LC3B, Beclin1, and SQSTM1) of H9C2 cells treated with IGF-1 (10 µM). (F, G), Cardiomyocyte
surface area of H9C2 cells in response to IGF-1 (10 µM) with adenovirus-mediated microRNA (miRNA) infection. (H–J) mRNA levels of cardiomyocyte hypertrophy makers of
H9C2 cells treated with IGF-1 (10 µM) and adenovirus mediated miRNAs. (K–N) Protein levels of cardiomyocyte hypertrophy makers of H9C2 cells treated with IGF-1 (10 µM)
and adenovirus mediated miRNAs. ** P < 0.01, IGF+scramble (n=6) vs. CON+scramble group (n=6). #P < 0.05, ## P < 0.01, miRNA adenovirus intervention group (n=6) vs.
IGF-1+scramble group (n=6). Data are presented as means ± SD. Statistical significance was evaluated with the two-tailed Student's t test (B, C, E) and one-way analysis of
variance with Bonferroni post-hoc analysis (G–J, L–N).
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expression of ANP, a-actin, and the ratio of b-MHC to a-MHC
was not significantly changed, indicating a physiological LVH
model was successfully induced. Previous studies have shown that
physiological cardiac hypertrophy is associated with an exercise-
induced increase in the levels of IGF-1 (Neri Serneri et al., 2001).We
found that the cardiomyocyte surface area in response to IGF-1 for
48 hours was significantly larger than that of the non-stimulated
H9C2 cells, and the levels of hypertrophy markers (ANP and BNP)
were also significantly increased in mRNA levels, while leaving a-
actin mRNA unchanged, which is considered as a trigger for
Frontiers in Genetics | www.frontiersin.org 9
physiological cardiac hypertrophy (McMullen and Izumo, 2006;
Weeks et al., 2017).

Autophagy is a highly conserved and ubiquitous metabolic
pathway in living organisms (Sandoval et al., 2008). Previous
studies have demonstrated that Beclin 1 is the earliest self-
localizing gene in the structure of autophagic precursors and is
believed to regulate other autophagic genes (Maejima et al., 2016;
Sun et al., 2018), cardiac-specific overexpression of Beclin-1
promoted autophagy, and improved cardiac function. We
observed a dramatic increase in LC3II and Beclin 1 in
FIGURE 5 | miR-26b-5p, miR-204-5p, and miR-497-3p attenuate IGF-1 induced cardiomyocyte hypertrophy by suppressing autophagy (A), microRNAs (miRNAs)
adenovirus intervention in hypertrophic cardiomyocyte, LC3B immunofluorescence staining in various groups. (B) The LC3B fluorescent intensity in the various
groups. (C, D), Western blot analysis showing the expression of the autophagy markers (LC3B, Beclin 1, and SQSTM1). (E) The binding sites of miR-26b-5p, miR-
204-5p, and miR-497-3p predicted using TargetScan. (F) Expression of LC3B protein in H9C2s and H9C2s subjected to adenovirus-mediated miR-204-5p over-
expression or the control adenovirus. (G) Expression of ULK1 protein in H9C2 cells and in H9C2 cells subjected to adenovirus-mediated miR-26b-5p over-
expression or to control adenovirus. (H) Expression of Beclin 1 protein in H9C2 cells and in H9C2 cells subjected to adenovirus-mediated miR-497-3p over-
expression or control adenovirus. ** P < 0.01, IGF+scramble (n=6) vs. CON+scramble group (n=6). #P < 0.05, ## P < 0.01, miRNA adenovirus intervention group
(n=6) vs. IGF-1+scramble group (n=6). Data are presented as means ± SD. Statistical significance was evaluated with one-way analysis of variance with Bonferroni
post-hoc analysis.
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physiological LVH of rat. In addition, 5 weeks of exercise
induced activation of the autophagic pathway including
enhanced expression of Atg5 and Atg7 and increased the LC3-
II/LC3-I ratio (Willis et al., 2013). Knocking-out of the Atg5 gene
or silencing of the Atg7 gene in cardiomyocytes, decreased the
autophagic activity (Bernardo et al., 2010). We then measured
the expression of Atg5 and Atg7, and found that the two genes
were also obviously upregulated in LVH. Moreover, we found
that the expression of other key autophagy-related genes such as
ULK1, Atg12, and Atg4B, was significantly upregulated at the
protein level in the left ventricle of rats with exercise-induced
myocardial hypertrophy, whereas SQSTM1 (a marker of reduced
autophagy) was downregulated. The findings are in concordance
with previous results demonstrating that autophagy is enhanced
by exercise training (He et al., 2012; Yan et al., 2017; Li et al.,
2019; Moradi et al., 2019), and endurance exercise provided
cardioprotective effect by upregulating autophagy (Lee et al.,
2017). Consistently, a highly activated autophagy was also
observed in IGF-1 induced cardiomyocyte hypertrophy, which
was agreed with that IGF-1 inhibi t ion attenuated
autophagosome formation (Renna et al., 2013). Taken together,
these results suggest that exercise training can increase the
autophagy in cardiomyocytes, which plays an important role in
physiological cardiac hypertrophy.

Exercise can induce cardiomegaly by upregulating or
downregulating certain miRNAs in the myocardium and regulates
cardiac hypertrophy and proliferation, cardiovascular regeneration,
and myocardial interstitial hypertrophy (Fernandes et al., 2015;
Ramasamy et al., 2015). A number of studies have shown that
miRNAs play a key role in the regulation of autophagic pathways in
different tissues (Frost and Olson, 2011; Lee et al., 2011; Lee et al.,
2012; Patnaik et al., 2012; Roggli et al., 2012). Based on
bioinformatics analysis, we found the target genes of the
differential miRNAs between normal and physiological LVH were
enriched in autophagy process. Three highly homologous miRNAs,
miR-26b-5p, miR-204-5p, and miR-497-3p, were markedly
decreased in rat heart with physiological LVH, which was
consistent with the enhanced autophagy observed in physiological
LVH. Moreover, overexpression of miR-26b-5p, miR-204-5p, and
miR-497-3p attenuated IGF-1 induced cardiomyocyte hypertrophy
by downregulating autophagy related genes. In agreement with our
results, cardiac and plasma miR-26b expressions were significantly
reduced in the transverse aortic constriction (TAC) induced cardiac
hypertrophy model of rats (Zhang et al., 2013.). Overexpression of
miR-26b reduced TAC- induced cardiac hypertrophy in mice (Han
et al., 2012). In ischemia-reperfusion induced cardiomyocytes
autophagy, miR-204 targeted LC3-II protein and was significantly
down-regulated (Xiao et al., 2011). MiR-497 was also significantly
reduced in Ang II-induced cardiomyocytes and TAC mice,
overexpression of miR-497 reversed Ang II-induced
cardiomyocytes protein synthesis and suppressed cardiac
hypertrophy in TAC mice (Xiao et al., 2016). Thus, decreased
miR-26b, miR-204 and miR-497 were associated with the increased
autophagy and cardiac hypertrophy. Previous studies also
Frontiers in Genetics | www.frontiersin.org 10
demonstrated that ULK1 and LC3B were activated during cardiac
hypertrophy, and Beclin1 mediated autophagy was also enhanced
during right ventricular remodeling (Huang et al., 2015; Deng et al.,
2017; Zhang et al., 2019), supporting our finding that ULK1, LC3B,
and Beclin1 were up-regulated in physiological LVH. Given LVH in
response to endurance exercise is protective, the miRNA changes in
physiological LVH is supposed to be adaptive and to promote
moderate autophagy which is essential for physiological LVH. Of
note, miR-26b-5p, miR-204-5p, and miR-497-3p had been detected
in plasma and were used as a potential diagnostic biomarker for
diseases such as lung cancer (Du et al., 2015; Guo et al., 2015; Lu
et al., 2018; Nakata et al., 2019). Distinct plasma gradients of miR-
204-5p in the pulmonary circulation were observed in patients with
different pulmonary hypertension subtypes (Estephan et al., 2019).
Thus, the dynamic profile of these miRNA in plasma may help
distinguish physiological and pathological LVH.

Taken together, cardiomyocyte autophagy has been
considered to play a key role in controlling the hypertrophic
response; miR-26b-5p, miR-204-5p, and miR-497-3p were found
to play a major role in physiological cardiac hypertrophy by
targeting their respective autophagy genes.
CONCLUSIONS

Our results demonstrate that long-term endurance swimming
exercise may induce physiological LVH, at least in part, by
modulating the microRNA–autophagy axis.
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