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Abstract

Streptococcus ruminantium sp. nov. of type strain GUT-187T, previously classified as Streptococcus suis serotype 33, is a

recently described novel streptococcal species. This study was designed to determine the complete genome sequence of

S. ruminantium GUT-187T using a combination of Oxford Nanopore and the Illumina platform, and to compare this sequence

with the genomes of 27 S. suis representative strains. The genome of GUT-187T was 2,090,539 bp in size, with a GC content

of 40.01%. This genome contained 1,961 predicted protein coding DNA sequences (CDSs); of these, 1,685 (85.9%) showed

similarity with S. suis CDSs. Of the remaining 276 CDSs, 81 (29.3%) showed some degree of similarity with CDSs of other

streptococcal species. The genome of GUT-187T contained no intact prophage. The numbers of prophages and CRISPR

spacers, as well as the presence or absence of genes encoding CRISPR-associated proteins, differed in S. ruminantium and

S. suis. A phylogenetic analysis indicates that GUT-187T may be outgroup to the S. suis strains in our sample, thereby justifying

its classification as distinct species. Gene mapping indicated 10.2 times of massive genome rearrangements in average

occurred between S. ruminantium and S. suis. There was no significant statistical difference in clusters of orthologous group

distribution between S. ruminantium and S. suis.
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Introduction

Streptococcus ruminantium is a recently described novel strep-

tococcal species (Tohya et al., 2017). Although S. ruminan-

tium was previously recognized to be Streptococcus suis

serotype 33 (Tohya et al., 2017), several studies analyzing

the taxonomic status of S. suis suggested that several serotype

reference strains, including those for S. suis serotype 33, dif-

fered from the S. suis taxon, suggesting that these strains

were not authentic S. suis (Tien le et al., 2013; Ishida et al.,

2014; Arai et al., 2015). To further clarify that S. ruminantium

and S. suis are distinct species, we sequenced the complete

genome of the type strain S. ruminantium GUT-187T (¼DSM

104980T¼JCM 31869T) and compared its sequence with

those of 27 S. suis representative strains.

Materials and Methods

Determination of the Whole Genome Sequence of
S. ruminantium GUT-187T

The GUT-187T genome was prepared using enzymatic lysis

methods as described previously (Nishijima et al., 2016) and

subjected to MinION genome sequencing using a flow cell

(R9.5) (Oxford NANOPORE). Libraries were prepared using

Rapid sequencing kit R9 version (Oxford NANOPORE).
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Illumina sequencing was performed with Nextera XT to pre-

pare a sequencing library, followed by MiSeq sequencing

(Illumina), which yielded 301bp pair end reads. Both proce-

dures were performed according to the manufacturers’ instruc-

tions. Approximately 300Mbp of Nanopore data and 598,228

pair end reads of Illumina were used for genome assembly.

Bioinformatics Analyses

Genome de novo assembly was performed using SPAdes

(Esgleas et al., 2005) in hybrid and careful mode, resulting

in two contigs. Gaps between contigs were filled by a stan-

dard PCR method using LATaq (Takara). Amplicons were se-

quenced by MiSeq, as described above. CDSs were identified

and annotated by glimmer (Delcher et al., 2007), using com-

mercial software (in silico Molecular Cloning; in silico biology,

Japan). The genome sequence was registered at the DNA

Data Bank of Japan (DDBJ) under accession number

AP018400. Multi-locus sequence typing (MLST) was deter-

mined using S. suis MLST Databases (https://pubmlst.org/

ssuis/; King et al., 2002). Prophages in the genomes were

analyzed using PHAST (http://phast.wishartlab.com; Zhou

et al., 2011). CRISPRs were detected using CRISPR finder

(http://crispr.i2bc.paris-saclay.fr/Server; Grissa et al., 2007).

Genome rearrangement maps were created using in silico

Molecular Cloning software (in silico biology). The presence

or absence of genes encoding CAS proteins in the genomes

was analyzed using the TBlastX program and a custom strep-

tococcal CAS protein database. Concatenated SNP sequences

were aligned with MAFFT (Katoh et al. 2017). A Neighbor-

Joining phylogenetic tree (Saitou and Nei 1987) was

estimated using CLC genomics workbench (QIAGEN), a

commercial software. The tree was midpoint rooted (Graur

2016). Gene mapping to analyze genome rearrangements

and clusters of orthologous groups (COG) analysis was per-

formed using in silico Molecular Cloning software (in silico

biology). The proportions of COG categories were analyzed

using CLC genomics workbench (QIAGEN).

Results

We utilized Oxford Nanopore and the Illumina platform to

determine the complete genome sequence of GUT-187T.

The hybrid assembly approach using data from both plat-

forms was highly effective, as well as being less costly than

other platforms.
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FIG. 1.—Circular representation of the genome of Streptococcus ruminantium sp. nov. GUT-187T. Circle 1 (outermost circle) indicates the distance from

the putative origin of replication. Circle 2 shows annotated CDSs encoded on the forward (light blue) and reverse (yellow) chromosomal strands. The rRNA

genes (green) are shown in circle 3. Circle 4 (innermost circle) shows the GþC content with greater and less than average (0.40) in blue and orange,

respectively.
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The GUT-187T genome was 2,090,539 bp in size, with a

GC content of 40.01%, comparable to those of the 27 S. suis

representative strains in our study. The genome of GUT-187T

contained 1,961 predicted protein coding DNA sequences

(CDSs) (fig. 1, supplementary table S1, Supplementary

Material online), comparable to the mean6 SD number of

CDs in the 27 S. suis representative strains (1972.06 88.4).

Of the 1,961 CDSs in GUT-187T, 1,685 (85.9%) were homol-

ogous with CDSs of S. suis. Among the 276 remaining CDSs,

81 (29.3%) showed some degree of similarity with CDSs of

other streptococcal species.

MLST of GUT-187T was unique when compared with those

of the S. suis representative strains (supplementary table S1,

Supplementary Material online). The GUT-187T genome con-

tained no intact prophages and only one remnant of pro-

phage, located in the 97,740–108,427 bp region. The

numbers of prophages and CRISPR spacers, as well as the

presence or absence of genes encoding CRISPR-associated

proteins (CAS) proteins, differed between S. ruminantium

and S. suis, with no associations between the presence or

absence of CRISPR and CAS and the number of prophages

although it is well known that CRISPR-CAS system counter-

acts invasion of foreign genetic materials (supplementary ta-

ble S1, Supplementary Material online; Marraffini and

Sontheimer 2010).

The phylogenetic analysis in conjunction with midpoint

rooting supports the hypothesis that GUT-187T belong to a

spices other than S. suis (fig. 2). Notably, the S. suis strains

harboring CAS clustered together in the phylogenetic tree

and GUT-187T also harbored CAS.

BLASTN analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?

PROGRAM¼blastn&PAGE_TYPE¼BlastSearch&LINK_LOC¼
blasthome) using the complete genome sequence of GUT-

187T as a query showed that the top 37 hits were S. suis,

while the query coverage was around 50% (supplementary

table S2, Supplementary Material online). When the ge-

nome sequence of S. suis 6407 (Accession # CP008921.1)

was used as a query, the top 35 hits were S. suis strains and
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FIG. 2.—Rooted phylogenetic tree of Streptococcus ruminantium and Streptococcus suis. The Neighbor-Joining phylogenetic tree was estimated using

CLC genomics workbench (QIAGEN), a commercial software. Tip labels are aligned. The genetic distances between the major nodes and bootstrap values are

shown. Strains harboring CRISPR-associated proteins (CAS) are indicated in boxes.
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the query coverage ranged from 72% to 83% (data not

shown), indicating a taxonomic difference between S. rumi-

nantium and S. suis.

Mapping of genes in the GUT-187T genome against S. suis

to analyze genome rearrangements showed that massive

inversions had occurred at around 450 kbp and 1,550 kbp

in all S. suis strains except strains NSUI060 and 90-1330 (sup-

plementary table S3, Supplementary Material online).

Detailed investigation of the inversion points indicated that

number of inversions in the S. suis strains in comparison

with GUT-187T are 10.26 2.3 (mean6SD, ranged from 6

to 15, supplementary table S3, Supplementary Material on-

line). The inversion regions of S. ruminantium is different from

the insertion point of prophage (97,740–108,427 bp region,

locus_tag ranged SR187_0490 from to SR187_0525), and

there are no obvious mobile genetic elements, such as inser-

tion sequences or transposons in the inversion regions (data

not shown). Thus, we are not able to show direct evidence

how the rearrangement occurred.

The ratio of each category of COG was found to be rela-

tively conserved in the S. ruminantium and S. suis strains

(fig. 3). There were no significant differences in the propor-

tions of COG categories between GUT-187 and S. suis strains

or between CAS positive and negative strains (data not

shown). COG categories J, L, G, and R and, to a lesser extent,

COG categories M, E, and S, were relatively abundant among

the strains.

In conclusion, the complete genome sequence of S. rumi-

nantium further supports its classification as a distinct species.

The sequence data may also enable the development of

methods to analyze its epidemiology, as well as rapid diag-

nostic assays.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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tions: J, translation, ribosomal structure, and biogenesis; K, transcription; L, replication, recombination, and repair; D, cell cycle control, cell division, and
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intracellular trafficking, secretion, and vesicular transport; O, posttranslational modification, protein turnover, and chaperones; C, energy production and

conversion; G, carbohydrate transport and metabolism; E, amino acid transport and metabolism; F, nucleotide transport and metabolism; H, coenzyme

transport and metabolism; I, lipid transport and metabolism; P, inorganic ion transport and metabolism; Q, biosynthesis, transport, and catabolism of
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