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Abstract
Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental

retardation. Upon immune suppression, reactivation of latent HCMV or primary infection

increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treat-

ments include nucleoside analogues, which have significant toxicities limiting their useful-

ness. In this study we screened a panel of synthetic heparin-binding peptides for their ability

to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in

murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate

proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of

the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorp-

tion to the cell surface resulting in the reduction in infection. Positively charged Lys residues

were required for peptide binding to cell-surface HSPGs and reducing viral infection. We

show that this inhibition was not due to a direct neutralizing effect on the virus itself and that

the peptide blocked adsorption of the virus. The peptide also inhibited infection of other her-

pesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-

spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treat-

ment of herpes viral infections and other viruses that use HSPGs for entry.

Introduction
Human cytomegalovirus (HCMV) is a beta-herpesvirus with nearly 90% prevalence in the
adult human population in developing countries [1]. Initial viral infection is generally asymp-
tomatic in immune competent individuals. However, severe CMV disease occurs in individuals
with a deficient immune system (e.g., transplant patients suppressed to avoid graft rejection,
late stage AIDS patients, and the developing fetus). In immune deficient adults, HCMV can
cause pneumonitis, multi-organ disease, and death [1–3]. Retinitis and blindness are also com-
mon in HCMV-infected, late-stage AIDS patients in the absence of highly active antiretroviral

PLOSONE | DOI:10.1371/journal.pone.0126239 May 18, 2015 1 / 16

OPEN ACCESS

Citation: Dogra P, Martin EB, Williams A, Richardson
RL, Foster JS, Hackenback N, et al. (2015) Novel
Heparan Sulfate-Binding Peptides for Blocking
Herpesvirus Entry. PLoS ONE 10(5): e0126239.
doi:10.1371/journal.pone.0126239

Academic Editor: Michael Nevels, University of
Regensburg, GERMANY

Received: December 24, 2014

Accepted: March 31, 2015

Published: May 18, 2015

Copyright: © 2015 Dogra et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: Funding came from Physicians Medical,
Education and Research Foundation (PMERF) at the
University of Tennessee Medical Center, Knoxville
and a Scholarly and Research Incentive Fund
(SARIF) award from the Office of Research
Engagement at the University of Tennessee,
Knoxville.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126239&domain=pdf
http://creativecommons.org/licenses/by/4.0/


therapies [3]. In utero infection can cause neurological sequela in infants, including sensori-
neuronal hearing loss (SNHL) and mental retardation [1, 4].

Attempts to develop a vaccine for CMV infection are ongoing but have met with limited
success [5, 6]. Current regimens to treat HCMV infection (i.e., ganciclovir, foscarnet, and cido-
fovir) target viral DNA synthesis [7] but can have detrimental side effects [8]. Furthermore the
increased use of these drugs has led to HCMV drug-resistance to these therapies [9–12]. Due
to these limitations, it is clinically important to develop new therapeutics against HCMV that
are selective, less toxic, and circumvent resistance. One avenue for drug development is to tar-
get other aspects of the HCMV life cycle besides genome replication.

One of these potential targets is virus attachment to the cell. HCMV uses heparan sulfate
(HS) for entry into cells and to initiate viral replication [13, 14]. Virtually all cells express HS
glycosaminoglycans as long un-branched chains associated with protein cores in the form of
cell surface heparan sulfate proteoglycans (HSPGs) [15]. Heparan sulfate and heparin are both
linear glycosaminoglycans (GAGs) composed of alternating glucosamine and uronic acids that
can be N-acetylated and N-sulfated [15–17]. Although both HS and heparin are highly sulfated,
HS has fewer modifications, making heparin more electronegative than HS GAGs [16, 17].
This is an important distinction as heparin is often used as a surrogate for HS GAGs in spite of
these differences.

HSPGs act as docking sites for growth factors [16, 18], parasites such as the malarial
sporozoite [19], pathologic amyloid-related proteins [20], and many human and non-human
pathogenic viruses including HCMV [13] and herpes simplex virus (HSV) [21]. The HCMV
envelope glycoproteins glycoprotein B (gB) and the glycoprotein M/N (gM/gN) heterodimer
complex are involved in virus adsorption via interaction with HSPG expressed on the cell sur-
face [13]. The ability of HS to act as a binding site for numerous distinct viruses can be attribut-
ed to its diverse structure and variable negative-charge density [15, 22, 23]. Despite the critical
role that HS has in HCMV infection, therapeutics targeting HS to treat CMV infections are
lacking. This is likely due to its ubiquitous expression on mammalian cells and its important
role in facilitating the biological activity of growth factors.

Recently, a panel of heparin reactive peptides has been shown to preferentially bind the
HSPG GAGs associated with pathologic deposits containing amyloid fibrils, in vitro and in
vivo [24, 25]. Of these peptides, a synthetic, 31 amino-acid, polybasic peptide with a +8 net pos-
itive charge, designated p5, was shown to bind amyloid in visceral organs, including the liver,
spleen, heart, and kidneys [26]. Notably, this peptide does not bind to HS-related GAGs ex-
pressed in healthy (i.e., amyloid-free) organs and tissues. Specific reactivity with amyloid-asso-
ciated HSPGs and not healthy tissues is likely due to the fact that the amyloid-associated
tissues are hypersulfated and electrochemically similar to heparin [27, 28]. Based on these
properties, we hypothesized that these peptides could block CMV entry.

In this study we screened a panel of synthetic, heparan sulfate reactive, p5-related peptides
to identify novel inhibitors of CMV HS-mediated adsorption and subsequent infection. We ex-
plored the mechanism of action of the peptide and whether it could prevent other viruses that
use HS for entry.

Materials and Methods

Peptide synthesis and purification
Peptides were purchased from Keck Laboratories as semi-pure preparations. Routine purifica-
tion was performed by HPLC (1100 series; Agilent) using elution from a reverse-phase C3 ma-
trix in a linear gradient of 0–50% acetonitrile in water with 0.05% trifluoroacetic acid. Peptide
peaks were eluted from the column using a flow rate of 1 mL/min; 1 mL fractions were

Heparan Sulfate-Binding Peptides Block Herpesvirus Adsorption

PLOS ONE | DOI:10.1371/journal.pone.0126239 May 18, 2015 2 / 16



collected, peak fractions were pooled, and the mass was determined by mass spectrometry
(MS) using a single quadropole MS (Applied Biosystems). If multiple peaks were observed,
peptides were further purified by RP-HPLC and the mass of each confirmed by MS. In all
cases, the purified peptides used in these studies appeared as single peaks during HPLC purifi-
cation and as single bands following electrophoresis by using SDS-polyacrylamide gel electro-
phoresis. The purified peptides were lyophilized as 5 mg aliquots and re-suspended in
phosphate-buffered saline (150 mMNaCl, pH7.2; PBS) before use. The re-suspended peptides
were stored at 4°C until use.

Cells and virus
Low passage-number cells (< 20) were used for all the experiments. Mouse embryonic fibro-
blast 10.1 (MEF 10.1 [29]) were cultured in DMEM (Lonza, Rockland, ME) supplemented with
Fetal Clone III serum (FCIII) to a final concentration of 10% (Hyclone, Logan, UT), Pen/Strep
(P/S) to a final concentration of 100 U/ml and L-glutamine (L-Gln) to a final concentration of
2 mM. Human foreskin fibroblast cells (HFF; obtained from ATCC) were cultured in DMEM
(Lonza, Rockland, ME) supplemented with Fetal Bovine Serum (FBS) to a final concentration
of 10% (Hyclone, Logan, UT), L-Gln to a final concentration of 2 mM, and sodium pyruvate to
a final concentration of 1 mM. Human Aortic Endothelial Cells (HAEC) were cultured in
EGM-2 Bullet Kit (Lonza, Rockland, ME) supplemented with FBS to a final concentration of
6%. Human retinal pigment epithelia (ARPE-19) cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM):F12 medium (Lonza, Rockland, ME) supplemented with FBS to a
final concentration of 10%. Human normal lung fibroblast (MRC-5) cells cultured in Minimal
Essential Medium (MEM) (Lonza, Rockland, ME) supplemented FBS to a final concentration
of 10% and L-Gln to a final concentration of 2 mM. These lines were a kind gift from Dr. Mike
McVoy, VCU. African green monkey kidney epithelial (VERO; ATCC) cells were cultured in
DMEMmedia supplemented with FBS to a final concentration of 10%, sodium pyruvate to a
final concentration of 1 mM, HEPES buffer to a final concentration of 10 mM and P/S to a
final concentration of 100 U/ml.

MCMV RM4503 [30], was cultured in vitro in MEF 10.1 cells. The virus stock was titered
using plaque assay (described below) and stored at -80°C. Bacterial artificial chromosome gen-
erated HCMV TB40/E-mCherry [31, 32] and TB40/E-pp150-GFP [33, 34] were cultured in
vitro on HFF cells. The virus stock was titered using a plaque assay and stored at -80°C. Low
passage number HCMV (passaged 2–3 times) was used for all experiments. Herpes Simplex
Virus (HSV-1 KOS and HSV-2 186 Syn+) were cultured in vitro on VERO cells. The virus
stock was titered using a plaque assay and stored at -80°C.

Plaque reduction assay
Peptides were screened for their ability to reduce viral infection using a plaque reduction assay.
Cells were cultured in 12-well (VERO) or 24-well culture plates (MEF 10.1 and HFF). When
cells reached ~80% confluence the media was removed and washed once with PBS before addi-
tion of peptide. As a control, cells were incubated with PBS alone. After a 30 min incubation
with peptide in PBS, virus (~100 pfu/well for MCMV and ~30–40 pfu/well for HCMV and
HSV) was added and incubated for another 90 min (HSV and HCMV) or 60 min (MCMV).
Following virus incubation the peptide/virus mixture was removed and replaced with 0.75%
carboxymethyl cellulose (Sigma Aldrich, St. Louis, MO) (CMC) + complete media (DMEM +
P/S + L-Gln) for MCMV and HSV experiments or 0.5% agarose (Lonza, Rockland, ME) in
complete media for HCMV experiments. The plates were incubated at 37° C in 5% CO2 for
4 days and when plaques began to develop, plates were stained with Coomassie stain
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(AMRESCO, Solon, Ohio). Due to the inability of HCMV to form distinct plaques on HAEC
and ARPE-19 cells, infection in these cell types was measured by counting mCherry positive
foci 14 days post infection. Plaques were counted manually using a dissection microscope.
Data was analyzed using Prism 5.0 (GraphPad Software, La Jolla, CA). Data were expressed as
percent infection (100 x (number of plaques after treatment/ the number of plaques in the
PBS-treated wells)).

Flow cytometric analysis of attached virus
HFF cells were grown in a 24 well dish and allowed to reach ~80% confluency. The cells were
cooled to 4°C to prevent virus internalization before addition of peptide (100μM) and incubat-
ed for ½ h. Following the incubation, HCMV TB40/E pp150-GFP was added (MOI 10) at 4°C
and incubated for 1h. Following the incubation, cells were removed from the wells using non-
enzymatic cell stripper solution (Corning), fixed (with paraformaldehyde) and the data ac-
quired using a BD FACS Calibur flowcytometer (BD Biosciences). The data was analyzed using
FlowJo software (TreeStar).

Heparin blockade of peptide-mediated plaque reduction
Peptide p5+14 (100 μM) was pre-incubated with heparin sodium salt (Acros Organics, NJ) at
different concentrations for 1 h at 37°C. This heparin/peptide mix was added to the cells and
incubated for 30 min at 37°C. Following the incubation, supernatant was aspirated and cells
washed once with PBS to remove unbound/excess heparin or peptide. The cells were subse-
quently infected with ~100 pfu/well of MCMV. To test whether heparin treatment of cells in-
terferes with virus infection, MEF 10.1 cells in a 24 well dish were pre-incubated with different
concentrations of heparin for 1 hour and washed as described above. Following this pre-incu-
bation, infection was initiated as described above. Finally to test the effect of heparin treatment
on the infectivity of virus, MCMV was incubated with different concentrations of heparin for
1h before infecting cells. For all treatments, virus was removed 1h post infection and cells were
overlaid with CMC. Plates were incubated for 4 days before staining and counting the plaques.

Enzymatic treatment of cells
Heparinase I, Heparinase II, Heparinase III, and Chondroitinase ABC were purchased from
Sigma Aldrich (St. Louis, MO). MEF 10.1 cells in culture were treated with heparinase in
heparinase buffer (20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 4 mM CaCl2, and 0.01% bovine
serum albumin (BSA)) at a concentration of 1U/ml or chondroitinase re-suspended in chon-
droitinase buffer (50 mM Tris, pH 8.0, 60 mM sodium acetate and 0.02% BSA) at a concentra-
tion of 1 U/ml for 1 h at 37°C. As a control, cells were treated with enzyme buffer alone.
Following incubation, the enzyme solution was removed and cells were washed with PBS to re-
move excess enzyme. Subsequently the cells were treated with peptide and infected with virus.
Data was collected and analyzed as described above.

Visualization of bound peptide
Coverslips with fixed MEF cells were prepared, washed in PBS, and blocked with 1% BSA/PBS
for 5 min. Following a PBS wash, the nuclei were stained using Hoechst (Life Technologies Mo-
lecular Probes, Grand Island, NY) 1:100 in H2O for 30 min at 37°C. Cells were then blocked
using a casein block solution (Scytek) for 5 min, AVIDIN/Biotin blocks (VECTOR) for 20 min
each at room temperature (RT) followed by a 5 min PBS wash. Biotinylated p5+14 or CGGY-
p5G (control) at 1.6 μg/mL in PBS was added and incubated overnight at 4°C. Following a PBS
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wash Alexa Fluor 594-conjugated streptavidin (Molecular Probes) was added at a 1:200 dilu-
tion in PBS for 1h at RT. Cells were then permeabilized with 0.2% Triton X-100 (Sigma) in
PBS for 10 min at RT and washed with a solution of 1% BSA in PBS for 30 min. The cells were
then stained with Alexa Fluor 488-conjugated phalloidin (Molecular Probes) at a 1:100 dilution
of stock in 1% BSA/PBS, for 45 min at RT to visualize actin filaments. Slides were cover-slipped
using a fluorescent mounting medium (Dako) to minimize photobleaching.

Measuring bound peptide
MEF 10.1 Cells were grown in 24-well cell culture plates as described above. Each well was
probed with 100 μL of biotinylated peptides at 1 μg/mL in cold DMEM/F12 with 0.1% BSA
and incubated for one hour at 4°C. Following the incubation, cells were washed twice with ice
cold PBS and fixed with 1.25% glutaraldehyde. Fixed samples were washed twice and stored in
PBS for 24 hours. The samples were then blocked with 1% BSA in PBS and probed with 100 μL
of Europium-conjugated streptavidin (Perkin-Elmer, Waltham, MA) in PBS/0.1% BSA for
30 min at RT. The plate was washed three times with PBS and enhancement solution added.
The fluorescence counts of the control peptide (i.e., background), P5+14 treated cells, and P5
+14 treated cells with added enzymes were measured using time resolved fluorescence on the
Wallac Victor 3 (Perkin-Elmer) plate reader. Background counts were subtracted from all
treatments. The percent reduction in bound peptide was calculated as 100%-(enzyme treated
fluorescence counts/no enzyme treated counts x 100).

Statistical analysis
The data presented are pooled results from three or more experiments performed independent-
ly (i.e., repeats), with at least three replicates in each experiment. Error bars represent the stan-
dard deviation (SD). Statistical significance was calculated using one tailed student’s t test or
1 way ANOVA followed by Tukey's Multiple Comparison Test in GraphPad Prism following
the recommendations of Vaux et al [35, 36]. Significance was determined for each separate
run for each of the repeats. A p value< 0.05 was considered statistically significant, � = p<0.05,
�� = p<0.01, ��� = p<0.001, NS = non-significant reduction in infection. In the case of experi-
ments with only three samples, statistical significance should be interpreted with caution. The
small sample size could be susceptible to type II error.

Results

Screening of peptides
Seven synthetic peptides based on the structure of peptide p5 were screened for their ability to
reduce MCMV infection in vitro (Table 1). In the initial screening assays all peptides were test-
ed at a single concentration (500 μg/ml) using a plaque-reduction assay, in which mouse em-
bryonic fibroblasts were incubated with the peptides for 30 min prior to the addition of virus.
The polybasic peptides exhibited a range of viral inhibition up to>90% inhibition for peptide
p5+14 (Fig 1A). In contrast, the poly anionic, uncharged, and hydrophobic p5 variant peptides,
CGGY-p5E, CGGY-p5G, and CGGY-p5L, respectively, did not reduce MCMV infection (Fig
1A). The presence of an N-terminal Cys residue, which was originally generated to facilitate in-
corporation of the radionuclide 99mTc in peptide CGGYp5, did not alter the efficacy of GGGY
N-terminal variant (p5) (Fig 1A). However, the CGGYp5 was prone to self-aggregation (data
not shown) and was therefore not further considered in this study.
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Following the initial screen, peptide p5+14 was selected for further analysis because it in-
duced the greatest reduction in infection. Serial dilution of p5+14 peptide resulted in significant
reduction in infection at concentrations> 5 μg/mL (Fig 1B) with an IC50 of 5.2 μM.

Structural aspects and insights into the mechanism of action
ITASSER software [37, 38] predicted the secondary structure of peptide p5+14 to be α-helical
with the majority of the Lys residues aligned along one face of the peptide due to the heptad re-
peat in the protein sequence [39] (Fig 2A).

To test our hypothesis that peptide p5+14 prevents MCMV infection by competing effec-
tively for negatively charged cell surface HSPG, biotinylated p5+14 was incubated with fibro-
blasts in culture. Biotinylated peptide CGGY-p5G, which replaces Lys with Gly throughout the

Table 1. Characteristics of peptides.

Peptide Sequence Net
Charge

Plaque Reduction
(Average from Fig 1)

CGGY-p5 CGGYS KAQKA QAKQA KQAQK AQKAQ
AKQAK Q

+8 ~61%

CGGY-
p5E

CGGYS EAQEA QAEQA EQAQE AQEAQ
AEQAE Q

-8 0

CGGY-
p5L

CGGYS LAQLA QALQA LQAQL AQLAQ ALQAL
Q

0 0

CGGY-
p5G

CGGYS GAQGA QAGQA GQAQG AQGAQ
AGQAG Q

0 0

p5 GGGYS KAQKA QAKQA KQAQK AQKAQ
AKQAK Q

+8 ~53%

p5R GGGYS RAQRA QARQA RQAQR AQRAQ
ARQAR Q

+8 ~75%

p5+14 GGGYS KAQKA QAKQA KQAQK AQKAQ
AKQAK QAQKA QKAQA KQAKQ

+12 ~90%

G2 MPRRR RIRRR QK +8

doi:10.1371/journal.pone.0126239.t001

Fig 1. Heparin-reactive peptides reduce MCMV infection in vitro. (A) Peptides (500 μg/ml) with different net charges and lengths were incubated with
cells 30 min prior to addition of MCMV (~100 pfu/well). Bars represent the average of the percent reduction in infection compared to PBS-treated control from
three independent experiments with at least three replicates in each + SD. (B) p5+14 and CGGY-p5G (control peptide) were serially diluted and assayed in a
plaque reduction assay as described in materials and methods.

doi:10.1371/journal.pone.0126239.g001
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peptide, served as a negative control. The p5+14 bound mouse fibroblasts in culture as evi-
denced by the red (Alexa 540) fluorescence stain associated with the cells (Fig 2B left). In con-
trast, the electro-neutral peptide CGGY-p5G did not bind (Fig 2B right), suggesting that the
binding of the peptide to fibroblasts was dependent upon the presence of basic (Lys) residues.

Peptide-mediated reduction of MCMV infection through cell surface HS
binding
If p5+14 binds to negatively charged HS moieties on the cell surface, pre-incubation of the pep-
tide with heparin, which has similar charge and structural properties to HS, should interfere
with peptide-mediated reduction of infection. To test this, we incubated p5+14 with various
concentrations of heparin. Pre-incubation of peptide with heparin before addition to the cells
reduced its ability to inhibit MCMV infection in a dose-dependent manner (Fig 3A). It should
be noted that the ~50% reduction in infection with peptide and no heparin (i.e., 0ug/ml heparin
concentration in Fig 3A) is different than the ~90% reduction in Fig 1. We ruled out degrada-
tion of the peptide during the pre-incubation step as an explanation for this discrepancy (data
not shown). This disparity could however be due to the additional wash step after incubation
of peptide + heparin. This additional wash could remove cell-surface bound peptide decreasing
peptide interference with infection. This step is necessary to avoid any free heparin neutralizing

Fig 2. p5+14 binding to cells is charge dependent. (A) Predicted α-helix structure of peptide p5+14 based on ITASSERmodeling. (B) Biotinylated peptide
p5+14 (left panel) or CGGY-p5G (right panel) was added to MEF 10.1 cells followed by addition of Alexa Fluor 594-conjugated streptavidin (red). Nuclei are
stained blue with Hoechst and F-actin stained green with Alexa Fluor 488-conjugated phalloidin.

doi:10.1371/journal.pone.0126239.g002

Fig 3. Soluble heparin interferes with peptide inhibition of virus infection. The effect of heparin on the
activity of peptide and MCMV viral infectivity in vitro when (A) pre-incubated with the peptide (100 μM), (B)
incubated with the cells before adding virus, and (C) pre-incubated with virus alone in a plaque reduction
assay. Bars represent the average of the percent reduction in infection compared to PBS-treated control from
three independent experiments with at least three replicates in each + SD. Statistical significance is indicated
as: * = p<0.05, ** = p<0.01, *** = p<0.001.

doi:10.1371/journal.pone.0126239.g003
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the virus so it could not be eliminated from the protocol. In contrast, pre-incubation of the
cells with negatively charged heparin prior to virus addition did not alter MCMV infection (Fig
3B). However, when heparin was pre-incubated with MCMV (without peptide), infection was
reduced> 80% at all heparin concentrations� 2 μg/mL (Fig 3C). This data supports our hy-
pothesis that p5 is binding the negatively charged GAGs on the cell surface which can be coun-
teracted by incubation with the negatively charged heparin [40].

Because p5+14 can bind both HS and CS GAGs, the reduction in infection could be mediat-
ed by direct competition for virus adsorption sites via HS on the cell surface, stearic hindrance
mediated by peptide bound to CS on the cell surface, or both. To distinguish between these
possibilities, cells were treated with heparinase or chondroitinase enzymes to cleave the differ-
ent GAGs from the cell surface. Treatment of cells with heparinase caused a ~40% reduction in
the amount of bound peptide, whereas chondroitinase treatment resulted in a ~11% reduction
(Fig 4A). Treatment of cells with heparinase (1U/ml) led to a ~60% reduction in MCMV infec-
tivity as expected, which was enhanced further by the addition of p5+14 leading to an ~80% re-
duction (Fig 4B). There was no significant difference between peptide alone and peptide in
conjunction with heparinase treatment. In contrast, treatment of cells with chondroitinase
(1U/ml) did not reduce MCMV infectivity nor did it have any effect on the activity of the pep-
tide (Fig 4C). Pre-treatment of MCMV itself with heparinase or chondroitinase prior to addi-
tion to MEFs did not alter its infectivity (data not shown). These results indicate that p5+14
blocks MCMV infectivity via heparan sulfate and not steric hindrance after binding to
chondroitin sulfate.

Peptide competes for virus adsorption to the cell surface
In the infectivity assays described above, peptide and virus were co-incubated with the cells. In
this experimental setup, the peptide could bind to the virus, to cells, or both and reduce infec-
tion. Therefore to ensure that the peptide was not directly inactivating the virus, MCMV was
co-incubated with 100μM (~20x the IC50) peptide at 37°C for 1 h, diluted to an ineffective pep-
tide concentration (1 μM) and infection of fibroblasts measured. There was no reduction in

Fig 4. Peptide interacts with cell surface heparan sulfate but not chondroitin sulfate to mediate anti-
viral activities. (A) MEF 10.1 cells were treated with heparinase I, II, III or chondroitinase ABC and the
amount of bound peptide was assessed as described in materials and methods. (B) Cells were treated with
heparinase I (1U/ml) or (C) chondroitinase ABC (1U/ml) and peptide p5+14 was added. The amount of
plaque reduction of MCMV infection in each treatment was measured in a plaque reduction assay. Bars
represent the average of the percent reduction in infection compared to PBS-treated control from three
independent experiments with at least three replicates in each + SD. Statistical significance is indicated as:
* = p<0.05, ** = p<0.01, *** = p<0.001, NS = non-significant difference in the reduction of infection.

doi:10.1371/journal.pone.0126239.g004
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MCMV infection under these conditions, whereas addition of peptide and virus simultaneously
to the cells showed significant reduction in infection (Fig 5A).

To determine at which stage of the MCMV entry cycle the peptide interferes, four different
peptide treatment protocols were tested: 1) 30 min prior to infection (pre-adsorption) 2) simul-
taneously with virus (during adsorption) 3) after letting the virus adsorb to the cells at 4°C for
1h (post adsorption, then shifted to 37°C to induce membrane fusion) or 4) after allowing the
virus to fuse with the cellular membrane at 37°C for 1h (post fusion) (Fig 5B). Addition of the
p5+14 peptide before or in conjunction with virus addition to the cells resulted in>80% reduc-
tion in infection. However, when peptide was added after the adsorption or fusion phase of
viral entry, no significant reduction in plaque formation was observed (Fig 5B).

To specifically show that p5+14 prevents adsorption of HCMV to cells, HCMV expressing a
tegument protein-green fluorescent fusion protein, pp150-GFP, was incubated with HFF cells
at 4°C in the presence or absence of the different peptides. The fluorescence of cell-associated
virus was measured via flowcytometry (Fig 5C). Incubation of the cells with p5+14 reduced the
amount of fluorescent virus attached to the cell surface, whereas there was no reduction in fluo-
rescence when cells were incubated with peptide CGGY-p5G compared to PBS treated cells.

Comparison of p5+14 to other inhibitory peptides
The efficacy of p5+14 to reduce infection was compared to the recently reported inhibitor pep-
tide, G2, which was also inhibits infection of herpes viruses (HSV and MCMV) [41] (Table 1).
Both peptides effectively inhibited MCMV infection at 100 μM, but p5+14 leads to a>80% re-
duction in infection at 10 μM at which concentration peptide G2 was ineffective (Fig 6).

Fig 5. Peptide p5+14 blocks adsorption of MCMV. (A) MCMVwas preincubated with p5+14 peptide
(100 μM) before diluting the virus/peptide to an ineffective peptide concentration (1 μM) and assayed in the
plaque reduction assay as described in materials and methods. As a control, virus and peptide (100 μM) were
added to cells simultaneously. (B) Cells were incubated with p5+14 peptide either prior to virus adsorption,
during virus adsorption, after virus adsorption (at 4°C) but prior to fusion, or after fusion (at 37°C). Plaque
reduction was measured in a plaque reduction assay. Bars represent the average of the percent reduction in
infection compared to PBS-treated controls from three independent experiments with at least three replicates
in each + SD. Statistical significance is indicated as: * = p<0.05, ** = p<0.01, *** = p<0.001, NS = non-
significant difference in the reduction of infection compared to PBS treated control wells. (C) Adsorption of
HCMV TB40/E-pp150-GFP (MOI 10) fusion protein expressing HCMV was measured via flowcytometry in
the presence of p5+14 (green), control peptide CGGY-p5G (orange) and PBS (blue). Red line represents
uninfected cells. Inset is a scatter plot of the mean fluorescence intensity (MFI) for GFP with the line
representing average of 3 replicates +/- SD for the different treatments.

doi:10.1371/journal.pone.0126239.g005
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p5+14 inhibition of other herpesvirus infection
Because most herpesviruses use HS for their initial attachment to cells and can infect different
cell types, we evaluated the efficacy of the peptide to block infection of other human herpesvi-
ruses infecting different cells types. Addition of peptide p5+14 at a concentration of 100 μM 30
min prior HCMV infection resulted in a reduction of ~70% on HFF, ~50% on HAEC, ~90%
on ARPE-19 and ~ 60% on MRC-5 cells (Fig 7). An ~80% reduction in infection was observed
with herpes simplex virus (HSV) 1. However, reduction of HSV 2 infection was less remarkable
(~40% reduction).

Discussion
Cytomegalovirus infection is a significant clinical problem in infants and immunodeficient
populations. There are two major problems with current anti-CMV treatments. First, current
anti-CMV therapies have significant organ toxicity. Secondly, resistance to current therapies is
increasing. In this study we examined a panel of synthetic peptides that bind hypersulfated
GAGs for their ability to inhibit herpesvirus infection, using MCMV as a model system. Of the
seven peptides evaluated in this study, peptide p5+14 demonstrated effective inhibition of
MCMV infection and reduced infection of both HCMV and HSV (HSV-1 and 2) in vitro (Figs
1A and 7). This suggests a broader applicability of GAG-binding synthetic peptides for

Fig 6. Comparison of the efficacy of p5+14 and peptide G2 to reduce MCMV infection in vitro. Peptides
G2 and p5+14 were added at different concentrations (100, 10, 1 μM) in a plaque reduction assay as
described in materials and methods. Bars represent the average of the percent reduction in infection
compared to PBS-treated control from three independent experiments with at least three replicates in each
+ SD. Statistical significance is indicated as: * = p<0.05, ** = p<0.01, *** = p<0.001, NS = non-significant
difference in the reduction of infection compared to PBS-treated control wells.

doi:10.1371/journal.pone.0126239.g006
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inhibiting virus-cell interactions. We established that the peptide effectively competed for ad-
sorption of CMV to susceptible cells, thereby reducing infection. We also demonstrated that
the peptide does not have a direct neutralizing effect on the virus itself.

The p5-related peptides are synthetic polybasic reagents with a predicted α-helical second-
ary structure. The heptad amino acid repeat-KAQKAQA- positions the Lys residues along one
face of the helix. This structural feature was engineered and intended to facilitate an interaction
with linear sulfated GAGmolecules, notably heparin [39, 42]. Due to their ability to preferen-
tially bind hypersulfated GAGs these peptides have been used to effectively target and image
tissue amyloid deposits [25, 27], which contain hypersulfated HS and possibly CS proteogly-
cans [43]. Remarkably, when radiolabeled the p5 and p5+14 peptides were injected in disease-
free mice, peptide did not bind to GAGs expressed in healthy organs or tissues [25]. This lead
us to hypothesize that the linear positive charge on peptide p5+14 facilitates binding to nega-
tively charged PGs on the cell surface, which mediates antiviral activity. This is supported by
the fact that peptides with the same net positive charge exhibit differential anti-viral effects that
are consistent with the peptide affinity for the GAGs and subsequently amyloid. Thus, peptide
p5R (+8 charge), which has a higher affinity for heparin [39] and amyloid [44] as compared to
peptide p5 (+8 charge), blocks viral infection 2-fold better (Fig 1A). These data suggest that the
secondary structure of the peptides, as well as the overall net charge, affects binding to specific
GAGs on the cell surface and their subsequent anti-viral activity. Based on the known restricted
reactivity of peptides p5 [25] and p5+14 in vivo, our data using p5+14 suggests that CMVmay
preferentially bind hypersulfated GAGs, such as 6-O-sulfated GAGs [40] on the cell surface of
cultured fibroblasts. This may differ from the ubiquitously expressed GAGs found in tissue
HSPG and CSPG proteins in vivo. This is similar to the proposed mechanism for HSV that
uses multiple different interactions for entry including 3-O sulfated GAGs, which differ be-
tween cells grown in vitro and in vivo [45].

Fig 7. Peptide p5+14 inhibits HCMV and HSV infections in vitro. Peptide p5+14 (100 μM) was added in a
plaque reduction assay using HCMV (TB40/E) on different cell types (HFF, HAEC, and ARPE-19) and HSV-1
or HSV-2 on VERO cells. Bars represent the average of the percent reduction in infection compared to PBS-
treated control from three independent experiments with at least three replicates in each + SD. Statistical
significance is indicated as: * = p<0.05, ** = p<0.01, *** = p<0.001.

doi:10.1371/journal.pone.0126239.g007
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An alternative mode of action for these peptides may involve internalization of the peptide
along with the GAG ligands that the virus uses for entry. For example, peptides that are rich in
Arg or Lys are known to bind HS on the cell surface resulting in internalization of the peptide/
HS complex [46, 47]. Because of this mechanism, these peptides are being considered for drug
delivery or diagnostic/therapeutic nanoparticles [48–50]. It remains to be evaluated whether
peptide p5+14 binding to the HSPG ligands results in internalization of the peptide-ligand
complex, resulting in less HS for virus to bind and enter. These studies are underway. If this is
the case, it would provide an alternative explanation for HS binding peptides’ inhibition of
CMV infection and suggest that p5+14 could also be used as a reagent for delivery of intracellu-
larly active payloads.

Tiwari et al. [41] and Borst et al.’s [40] recent work identified HS-reactive anti-viral peptides
G2 and CYVIP from a phage library screen and human hemofiltrate, respectively. In concor-
dance with our findings, the positive charge of these peptides was critical for their anti-viral ac-
tivity. Notably, our peptide p5+14 was more effective at lower concentrations in inhibiting
MCMV infection of mouse fibroblasts in vitro when compared with peptide G2 (Fig 6). Al-
though these peptides have similar modes of action, there are significant differences in their
size and charge distribution. The length and spatial arrangement of charged amino acids affect
binding to heparin [39], HS-laden amyloid [51], and cell surface HS [46]. Although we used
the L form of the peptide G2 in the current study, recently the D form of the G2 peptide was
shown to be 4 times as efficacious as the L form in vitro [52]. This form has the additional ad-
vantage of being proteolytically stable. Thus the authors propose that D form could be impor-
tant for in vivo treatments because it would be more stable in serum. A systematic evaluation of
the physical, electrochemical, and structural characteristics that contribute to anti-viral activity
of all these peptides will aid in the design of next generation antivirals.

In this study we show that peptide p5+14 exhibited significant anti-viral activity against
HCMV, HSV-1 and 2. It is interesting that the antiviral effects were more robust on the HSV-1
than on HSV-2. Even though we propose a similar mode of action against each virus (i.e.,
blocking of viral adsorption to cell surface HS) the difference in peptide p5+14 efficacies is in-
triguing. Differences in the viral gB glycoproteins could lead to preferential use of specific
GAGs to adsorb to the cell surface [53] that lead to differences in the efficacy of the peptide
against the two HSV serotypes. Indeed, the fine structure and distribution of HS GAGs can be
different on different cell types. This can explain differences in the efficiency of peptide block-
ade on different strains and cell types [54, 55]. It is possible, indeed likely, that the p5+14 pep-
tide and similar reagents exhibit preferential binding to GAGs that could lead to differences in
cell-surface binding and antiviral efficacy. Notably, circular dichroism measurements showed
that peptide p5 preferentially binds heparin and adopts an α-helical configuration compared to
HS, CS, dermatan sulfate, and hyaluronic acid [42].

Using SPECT imaging and micro-autoradiography, we have previously shown that the “li-
gand” bound by peptides p5 [25] and p5+14 (unpublished data) has a restricted distribution in
vivo. The peptides do not bind cellular GAGs or those in the extra-cellular matrix of healthy
tissues [25]. This observation, taken together with the fact that these peptides compete with
herpesviruses for binding to cells in culture suggests that viruses may preferentially bind to a
subset of HS in vivo that is characterized by a high sulfation pattern, (i.e., electrochemically
more reminiscent of heparin). This pattern has been observed with HSV [22, 53]. This remains
to be established in vivo.

CMV and other herpes viruses establish latency within the host, which is dependent upon
virus entry and infection of host cells. Preventing viral entry using competitive peptides could
potentially reduce the ability of virus to establish latency. Even though HS on the cell surface is
an attractive target for developing antivirals, reports targeting this pathway during viral
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infections in vivo are scarce [41]. This is likely due to the fact that HS is ubiquitous and in-
volved in numerous critical cell-signaling pathways. Thus, peptides such as p5+14 that specifi-
cally targeted heparin-like HS may provide selective viral competition in vivo without
detrimentally affecting biological processes through a more common HS.
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