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The localized surface plasmon resonance of metallic nanoparticles has attracted much
attention owing to its unique characteristics, including the enhancement of signals in
sensors and photothermal effects. In particular, hollow gold nanostructures are highly
promising for practical applications, with significant advantages being found in their
material properties and structures: 1) the interaction between the outer surface
plasmon mode and inner cavity mode leads to a greater resonance, allowing it to
absorb near-infrared light, which can readily penetrate tissue; 2) it has anti-
corrosiveness and good biocompatibility, which makes it suitable for biomedical
applications; 3) it shows a reduced net density and large surface area, allowing the
possibility of nanocarriers for drug delivery. In this review, we present information on the
classification, characteristics, and synthetic methods of hollow gold nanostructures;
discuss the recent advances in hollow gold nanostructures in biomedical applications,
including biosensing, bioimaging, photothermal therapy, and drug delivery; and report on
the existing challenges and prospects for hollow gold nanostructures.
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INTRODUCTION

Owing to recent advances in the fabrication and analysis of metal nanoparticles, localized surface
plasmon resonance (LSPR) has been extensively investigated and used in a broad range of fields.
LSPR is the strong oscillation of the electron cloud of metal nanoparticles induced by incident light
(Figure 1). This phenomenon increases the intensity of the electromagnetic field around the metal
nanoparticles and is observed as a resonance absorption or scattering peak in the spectrum (Maier,
2007; Kreibig and Vollmer, 2013). The properties of LSPR can be affected by several factors,
including the size and morphology of the nanoparticles, as well as the local dielectric environment
(Jensen et al., 2000; Tran et al., 2020; Sekhon, 2021). By varying these factors, the LSPR peak can be
tuned between visible and near-infrared light. The above-mentioned characteristics of LSPR allow us
to apply it to various biomedical applications, such as biosensing (Lee et al., 2011), bioimaging (Feng
et al., 2015), photothermal therapy (PTT) (Ding et al., 2014), and drug delivery (Bao et al., 2016).
Gold nanostructures, a candidate material for effective LSPR, have been widely researched for their
biomedical applications because of their large surface-to-volume (S/V) ratio, biocompatibility, and
ease of surface modification (Chithrani et al., 2006; Lim et al., 2011). Gold nanostructures can be
classified into two groups according to their structural symmetry: 1) isotropic, such as gold
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nanospheres, and 2) anisotropic, such as gold nanorods,
nanoprisms, and nanostars. These gold nanostructures have
unique optical and physical properties.

Among the aforementioned gold nanostructures, hollow
gold nanostructures, which have hollow cavities inside them,
have been intensively investigated owing to their unique
advantages over pre-existing solid gold nanostructures (e.g.,
larger S/V ratio, enhanced resonance with the interaction of
outer–inner plasmons, and availability of internal cavities to
encapsulate other substances, which have the potential to be
exploited in various biomedical applications) (Skrabalak et al.,
2007; Goodman et al., 2014). Herein, we summarize the
classification, characteristics, and synthetic methods of
hollow gold nanostructures by focusing on their advantages
and potential. The research trends and prospects of hollow
gold nanostructures in biomedical applications corresponding
to biosensors, bioimaging, PTT, and drug delivery are
presented.

CHARACTERISTICS AND SYNTHESIS OF
HOLLOW GOLD NANOSTRUCTURES

Characteristics of Hollow Gold
Nanostructures
Similar to conventional gold nanostructures, hollow gold
nanostructures are promising materials for biomedical
applications, owing to their chemical stability, biocompatibility,
and ease of surface modification. However, the most apparent
difference between solid and hollow gold nanostructures is the
existence of an inner cavity. The inner cavity provides additional
functionalities to hollow gold nanostructures, such as anticancer
drug loading and interaction between the inner and outer surfaces;
thus, these structures can be utilized as a new strategy for
chemo–photothermal therapy or light-responsive drug release
systems. Hollow gold nanostructures can be synthesized with
various sizes and morphologies (including hollow gold
nanospheres, gold nanocages/frames, gold nanorings, hollow
gold nanostars, hollow gold nanorods, and hollow gold
nanoprisms) depending on several factors, including the
synthetic protocol, reaction temperature, and reaction
atmosphere (Figure 2). Although there are differences in
morphology, these hollow gold nanostructures have a thin gold
shell in common, and the LSPR characteristics can be tuned by

controlling the shell properties, which is not the case for solid gold
nanostructures.

Lindley et al. (2018) reported an improved size control
method for Co2B nanoparticles and the role of
environmental oxygen for galvanic exchange, which gives
two-fold tunability of hollow gold nanospheres. They
synthesized two types of hollow gold nanospheres with
different diameters and shell thicknesses: 1) identical outer
diameters with different aspect ratios (the ratio of outer
diameter to shell thickness), providing LSPR peak tunability
(Figures 3A,B), and 2) different outer diameters with the same
aspect ratio, providing identical LSPR peaks that allow a range
of hollow gold nanoparticles to have uniform energy
distributions (Figures 3C,D). Specifically, this two-fold
tunability is caused by the hybridization of plasmons, which
is the interaction between the outer- and cavity-surface
plasmons. Prodan et al. (2003) reported the highly geometry-
dependent plasmon response of hollow gold nanospheres based
on the hybridization of plasmons. The outer and inner plasmons
interact with each other owing to the finite thickness of the
hollow gold nanosphere shell; therefore, this interaction can be
controlled by changing the thickness. The above-mentioned
results show that hollow gold nanostructures provide an
additional factor (thickness of the shell layer) to control the
LSPR properties, and these hollow structures are more viable
than conventional solid gold nanostructures for various
applications that require a certain particle size or specific
LSPR peaks.

FIGURE 1 | Schematic illustration of a metal nanoparticle’s electron
cloud oscillation.

FIGURE 2 | Schematic illustrations of hollow gold nanostructures:
spheres, stars, rings, cages/frames, rods, and prisms.
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Synthesis of Hollow Gold Nanostructures
Metal-Template-Based Synthesis (Galvanic
Replacement)
Hollow gold nanostructures—even the same structures—have
been synthesized by various methods; however, synthesis using
galvanic replacement is significantly dominant (Xia et al., 2013).
Galvanic replacement is driven by the difference in
electrochemical potential between the solid metal (regarded as
A), which has a lower reduction potential, and another metal ion
(regarded as B+), which has a higher reduction potential. While
the solid metal with the lower potential is oxidized and
transformed into a metal ion (from A to A+), the metal ion
with the higher potential is reduced and transformed into a solid
metal (from B+ to B) at the contact surface. Through these
processes, hollow nanostructures can be successfully
synthesized with several characteristics: 1) tunable elemental
compositions (Lu et al., 2007b), 2) easily controllable porous
shells (by varying the amounts of precursors for galvanic

replacement) (Sun and Xia, 2004), 3) closely similar shapes to
sacrificial templates (Chen et al., 2006), 4) short reaction time
(∼30 min) (Cobley and Xia, 2010), and 5) high S/V ratio (Oh
et al., 2013). For hollow gold nanospheres and gold nanocages/
frames, the typical synthetic methods use cobalt nanoparticles
and silver nanocubes as sacrificial templates, respectively
(Figures 4A,B). Liang et al. (2005) reported uniformly
synthesized hollow gold nanospheres using cobalt
nanoparticles as sacrificial templates for galvanic replacement;
this synthetic method, with minor modifications, has been widely
used to fabricate hollow gold nanospheres. The cobalt
nanoparticle sacrificial templates were first synthesized by
reducing Co2+ with NaBH4 under a nitrogen atmosphere to
avoid oxidation. The hollow gold nanostructures were then
fabricated as Au+ and reduced onto the cobalt nanoparticles
based on galvanic replacement and finally stirred under ambient
conditions to ensure complete oxidation of the residual cobalt
nanoparticles. The shape of the final hollow gold nanostructure

FIGURE 3 | Demonstration of tunability of hollow gold nanospheres. (A) Normalized extinction for hollow gold nanospheres with the same outer diameter but
different LSPR peaks. (B)Corresponding high-resolution transmission electron microscope (HRTEM) images with an average diameter (d), shell thickness (t), and aspect
ratio (AR), as indicated; scale bar 10 nm. (C) Normalized extinction for hollow gold nanospheres with different outer diameters but the same LSPR peak. (D)
Corresponding HRTEM images with d, t, and AR values as indicated (scale bar 10 nm). Reprinted with permission from Lindley et al. (2018). Copyright 2018,
American Chemical Society.
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depends on the shape of the sacrificial template employed, as
well as the post-treatment processes. Sun and Xia (2004) and
Lu et al. (2007a) reported gold nanocages and gold
nanoframes using silver nanocubes as a sacrificial template.
In this process, gold-silver nanoboxes are first fabricated
as HAuCl4 and reduced onto the silver nanocubes, then
gold nanocages or gold nanoframes are synthesized
depending on the following processes: 1) further galvanic
replacement by HAuCl4 (path [I] in Figure 4B, gold
nanocages) or 2) selective removal of silver using wet
etchants such as Fe(NO3)3 and NH4OH (path [II] in
Figure 4B, gold nanoframes).

The hollow structures were confirmed using transmission
electron microscopy (TEM). In addition to nanospheres
(Figure 5A; cobalt nanoparticle-templated) and nanocages
(Figure 5B; silver nanocube-templated), more complex hollow
gold nanostructures, such as nanorods (Figure 5C; tellurium
nanorod-templated) and octahedral nanoframes (Figure 5D;
silver nanoparticle-templated), were successfully synthesized
with uniform size and morphology by galvanic replacement.
Unlike hollow gold nanospheres and nanocages/frames, hollow
gold nanorods are fabricated using a new metallic sacrificial
template; tellurium nanorods (Cai et al., 2018). They reported

the synthesis of hollow gold nanorods with controllable aspect
ratios using a selenium-doped tellurium nanorod-templated
method for the first time. In addition to the hollow gold
nanostructures in Figure 5, other hollow gold nanostructures,
including nanostars (Zhu et al., 2020; cooper nanoparticle-
templated), nanorings (Prieto et al., 2014; cobalt nanoparticle-
templated), and nanoprisms (Aherne et al., 2010; silver
nanoprism-templated) can also be synthesized by galvanic
replacement. It is worth noting again that galvanic
replacement is the major approach for the synthesis of hollow
gold nanostructures.

Non-galvanic Replacement-Based Synthetic Methods
Although galvanic replacement is a major synthetic method for
hollow gold nanostructures, there are some drawbacks, such as 1)
fragmentation or aggregation due to excessive galvanic
replacement processes (Lee et al., 2014) and 2) the generation
of insoluble byproducts that can be deposited on the surface of
nanoparticles (Zhang et al., 2012). To overcome these issues,
several other approaches have been tested as alternatives to
galvanic replacement.

Wang et al. (2013) reported the successful fabrication of
various hollow gold nanostructures, such as nanospheres,

FIGURE 4 | Schematic illustration of the synthesis of hollow gold nanostructures based on the galvanic replacement method. (A) Hollow gold nanospheres using
cobalt nanospheres as sacrificial templates. (B) Gold nanocages/frames using silver nanocubes as sacrificial templates. (A) Reprinted with permission from Pu et al.
(2017). Copyright 2016, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (B) Reprinted with permission from Skrabalak et al. (2008). Copyright 2008, American
Chemical Society.
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nanocapsules, and elongated nanocapsules, by employing a facile
soft template approach (Figure 6A). Here, a cationic gemini
surfactant, hexamethylene-1,6-bis(dodecyl dimethylammonium
bromide) (C12C6C12Br2), played an important role as a soft
template. C12C6C12Br2 is induced to self-assemble into various
forms of vesicles, such as capsule-like or tube-like aggregates,
depending on its concentration. Moreover, it provides structural
stability during reduction because of its strong aggregation
tendency. Wang H. et al. (2015) reported the synthesis of gold
nanocages and hollow gold nanospheres from polystyrene (PS)
@Au core–shell nanospheres using solvent thermal treatment in
N, N-dimethylformamide (DMF) (Figure 6B). Specifically, PS@
Au core–shell nanospheres were synthesized by attaching gold
seeds to PS surfaces, which were further modified with branched
polyethyleneimine to enhance the absorption of gold seeds onto
the PS surfaces. Then, gold nanocages and hollow gold
nanospheres were fabricated by removing the PS templates of
the PS@Au core–shell nanospheres with thermal treatment in

DMF, and the morphologies were affected by the core–shell
structures or the temperature and time of thermal treatment.

BIOMEDICAL APPLICATIONS OF HOLLOW
GOLD NANOSTRUCTURES

Recently, inert and relatively biocompatible gold
nanostructures have been adopted for various biomedical
applications owing to their attractive chemical and physical
properties (Tiwari et al., 2011; Ren et al., 2015; Zangabad et al.,
2017). Gold nanostructures have significant potential benefits
in biomedical and industrial applications, although they can
have harmful effects on biological systems such as
bioaccumulation, bioclearance, metabolism, and elimination.
To resolve these limitations, many studies have been
conducted to mitigate and improve adverse influences
through modifications including diameter, coating, shape,

FIGURE 5 | Transmission electron microscopy (TEM) images of hollow gold nanostructures based on the galvanic replacement method. (A) Hollow gold
nanospheres. (B) Hollow gold nanocages. (C) Hollow gold nanorods. (D) Hollow gold octahedral nanoframes. (A) Reprinted with permission from Choi et al. (2020).
Copyright 2020, Elsevier. (B) Reprinted with permission fromWangW. et al. (2015). Copyright 2015, Royal Society of Chemistry. (C) Reprinted with permission from Cai
et al. (2018). Copyright 2018, American Chemical Society. (D) Reprinted with permission from Hong et al. (2012). Copyright 2012, American Chemical Society.
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dosage, administration route. (Lopez-Chaves et al., 2018).
Among these families of gold nanostructures, hollow gold
nanostructures are one of the most promising platforms in
biomedical applications owing to their unique characteristics
(Ko et al., 2013; Han et al., 2018). They are characterized by
compact sizes of approximately 20–500 nm, simple and precise

LSPR adjustments, and large absorption cross-sectional area per
unit volume. These characteristics allow hollow gold
nanostructures to be mass-produced in high quality with the
capacity to load and release drugs owing to their hollow interiors.

Hollow gold nanostructures are also viable in complex in
vivo environments owing to their high mechanical flexibility

FIGURE 6 | Schematic illustration of the synthesis of hollow gold nanostructures based on non-galvanic replacement method and its transmission electron
microscopy (TEM) images. (A) Hollow gold nanostructure synthesis using the stepwise reduction method. (B) Hollow gold nanostructures from polystyrene (PS)@Au
core–shell nanospheres, scale bar: 200 nm. (A) Reprinted with permission from Wang et al. (2013). Copyright 2013, American Chemical Society. (B) Reprinted with
permission from Wang H. et al. (2015). Copyright 2014, Elsevier.

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6992846

Park et al. Hollow Gold Nanostructures for Biomedical Applications

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


and stability; they can be used as suitable platforms for a
variety of purposes, such as labeling with various ligands,
biomolecules, and functionalization because of their
atomically flat surfaces (Satija et al., 2015; Ye et al., 2020).
Table 1 briefly shows recent studies in hollow gold
nanostructures that can be used in various biomedical
applications. Therefore, in this section, we summarize
three types of biomedical applications using hollow gold
nanostructures: biosensors (diagnosis), PTT, and
bioimaging applications (theragnostics) (Figure 7).

Biosensor: Diagnostics Application
Biosensors have been developed for various analyses across the
fields of medicine, food testing, environmental sensing, and
process control monitoring for research and industry. It is
defined as a transducer that includes biological recognition
components and consists of a three-factor system of
bioreceptors, transducers, and signal processing devices
(Conroy et al., 2009; Goode et al., 2015; Yoon et al., 2013).
The distinct LSPR property is one of the most representative
features of gold nanoparticles, and the peak position of LSPR is

FIGURE 7 | Various biomedical applications of hollow gold nanostructures. Reprinted with permission from Lee et al. (2019). Copyright 2018, Elsevier. Reprinted
with permission from Sun et al. (2017). Copyright 2016, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. Reprinted with permission from Nagy-Simon et al. (2017).
Copyright 2017, American Chemical Society.

TABLE 1 | Summary of recent studies in hollow gold nanostructures for biomedical applications.

Structure type Synthetic method Sacrificial template References

Biosensor Sphere Galvanic replacement Co nanoparticle Azadmehr and Zarei. (2020); Choi et al. (2020)
Ag nanoparticle Lee et al. (2019)

Cage Galvanic replacement Ag nanocube Chen et al. (2021)
PTT Sphere Galvanic replacement Cobalt nanoparticle Lindley and Zhang (2019); Shen et al. (2020)

Ag nanoparticle He et al. (2021)
Cage Galvanic replacement Ag nanoparticle Fang et al. (2020)
Rod Galvanic replacement Te nanorod Zhang et al. (2019)
Star Galvanic replacement Ag-SiO2 nanoparticle Kim et al. (2020)

Galvanic replacement Cu nanoparticle Zhu et al. (2020)
Biomedical imaging Sphere Galvanic replacement Co nanoparticle Cui et al. (2020)

Non-galvanic replacement - Depciuch et al. (2020)
Cage Galvanic replacement Ag nanocube Gao et al. (2020)

Ag nanoparticle Wang et al. (2020)
Rod Galvanic replacement TeSe nanorod Cai et al. (2020a)

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6992847

Park et al. Hollow Gold Nanostructures for Biomedical Applications

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


FIGURE 8 | miRNA-detection biosensor for acute myocardial infarction diagnosis. (A) Target-catalyzed hairpin assembly process and final structure for the
surface-enhanced Raman spectroscopy detection platform. (B) Polyacrylamide gel electrophoresis results of the miR-133a-powered DNA molecular machine. (C)
Representative SERS spectra corresponding to miR-133a with varying concentrations. Biosensor to detect brain damage-related proteins. (D) Illustration of SERS-
based immunoassay for neuron-specific enolase (NSE) and S100 calcium-binding protein beta (S100-β) detection. (E) SERS spectra of the multiplex
immunosensor after incubation with various concentrations of S100-β and NSE. Biosensor utilizing DNA to detect avian influenza virus. (F) Schematic image of the

(Continued )
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affected by the morphology, size, and surrounding medium of the
nanoparticles; in particular, it is closely related to the refractive
index (RI) of the material close to the nanoparticle surface.
Because LSPR relies on RI around nanoparticles, it can be the
basis for detecting interactions with molecules near nanoparticle
surfaces (Ko et al., 2015; Zhang et al., 2018). The scattering
spectrum of a single plasma resonance nanoparticle provides a
single molecular event, and for nanoparticles, it can have a high
RI sensitivity limited to nanometer-scale sensing volumes
surrounding pointed tips. The LSPR-based biosensor uses a
mechanism to observe noticeable changes in the peak
wavelength of plasma resonance when a single giant molecule,
such as a protein with a RI different from that of water, enters or
leaves this sensing volume. Hollow gold nanostructures have
higher RI sensitivities than solid gold nanostructures (Mayer
et al., 2010; Ren et al., 2015; Zeng et al., 2020; Kim et al., 2020).

Detect of disease-related biomarkers plays an important role
in the diagnosis and treatment. Among the various biosensors,
surface-enhanced Raman spectroscopy (SERS)-based biosensor is
one of the most powerful spectroscopic tools for biomedical field
with high sensitivity and specific fingerprints and fast data
collection speeds (Sutter et al., 2020; Cai et al., 2020b; Chung
et al., 2015; Jeong et al., 2019). A hollow silver/gold nanosphere-
based SERS probe was developed by Sun and Li (2018) for the
diagnosis and treatment of acute myocardial infarction (AMI), a
severe cardiovascular disease. This hollow nanostructure enables
the ultra-high-sensitivity detection of AMI-related miRNA (miR-
133a) using a target-catalyzed hairpin strategy. In this process, the
target miRNA was used directly as a linker to capture SERS-based
probes in sandwich mode, and a duplex linker with two sticky
ends was selected in the target catalyst hairpin assembly strategy
(Figures 8A–C). Polyacrylamide electrophoresis experiments
were then performed to verify that hairpin DNA 1 and 2 (hp1
and hp2) were consumed to generate targets in SERS analysis and
that miR-133a was used as a linker to hold probes on the
substrate. Consequently, the presence of miR-133a became
increasingly apparent as the new band moved slowly and
increased in concentration, and the hp1, hp2 mixture
disappeared from lanes to 6–8 (Figure 8B). In the SERS
spectrum of miR-133a at various concentrations, the strength
of the peak appeared to increase with increasing Raman dye
(nitroblue tetrazolium) concentrations (Figure 8C) (Sun and Li,
2018).

For protein detection, an immune sensor to diagnose brain
damage by detecting neuron-specific enolase (NSE) and S100-b
proteins in the blood was developed (Wang et al., 2018). The
active group of hollow gold nanospheres and the redox molecules
4-mercaptobenzoic acid (4-MBA) and Nile blue A incorporate
antibodies and provide signals to design a simple label-free three-
dimensional hierarchical plasmonic nanostructure (Figures
8D,E). In the presence of protein biomarkers, sandwich

nanoparticles are captured on a substrate to develop a finite
plasma field that amplifies Raman signals. Thus, as the S100-b
and NSE protein concentrations increased, the peaks in the SERS
spectrum became stronger (Figure 8E). In the case of hollow gold
spike-like nanoparticles, a biosensor was also reported to detect
avian influenza virus (AVI) with the introduction of a multi-
functional DNA 3 way-junction (Figures 8F,G) (Lee et al., 2019).
To detect AVI, each piece of the DNA 3 way-junction was
adjusted to a hemagglutinin (HA) binding aptamer, 5′-
fluorescein phosphoramidite (FAM) dye, or thiol group,
respectively. In this system, the hollow gold spike-like gold
nanoparticles were fixed to the ITO substrate to measure
LSPR and immobilized onto the electrode via the thiol group.
The fabricated biosensor detected HA proteins in phosphate-
buffered saline (limit of detection (LOD): 1 pM) and diluted
chicken serum (LOD: 1 pM) and confirmed that the LSPR peak
increased as the concentration increased from 1 pM to 100 nM
(Figure 8G).

Photothermal Therapy: Therapeutic
Application
PTT is an effective cancer treatment method using nanoparticles
that utilize a mechanism in which light is absorbed by
nanoparticles and converted into heat within tumor tissues.
When the local temperature in tumor tissue reaches 42–47°C,
tumor cells—owing to their heat sensitivity being higher than that
of normal cells—quickly undergo necrosis (Farokhnezhad and
Esmaeilzadeh, 2019). This treatment is characterized by
minimal invasiveness and excellent tissue penetration. Gold
nanoparticles have received much attention because of their
unique photothermal conversion properties and LSPR
properties (Bi et al., 2019; Ling et al., 2021). The high
affinity of tumor cells for the applied gold nanoparticles
should have an efficient photothermal effect, so appropriate
receptors or ligands should be modified on the particle surface
to enable tumor-specific targeting (Grabowska-Jadach et al.,
2019; Xu et al., 2021).

Gold nanostructures can be used to treat obesity. Their easy
facile modification, superior stability, nontoxicity and
biocompatibility make this possible. In addition, the properties
of absorbing visible and near-infrared light to convert to thermal
energy lead to effective photothermal treatment. Figures 9A,B
achieves non-invasive photothermal ablation targeting abnormal
adipose tissue through hyaluronic acid and peptides, and hollow
gold nanosphere (Lee et al., 2017). This is transmitted through the
subcutaneous, efficiently targeted at adipocytes, and enables
highly effective photothermal ablation with NIR laser. The
successful results were reported in Figure 9B through
experiments in C57BL/6 obesity mice. After topical treatment
of hollow gold nanosphere conjugated with hyaluronic acid and

FIGURE 8 | fabricated AIV detection biosensor based on the LSPR method. (G) Change in absorbance peak based on selectivity test with other protein reactions:
cytochrome c (blue line), BSA (green line), spike protein (gray line), myoglobin (yellow line), HA protein (H1N1) (purple line), and HA protein (H5N1) (red line). (A, B, C)
Reprinted with permission from Sun and Li (2018). Copyright 2018, American Chemical Society. (D, E) Reprinted with permission from Wang et al. (2018). Copyright
2018, The Royal Society of Chemistry. (F, G) Reprinted with permission from Lee et al. (2019). Copyright 2018, Elsevier.
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FIGURE 9 | Transdermal hyaluronic acid-hollow gold nanosphere-ATP conjugate for obesity treatment. (A) Schematic illustration of the targeted photothermal
lipolysis of adipocytes after noninvasive transdermal delivery. (B) Photoacoustic images of subcutaneous adipose tissues before and after NIR lasers. Hollow gold
nanoflowers with strong photothermal effects in near-infrared (NIR) areas. (C) Schematic representation showing the photothermal effect of the gold nanoflowers
(AuNFs) on endocytosis under NIR irradiation. (D) Photothermal effect on a nude mouse under NIR irradiation caused by the addition of gold nanoflowers. (E)
Relationship between HeLa cell viabilities and the concentration of gold nanoflowers with laser irradiation (λ � 808 nm, 9 W/cm2, 5 min). Gold nanocages (AuNC) loaded

(Continued )
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ATP in the abdominal region of mice, NIR lasers were
investigated for photothermal lipolysis for 10 min. As a result,
the significant reduction of photoacoustic signals in adipose tissue
in the dotted area confirmed effective photothermal lipolysis, and
no side effects were shown.

One of the advantages of hollow gold nanostructure is that it is
easy to control LSPR, which can be adjusted in size of
nanostructure from the visible light field to the near-infrared
field for cancer photothermal therapy. Figures 9C–E shows a
study that produced a hollow gold nanoflower structure to
indicate high biological stability in visible light and very strong
photothermal cytotoxicity to tumor cells in near-infrared
environments (Han et al., 2014). Experiments were conducted
with hollow gold nanoflowers using surfactant bis-(amidoethyl-
carbamoylethyl) octadecylamine (C18N3) as templates with
multi-amine head groups on a tumor-bearing mouse model.
Therefore, tumor size increased in the control group.
However, the tumor almost disappeared from the lesion after
20 days in the gold nanoflower-treated mice (Figure 9B).
Figure 9E shows a substantial decrease in HeLa cell viability
affected by 808 nm NIR laser, size, and concentration of gold
nanoflowers.

Hollow gold nanostructures can be used to treat bacterial
infections and cancers. Studies have demonstrated the synergistic
treatment of bacterial infections by loading antibiotic daptomycin
(Dap) into polydopamine (PDA)-coated gold nanocages (Figures
9F,G) (Meeker et al., 2016). To induce target binding to bacterial
cell surface proteins (Spa) via anti-Spa, PDA was coated onto
the surface and the nanostructure was activated by near-infrared
radiation to convert photon energy into thermal energy,
increasing the photothermal effect and degenerating the PDA
coating to release the antibiotics (Figure 9F). Figure 9G
shows the results of antibiotic treatment on 0.5 cm segments
of catheter biofilm. Exposure to 5 μg/ml Dap in groups 1 and 2
had a slight effect on the number of viable bacteria per
catheter compared to that in the control group, where nothing
was processed. Exposure to untargeted gold nanocage@PDA
after laser irradiation showed an insignificant decrease in the
number of viable bacteria per catheter from 0 to 24 h (Group 3).
With aSpa, the photothermal effect was increased immediately
after irradiation on targeted gold nanocage@PDA, but it can
be seen to increase from 24 h because of its failure to completely
exterminate viable bacteria in the biofilm (Group 4). In
group 5, a clear photothermal effect was observed shortly after
laser irradiation of bacteria exposed to gold nanocage@
DapHi/PDA − aSpa, and no viable bacteria were detected at
24 h. In addition, bacteria were not detected at either 0 or 24 h
when the biofilm was laser-irradiated by exposure to gold
nanocage@ DapHi/PDA − aSpa. These results confirmed the

synergistic effects of photothermal killing and targeted
antibiotic release.

Hollow gold nanostructures have high photothermal
conversion effects and excellent biocompatibility, can adjust
the LSPR band in near-infrared (NIR) regions, and are
suitable for drug delivery. The irradiation of gold
nanoparticles with NIR lasers can accelerate the release of
cargo by generated hyperthermia to the target location and
ablate the tumor cells with favorable PTT (Gan et al., 2019;
Sun et al., 2021).

By combining PTT with encapsulating drugs in the internal
space of hollow gold nanostructures where LSPR control is easy,
improved therapeutic results can be achieved compared to the
existing method. But the innate structures of the hollow gold
nanostructure can leak drugs early, which makes decreases
targeting efficiency. To prevent this, utilizing biomimetic cell
membrane-based drug delivery systems can significantly increase
the stability of nanoparticles and prevent drug leakage. Research
has been conducted using cancer cell membranes coated with
gold nanocages to suppress breast cancer metastasis (Figures
10A–C) (Sun et al., 2017). In chemotherapy, nanostructures
coated with biomimetic cell membranes can significantly
increase stability with fewer drug leaks under physiological
conditions. Light heat at 43°C can also increase the
permeability and fluidity of the cell membrane, thereby
improving the intracellular accumulation of drugs. Cancer cell
membrane-coated gold nanocages were fabricated by loading the
anticancer drug Doxorubicin (DOX) into the inner core of gold
nanocages and then coating with the cancer cell membrane
derived from 4T1 breast cancer cells. A sulforhodamine B
assay to determine the antiproliferative effect of gold
nanocages showed that the strongest antiproliferative effect
was on tumor cells cultured with cancer cell membrane-coated
gold nanocages, resulting from the accelerated release of DOX
from gold nanocages by laser-induced high heat and induced
phototoxicity (Figure 10B). The in vivo inhibitory effect of cancer
cell membrane-coated gold nanocages on tumors and pulmonary
metastasis is shown in Figure 10C. Evaluation of the 4T1 tumor
transition model showed rapid tumor growth in the saline
treatment group and excellent antitumor effects in the NIR
investigation group.

A minimally invasive transdermal drug delivery system is
available to minimize the side effects and pains (Li et al., 2017;
Pagneux et al., 2020). To achieve this goal, hyaluronic acid
dissolving microneedle (MN) arrays were developed utilizing
gold nanocages loaded with DOX (Figures 10D–F) (Dong
et al., 2018). The fabricated MNs effectively penetrate the skin,
dissolve, release drugs within the tumor, and exhibit
photothermal and synergistic effects by near-infrared laser

FIGURE 9 | with antibiotics and coated with polydopamines (PDAs) to induce bacterial apoptosis. (F) Schematic illustration of the working mechanism of the targeted
photoactivatable nanostructure for the synergistic photothermal and antibiotic treatment of S. aureus. (G) Bacterial cell killing using a biofilm model. Experimental groups
are 1) no treatment, 2) 5 μg/ml Dap, and irradiation plus 3) AuNC@PDA, 4) AuNC@PDA−aSpa, 5) AuNC@DapHi/PDA, and 6) AuNC@DapHi/PDA−aSpa. Killing was
assessed at 0 h (striped bars) and 24 h (solid bars) after treatment. Black bars indicate non-irradiated groups, and red bars indicate irradiated groups. (A, B) Reprinted
with permission from Lee et al. (2017). Copyright 2017, American Chemical Society. (C, D, E) Reprinted with permission from Han et al. (2014). Copyright 2014,
Dovepress. (F, G) Reprinted with permission from Meeker et al. (2016). Copyright 2016, American Chemical Society.
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FIGURE 10 | Gold nanocages that suppress high breast cancer metastasis by coating cancer cell membranes. (A) Schematic illustration of the 4T1 cancer cell
membrane-coated gold nanocage for the hyperthermia-triggered release of doxorubicin (DOX) and homotypic targeted therapy of breast tumor growth and metastasis.
(B) Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining (200×) of the tumor tissues, the collected lungs, and H&E staining
(Scale bar � 100 µm) of the lung tissue. White arrows indicate the metastatic models. (C) In vivo antitumor and antimetastasis effects of the nanoparticles in the
4T1 tumor-bearing nude mice of tumor growth profiles. Example of applying gold nanocages to microneedles for the local treatment of superficial skin tumors. (D)

(Continued )
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irradiation. The confocal laser scanning microscope (CLSM)
provides a visual view of the release of gold nanocages
perpendicular to the surface of the mouse skin (Figure 10E).
In addition, red fluorescent arrays of gold nanocage spots were
clearly detected in the skin. Fluorescent signals were strongly
maintained between 150 and 230 μm and then decreased slowly,
and the red spot in the CLSM and the black spot in the light field
image almost overlapped in the merged image. This indicates that
the released gold nanocages are directly inside the insertion path
and only a small fraction spread into the surrounding tissue.
Figure 10F shows the high tumor growth inhibition effect of gold

nanocages with the simultaneous application of NIR and DOX
within tumors.

Biomedical Imaging: Theranostic
Application
In general, gold nanoparticles are potentially applicable to a wide
variety of fields in optical imaging, cell imaging, ultrasound
imaging, and positron emission tomography. Biomedical
imaging is a non-invasive functional imaging technology that
detects and monitors various human physiological and

FIGURE 10 | Schematic illustration showing drug/gold nanocage (AuNC)-loaded dissolving hyaluronic acid microneedle (HA MN) system for the combined
chemotherapy and PTT of melanoma. (E)Confocal laser scanning microscope (CLSM) image, bright-field dermoscopy image, and merged image. The red fluorescence
signal in the CLSM image indicated the penetration of AuNCs in the skin indicated, whereas the black dots in the bright-field image indicated the MN insertion sites. (F)
Tumor volume of each group with increasing time for 12 days (A, B, C) Reprinted with permission from Sun et al. (2017). Copyright 2016, WILEY-VCH Verlag GmbH and
Co. KGaA, Weinheim. (D, E, F) Reprinted with permission from Dong et al. (2018). Copyright 2018, American Chemical Society.

FIGURE 11 | (A)Multimodal dark-field (left)/SERS (center)/two photon-FLIM imaging (right) of antibody-conjugated and Raman-tagged hollow gold nanospheres.
Photoacoustic tomography (PAT) imaging of the mouse brain using gold nanostructures. (B) Non-invasive PAT imaging of a mouse brain in vivo employing polyethylene
glycol (PEG)-hollow gold nanospheres and near-infrared (NIR) light at a wavelength of 800 nm. Hollow gold nanorods for bioimaging and combined
chemo–photothermal therapy. (C) Computed tomography images of mice with an injection of phosphate-buffered saline and hollow gold nanorods. Arrows point
to the tumor site. (A) Reprinted with permission from Nagy-Simon et al. (2017). Copyright 2017, American Chemical Society. (B) Reprinted with permission from Lu et al.
(2010). Copyright 2009, Elsevier. (C) Reprinted with permission from Cai et al. (2018). Copyright 2018, American Chemical Society.
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pathological conditions. Its use allows the early detection of
tumors and other diseases, and guides precision treatment.
Gold nanoparticles are well known for their ability to increase
biological inactivity and spatial and temporal resolution for
imaging (Singh et al., 2018; García-Álvarez et al., 2020; Si
et al., 2021; Qambrani et al., 2021).

Hollow gold nanostructures can be used in various biomedical
imaging fields, such as TEM, computed tomography, SERS
imaging, and photoacoustic tomography (PAT). (Nagy-Simon
et al., 2017) reported a new class of contrast medium containing
NIR-reactive hollow gold nanospheres for the detection and
multimodal imaging of CD19 (+) cancer lymphocytes
(Figure 11A). The medium binds to an anti-CD19
monoclonal antibody based on hollow gold nanospheres and
is denoted by the SERS active molecule Nile blue to complete the
hollow gold nanosphere–Nile blue–PEG–anti-CD19 complex.
TEM was used to investigate the specificity of this contrast
medium, and dark-field, SERS, and two-photon excitation
fluorescence lifetime imaging microscopy proved its
interaction with TEM and the preferential internalization of
the complex. Therefore, improvements in the SERS
background occurred over the entire measurement interval
and could only be observed in local areas corresponding to the
accumulated nanoparticles. In conclusion, (Nagy-Simon et al.,
2017) demonstrated that antibody complexes provide labeling
molecules and SERS background signals for internalization and
intracellular positioning, and are promising materials for non-
invasive microscopic imaging.

PAT, also referred to as optoacoustic tomography or
photoacoustic imaging, is a powerful nonionizing optical
imaging modality that integrates the advantages of both
optical radiation and ultrasonic detection (Yao and Wang,
2011; von Knorring and Mogensen, 2020). This imaging
technology can be monitored with an optical contrast agent,
such as gold, which facilitates high sensitivity and specificity,
separating the signal contributions of several optical absorbers by
spectroscopy, enabling simultaneous molecular and functional
imaging. Recently, hollow gold nanospheres have emerged as
novel molecular contrast agents for PAT; they can be adjusted to
the near-infrared range, show strong resonance absorption and
absorption peaks at ∼800 nm, and allow surface coating with
thiolated polyethylene glycol (PEG), which leads to significantly
higher PA efficiency (Lu et al., 2010). The PEGylated hollow gold
nanospheres clearly expressed a small cerebral vascular structure
with a diameter of ∼100 nm in PAT images obtained within 2 h of
intravenous administration of nude mice (Figure 11B); however,
preliminary results have not shown acute toxicity to the liver,
spleen, or kidneys of mice, and consequently show promise as
contrast agents for PAT with relatively high spatial resolution and
improved sensitivity.

These bioimaging applications can be combined with
therapeutic applications, such as drug delivery and PTT, to
simultaneously perform treatment and diagnosis to enable
precision medicine that can be tailored to each patient
(Moorkoth et al., 2021; Yang et al., 2021). Nanoscale particles
can be targeted to desired positions through surface functionality
(Wijetunga et al., 2020). In particular, the utilization of hollow

gold nanostructures can enhance the efficiency of theranostics
owing to their inherent characteristics. For example, nontoxic
hollow gold nanorods can be used as chemo–photothermal
therapy substances at the same time and as contrast agents for
multimodal imaging for cancer theranostics (Figure 11C)
(Cai et al., 2018). The platform is a new type of nano-agent
with LSPR peaks in the NIR-II window (1,000–1,350 nm),
which is more suitable for biological applications owing to its
deeper tissue penetration capabilities and higher maximum
permissible exposure than that of the NIR-I window
(700–950 nm). Figure 11C demonstrates the ability of the
computed tomography imaging contrast agent by injecting
hollow gold nanorods into a tumor-bearing mouse to confirm
the brightness in the tumor region. After loading DOX, the
laser was examined to confirm the chemo–photothermal
effect. Although the data are not indicated in this paper,
when phototherapy and chemotherapy were applied at the
same time, the tumor disappeared completely after
approximately 10 days, confirming the synergistic effect.
Thus, it can be seen that hollow gold nanostructures show
improved ability when applied with PTT as well as
bioimaging.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Hollow gold nanostructures have drawn attention for their
biomedical applications because of their unique physical and
optical properties, such as facile LSPR tunability, drug loading
capacity, and enhanced photothermal activity, compared to those
of conventional solid gold nanoparticles. In this review, we
summarized the recent research trends in hollow gold
nanostructures, including synthetic methods, physical/optical
characteristics, and recent advances in biomedical applications.
Various forms of hollow gold nanostructures can be synthesized
by either hard- or soft-templating methods, but the majority of
synthesis is based on galvanic replacement. While the LSPR peaks
of solid gold nanoparticles depend solely on the overall size of the
particles, those of hollow gold nanostructures are greatly
influenced not only by the size, but also by the thickness of
the shell. Therefore, the LSPR peaks can be easily adjusted while
maintaining the overall size of the particles, which provides
additional tunability of the SERS signal or photothermal
activity. The voids in the interior also provide additional
functionality to hollow gold nanostructures by being utilized
as nanoscale storage for impregnating functional materials
(e.g., anticancer drugs), which is not possible in solid gold
nanoparticles. Based on these characteristics, various hollow
gold nanostructures have been widely used in several
biomedical applications, including biosensors, photothermal
therapy, and biomedical imaging. It should be noted that there
have been many studies aimed at the synergistic effects of
simultaneously utilizing the various functionalities of hollow
gold nanostructures, such as combined chemo–photothermal
therapy, light-responsive drug release, and plasmonic
nanostructure-based bioimaging.
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Despite this progress, there are still many issues: 1) off- and
on-target accumulation of hollow gold nanostructures and 2)
preventing the aggregation and disassembly of hollow gold
nanostructures. Large-sized hollow gold nanostructures (larger
than 200 nm) can lead undesirable accumulation in the
reticuloendothelial system (e.g., liver, spleen, and lungs); on
the other hand, very small-sized one cannot provide sufficient
on-target accumulation of them due to the short circulation time.
Even if the size of these structures is suitable for selective
accumulation, the aggregation and disassembly of hollow gold
nanostructures in human body can decrease the LSPR intensity.
Therefore, researchers should consider 1) appropriate size of
nanostructures for sufficient on-target accumulation and
prevention of off-target side effect of them; 2) antibody
conjugation which enhance the capability of target adhesion;
and 3) the stability of hollow gold nanostructures in human body
to provide good LSPR properties. We strongly believe that the
above-mentioned problems will be overcome by further research
using advanced synthetic methods or surface modifications in the
future; then, hollow gold nanostructures will become increasingly
important in biomedical applications because it is clear that these
unique structures have many advantages compared to

conventional nanoparticles. We hope that this review will help
readers to comprehend the recent advances in hollow gold
nanostructures and will provide great inspiration for researchers.
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