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A B S T R A C T   

This study aims to accurately identify mine water sources and reduce the hazards caused by water 
inrush accidents in coal mines. Taking the Gubei coal mine as an example, the water quality 
results of the water samples from the Cenozoic unconsolidated aquifer, Permian sandstone 
fracture aquifer, and Carboniferous Taiyuan Formation limestone karst fracture aquifer in the 
mine area were tested, and K+

+Na+, Ca2+, Mg2+, Cl− , SO4
2− , HCO3

− , TDS (Total Dissolved Solids), 
and pH were selected as the main indicators to study the water chemistry characteristics of the 
aquifer through water chemistry component analysis, major ion content analysis, Piper trilinear 
analysis, and correlation analysis. Thirty-five groups of water samples were randomly selected 
and imported into SPSS software for factor analysis (FA) and downsized to three main factors as 
the input variables of the artificial neural network model. The particle swarm optimization (PSO) 
code was written based on the MATLAB platform to improve the self-adjustment weights and 
acceleration factors for optimizing the initial weights and thresholds of the Back-Propagation (BP) 
neural network. The training and prediction samples were learned in the ratio of 8:2, and the 
recognition results were compared with the traditional BP neural network model. Results showed 
that the groundwater of the Gubei coal mine demonstrated a water quality vertical zoning 
pattern, and the chemical composition was dominated by cation K++Na+ and anion Cl− . The FA- 
PSO-BP neural network model has a higher accuracy of water source discrimination compared 
with the cluster analysis and the FA-BP neural network model. The FA-PSO-BP neural network 
model is worthy of further application in the problem of water source identification in mine water 
inrush.   

1. Introduction 

China’s coal reserves account for approximately 13% of the world’s total and is the world’s largest coal importer and producer [1]. 
Although the share of clean energy in China’s energy mix has significantly increased, and the effective utilization rate and energy 
access rate of coal are more advantageous, coal will remain as the basic energy source of the country for some time to come [2,3]. Coal 

* Corresponding author. 
E-mail address: qmliu@aust.edu.cn (Q. Liu).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e26925 
Received 7 August 2023; Received in revised form 21 February 2024; Accepted 21 February 2024   

mailto:qmliu@aust.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e26925
https://doi.org/10.1016/j.heliyon.2024.e26925
https://doi.org/10.1016/j.heliyon.2024.e26925
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e26925

2

mine resources, as an important non-renewable energy source, gradually depleted due to the increasing mining efforts. Water 
emergencies in coal mines frequently occur due to the complex mine water-filled hydrogeology and have become a major disaster 
second only to a gas explosion [4–6], which has a great effect on the society, economy, and personal safety and has become an 
important factor that restricts safe and efficient mining in coal mines. Therefore, accurate identification of the source of water inrush in 
mines has become an urgent problem to be solved to ensure the safety of coal mines [7,8]. 

The hydrogeological conditions of the mine site and the complexity of the water inrush mechanism have a certain influence on the 
difficulty of identifying the source of water inrush in the mine [9,10]. The study of water damage in mines has gradually evolved from 
simple water chemistry analysis to multivariate statistics. In recent years, a number of experts and scholars have flexibly applied a 
variety of mathematical modeling methods to conduct in-depth research on the identification of water sources of mine water emer-
gencies. Isotope analysis can effectively determine the source of groundwater recharge, study the flow characteristics of groundwater, 
and determine the connection between aquifers [11,12]. Cluster analysis is to find the similarity and inherent structural differences 
between water quality data for classification. This method is not only economical and fast but also can understand the connectivity of 
aquifers and water rock action [13–15]. Simple water chemical analysis and multivariate statistical analysis provide favorable support 
for solving the problem of water source identification. 

In addition, the nonlinear analysis method has been widely used in the problem of water source identification. Guan Zilong applied 
the hydrogeochemical analysis method and isotope analysis method to the Mindong I mine in Inner Mongolia. The calculation ac-
curacy of fuzzy synthesis is influenced by the degree of affiliation, and the reliability of cluster and isotope analyses is higher, but they 
are subject to certain limitations [16]. The gray correlation method is used to analyze the water quality data of the water inrush point 
as a sequence, compare it with the parent sequence, and calculate the correlation to achieve the water source discrimination effect 

Fig. 1. (a):Land use cover map of Huainan City; (b):Geographical topographic map of Fengtai County; (c):Geological sketch of the study area.  
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[17]. The Geographic Information System (GIS) has a high practical value in the water source identification problem with its powerful 
data processing function. The visualization of the identification results is possible through the use of the GIS platform coupled with a 
variety of water source identification methods. GIS combines with hydrodynamics to visualize water chemistry information and 
analyze the spatial distribution and migration and diffusion patterns of ions [18]. The support vector machine method is used to 
classify the water quality data in the original space to find the optimal classification hyperplane of the predicted and real samples. The 
traditional support vector machine is only applicable to binary classification, which is not ideal for solving multi-classification 
problems. Fisher’s discriminant method extracts feature variables and analyzes them using a support vector machine method, 
which has a higher accuracy for water source identification [19]. The artificial neural network method is a highly promising method 
for water source discrimination, based on the principles underlying neural networks in biology, which simulates the mathematical 
model of the neural system’s processing mechanism of complex information [20]. The commonly used BP neural network is to back 
propagate the error between the predicted and the true values and continuously correct the weights and thresholds to improve the 
discriminative model [21]. The coupling of the laser-induced fluorescence technology and convolutional neural network model can 
effectively avoid the subjectivity of feature selection, eliminate the redundant information of raw data, and realize the dynamic online 
analysis of water source of mine water inrush [22]. The extensive study provides new ideas and methods for water source identification 
and useful guidance for future problem solving. 

In this study, taking the Gubei mining area as an example, combined with the hydrogeological conditions of the study area, the 
hydrochemical characteristic composition analysis, water quality type analysis, and correlation analysis were carried out to 
comprehensively evaluate the hydrochemical data. Since hydrochemistry can reflect the essence of groundwater, six conventional ions 
(K++Na+, Ca2+, Mg2+, Cl− , SO4

2− , HCO3
− ), TDS (Total Dissolved Solids), and pH value were selected as the indicators for the analysis of 

groundwater chemical characteristics and water source discrimination in the study area. The simple hydrochemical analysis method is 
convenient, economical, and effective. However, this method also has certain limitations [23–25]. The multivariate statistical method 
and the nonlinear analysis method form complementary advantages. Therefore, the author performed factor analysis (FA) dimen-
sionality reduction of the evaluation index and applied it to MATLAB software coupled particle swarm optimization (PSO) to deter-
mine the initial weight and threshold of backpropagation (BP) neural networks. The training and test samples randomly selected from 
the water samples in the study area were imported into the model for training. The accuracy, precision, and recall were evaluated. In 
summary, the purpose of this study is to: (1) explore the characteristics of groundwater chemical changes in the main aquifers of Gubei 
Coal Mine; (2) reveal groundwater recharge runoff and water storage conditions to a certain extent; (3) aiming at the problem of water 
source identification in Gubei Coal Mine, a FA-PSO-BP neural networks model for water inrush water source discrimination based on 
water chemical information was established. 

2. Study area 

The Gubei coal mine is located at the interface between the eastern flank of the Chenqiao backslope and the western part of the 
Panji backslope, and it is one of the main production mines in the Huainan coalfield (Fig. 1a). The study area is located in the Huaihe 
alluvial plain (Fig. 1b), with dense surface runoff, abundant groundwater resources, and flat topography, except for the low-lying area 
along the Xihe and Ganghe rivers, which is prone to flooding during the rainy season. The climate is monsoonal, warm, and semi- 
humid, with cold winters, hot summers, and abundant rainfall. The tectonic pattern is north–south, monoclinic tectonics dip east-
ward, and the stratigraphy is gently inclined. The structure is divided according to the development characteristics of the secondary 
folds and faults (Fig. 1c): simple monoclinic zone in the north, “X” conjugate shear zone in the middle, and monoclinic zone in the 
south. 

The aquifers in the study area are mainly divided into Cenozoic unconsolidated aquifer, Permian sandstone fissure aquifer, and 
Carboniferous Taiyuan Formation limestone karst fracture aquifer from shallow to deep. The Cenozoic unconsolidated Layer consists 
of clay, sandy clay, and sand layer interlayer, and the water barrier mainly consists of four parts: upper, middle, lower, and bottom “red 
layer”. The water barrier in the upper part is unstable, and the thickness of some sections becomes thin, resulting in the hydraulic 
connection between the upper and lower parts and the middle part. The distribution of the middle and lower parts of the water barrier 
is stable, and the lithology is mainly clay and sandy clay, with good water barrier. The lower part of the aquifer only develops a 
lenticular sand layer, and the bottom “red layer” demonstrates a lamellar distribution. The water barrier divides the unconsolidated 
aquifer in the new world into the upper, middle, and lower aquifers. At the bottom of the Permian coal system layer, the marine 
mudstone is in integrated contact with the underlying Taiyuan Formation. The sandstone at the top of this aquifer is mainly static 
storage, and the water-richness is weak. The thickness of the sandstone is unevenly distributed, and the fissure development varies. The 
local rock fissure development section and the vicinity of the fault influence zone may be relatively water-rich due to the water- 
richness is controlled by the thickness of the sandstone, the degree of fissure development, and the boundary conditions. The 
Carboniferous System and the underlying Ordovician System are mainly composed of sandstone, shale, limestone, and thin coal seam, 
and their contacts are parallel and unintegrated. Several hydraulic connections exist between Taiyuan Formation limestone water and 
Ordovician limestone water due to the existence of hidden faults, in which the limestone karst fissure aquifer of the Taiyuan Formation 
is pressurized water and has weak water-richness. 

3. Materials 

On the basis of the investigation of the geological background and hydrogeological conditions of the study area, groundwater 
sampling of coal mines in the study area was carried out to lay a scientific and reliable foundation for further research on the chemical 
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characteristics of groundwater and the establishment of a water source identification model [26]. The groundwater samples in the 
study area were sent to the key laboratory of mine water resource utilization within 10 min after collection, filtered using 0.45 μ 
cellulose filter, and stored in a refrigerator at 4 ◦C. The HCO3

− , CO3
2− content test was completed within 24 h, and the other parameters 

could be tested within 7 days. Ion chromatography, hydrochloric acid titration, and other methods were used to determine and obtain 
the water chemical analysis. The results meet the anion and cation balance check. A portable multi-parameter water quality meter was 
used to determine the pH of water in the field. Meanwhile, the weight method was utilized in the laboratory to determine the TDS. In 
this study, 35 groups of groundwater quality analysis data were randomly selected from the study area, including 5 groups of upper, 
middle, and lower water (UW, MW, and LW) samples in the unconsolidated aquifer; 10 groups of sandstone water (SW) samples; and 
10 groups of limestone water (CW) samples. The data of different water samples were compiled and counted, and the main indexes, 
namely, K++Na+, Ca2+, Mg2+, Cl− , SO4

2− , HCO3
− , TDS, and pH value, were selected to study and analyze the groundwater quality. 

4. Methods 

The study area location map and geological structure sketch were applied to ArcGIS (version 10.2) and AutoCAD 2021 software, 
respectively, and groundwater chemical analysis was performed using Excel 2018, Origin 2021 and AqQA (version 1.5), IBM SPSS 
Statistics 25 and Matlab 2020a for water source discrimination studies, and the images were retouched using CorelDRAW 2021 and 
Adobe illustrator 2021 for production. 

4.1. Correlation analysis 

Correlation analysis is a statistical method to describe the degree of correlation between random variables, reflecting the degree of 
similarity and dissimilarity between variables, and revealing the mechanism of water chemistry ion formation and the way of origin 
[27,28]. The groundwater chemical equilibrium system essentially determines that the changes between ions are mutually constrained 
and interconnected. The strength of correlation between ions can explain the groundwater chemical characteristics, and there is a 
certain influence on the effectiveness of water source discrimination. 

4.2. Cluster analysis 

Cluster analysis as a classical method in multivariate statistics, it is frequently cited in different problems in various fields [29,30]. 
The main principle of clustering is in finding the intrinsic structure of similarities and differences between data, dividing the evaluation 
factors of data into clusters based on intrinsic connections, with great similarity of data structure within the same cluster and large 
differences between different clusters. The clusters are merged again by the nature and distance between them, and so on until the final 
requirements are met. Cluster analysis is a kind of unsupervised learning of searching clusters, which does not rely on the pre-defined 
category information for classification, and the discriminative marker vertebrae depend only on the nature and distance of the data. 

4.3. Factor analysis 

Factor analysis is a multivariate statistical analysis method used to transform a large number of variables that may be correlated 
with each other into a relatively small number of composite variables that are uncorrelated with each other [31,32]. The correlation 
coefficient matrix of the original variables is transformed through dimensionality reduction to obtain a few unobservable composite 
variables that can control all variables without losing valid information, and the composite variables are used to describe the cor-
relations of the original variables. 

4.4. Particle swarm algorithm 

Kennedy and Eberhart proposed a particle swarm optimization algorithm by simulating the foraging behavior of birds [33]. When a 
flock of birds gathers, the neighboring individuals transmit information to each other to maintain flight at the same speed, and the 
whole group flies together to the target. The flock foraging behavior is abstracted into a mathematical model, wherein each bird is 
treated as a particle. The target position is equivalent to the global optimal solution, and the trajectory of the birds to the target position 
is the objective function, thus solving the optimization complex problem. 

4.5. BP neural network 

BP neural network is a multi-layer feed-forward neural network based on the error backpropagation algorithm training in the field 
of machine learning. This network is one of the most widely used neural network models at present [34,35]. The operating principle is 
to initialize the relevant parameters and determine the topology, transfer the factor information from the output layer to the output 
layer through the implicit layer, back propagate the error between the output value and the expected value, and iterate through 
adjusting the weights and thresholds of each layer until the error reaches the minimum; thus, the training function converges. 
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5. Results 

5.1. Determination of chemical characteristics of water 

5.1.1. Water chemical component analysis 
The statistical analysis of the main indicators of the selected groundwater samples in the study area (Table 1) shows that the 

proportion of cationic K++Na+ and anionic Cl− contents in the UW medium is low, and its aquifer pore development and groundwater 
runoff conditions are relatively good, resulting in low UW mineralization and good water quality, and it is the main source of drinking 
water for domestic use [36]. Except for the UW, all other types of samples belong to the high mineralization range, and the salt content 
is much higher than 1000 mg/L. The average pH content of all types of water samples varies in the following order: CW > LW > SW >
MW > UW. The water quality of each aquifer is alkaline–strongly alkaline, and the standard deviation of pH value is small. The overall 
difference is not evident. The standard deviation of the ion equivalent milligram concentration and TDS of SW is large, mainly due to 
the large thickness of the aquifer and the heterogeneity of the sandstone fracture development, resulting in the large variability of 
water quality space inside the sandstone aquifer and the poor mobility of the water body. The degree of SO4

2− and HCO3
− dispersion 

between SW and CW reflects the large difference of groundwater chemical environment and the degree of water–rock action in the 
corresponding aquifer. The standard deviations of the Ca2+ and Mg2+ ions indicate less volatility of the ion equivalent milligram 
concentrations in the groundwater samples at different depths. 

5.1.2. Major ion content analysis 
The order of the cation concentration of the groundwater samples in this area is ρ(K++Na+)>ρ(Ca2+)>ρ(Mg2+). The average 

content of Ca2+ and Mg2+ is low, and the K++Na+ ions are absolutely dominant (Fig. 2). In terms of the variation trend of the anions in 
the various types of water, the ion concentration distribution patterns of MW and LW are basically the same: ρ(Cl− )>ρ(SO4

2− )>ρ 
(HCO3

− ). The anion concentration trends of SW and CW are similar: ρ(Cl− )>ρ(HCO3
− )>ρ(SO4

2− ). The distribution pattern of the ion 
concentration in the UW is not the same as those of the other types of water samples: ρ(HCO3

− )>ρ(SO4
2− )>ρ(Cl− ). The upper aquifer of 

the Cenozoic unconsolidated layer is mainly recharged by atmospheric precipitation and infiltration of the surface water bodies and 
laterally recharged by regional paleochannels with strong evaporation [37], reducing the K++Na+ and Cl− ion contents, and their ion 
concentration change characteristics are obscured. Consequently, the milligram equivalent concentration of ion HCO3

− is higher than 
that ion K++Na+ in the first place, and the concentration of the remaining five ions are lower than 200 mg/L. A clay layer exists 
between the upper and the middle aquifer of the Cenozoic unconsolidated layer, and the extension is wide, blocking the vertical 
circulation of groundwater. The mineral composition of the coal-bearing sandstone makes the groundwater susceptible to leaching and 
decarbonation, resulting in a significant increase in the concentration of HCO3

− ions and a decrease in the concentration of Ca2+ and 
Mg2+ ions. The lithology of the lower part of the Cenozoic unconsolidated layer is rich in calcium, which has a good water barrier 
effect, resulting in a significant difference in the trend of anion concentration in the SW compared with the LW. 

The distribution of the six conventional ions in different water source groups can be visually reflected by radar diagrams (Fig. 3). 
The distribution patterns of cation K++Na+ and anion Cl− are similar in the five water source types, and the two ions are absolutely 
dominant in MW, LW, SW, and CW. The distribution of Ca2+ and Mg2+ ions in the five aquifers is relatively stable, and their average 
content is relatively small and below 100 mg/L. The anion Cl− alternately adsorbs with Ca2+ and Mg2+ ions to keep the two ions in a 
relatively balanced state. The ion equivalent milligram concentration of the UW contains a large number of anions HCO3

− , the upper 

Table 1 
Statistics of the main chemical indicators of the groundwater samples.  

Water source Chemical composition Ionic component content (mg/L) TDS (mg/L) pH 

K++Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3−

UW（n = 5） MAX 206.72 52.72 24.83 79.99 164.70 478.69 675 8.41 
MIN 122.22 24.35 11.53 35.00 25.10 425.00 469 7.90 
AVG 165.83 38.27 16.18 52.42 73.20 451.54 575 8.02 
RSD 39.23 10.54 5.27 18.19 56.92 20.68 92 0.22 

MW（n = 5） MAX 856.01 63.62 33.36 946.20 670.00 286.57 2571 8.40 
MIN 746.80 58.01 16.60 852.10 464.10 145.70 2311 7.86 
AVG 800.06 61.35 29.08 904.19 568.92 198.79 2456 8.23 
RSD 47.49 2.19 7.04 45.97 74.00 55.11 109 0.22 

LW（n = 5） MAX 843.44 62.46 24.96 1122.24 365.60 327.90 2486 8.59 
MIN 767.43 35.95 17.78 940.80 278.24 183.67 2332 8.18 
AVG 818.21 50.31 20.78 1016.49 336.07 274.43 2403 8.36 
RSD 31.13 11.53 3.05 68.94 35.36 53.85 60 0.17 

SW（n = 10） MAX 1029.03 41.68 31.36 1053.57 849.34 1494.99 2830 8.48 
MIN 623.02 4.61 0.85 510.48 4.73 350.86 2132 8.06 
AVG 865.85 21.87 14.60 714.49 497.16 598.42 2432 8.25 
RSD 129.16 16.28 11.31 217.59 322.37 354.05 271 0.15 

CW（n = 10） MAX 1132.00 33.67 16.53 1070.59 326.60 896.99 2714 9.19 
MIN 998.42 8.02 1.94 833.08 7.68 353.92 2439 7.95 
AVG 1055.21 15.23 6.22 1010.33 141.78 643.76 2597 8.65 
RSD 54.99 8.89 5.49 68.35 140.96 210.29 83 0.48  
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unconsolidated layer of the medium has considerable carbonic acid compounds, and the body of water has good runoff conditions, 
making it easy to produce bicarbonate ions in the water–rock action [38]. A large amount of gypsum and sulfate minerals exist in the 
rock of the lower and middle unconsolidated aquifers and sandstone aquifer, thereby generating sulfate ions that dissolved in the water 
through oxidation. A large amount of pyrite is frequently present in coal strata, which is more prone to oxidation reactions to produce 
anion SO4

2− . The distribution pattern of the HCO3
− and SO4

2− ions is also particularly different because they have varying mechanisms of 
water–rock interaction. 

5.1.3. Piper trilinear chart analysis 
AqQA software was used to draw the Piper trilinear diagram shown in Fig. 4 with reference to the anion and cation data in Table 1 

to visualize the water chemistry characteristics of the different aquifer waters. The sample data show that the UW is farther away from 
other aquifer water samples in the trilinear diagram. Some groundwater samples have more than 50% carbonate hardness, and the 
water quality type is mainly HCO3–K+Na. The MW quality types are Cl–K+Na and SO4–Cl–K+Na, and the LW quality types of the 
lower aquifer are Cl–K+Na and Cl–SO4–K+Na. SW and CW are mainly along the HCO3

− distribution, and the cation K++Na+ ion 
milligram equivalent percentage is the highest. Moreover, the water quality of carbonate and chloride content is higher and more 
alkaline. The SW quality types are Cl–SO4–Na+K, Cl–HCO3–Na+K, Cl–Na+K, and SO4–Cl–HCO3–Na+K. The CW quality types are 
Cl–Na+K and Cl–HCO3–Na+K. Fourteen groups of Cl–K+Na type can be found in 35 groups of water samples, accounting for 40% of 

Fig. 2. Trend of the average content of conventional ions in groundwater.  

Fig. 3. Radar map of the average content of conventional ions in groundwater.  
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the overall water quality type. The anion Cl− content is high, and the main cation is K++Na+. The milligram equivalent concentrations 
of the ions in the upper water is significantly different from that in other aquifers. 

5.1.4. Correlation analysis 
A correlation analysis is performed for each indicator in the groundwater samples of the study area, and the degree of correlation 

between the indicators is described using a heat map (Fig. 5). The closer the correlation coefficient is to one, the greater the correlation 
will be. K++Na+ and Cl− are highly positively correlated with TDS with correlation coefficients of 0.96 and 0.82, indicating that they 
are the main controlling ions for the variation of TDS in groundwater in the study area. The correlation coefficient of K++Na+ and Cl−

is 0.78, and a dissolved filtration dissolution effect exists. K++Na+ is negatively correlated, while Ca2+ and Mg2+ are negatively 
correlated, with correlation coefficients of − 0.44 and − 0.40, indicating the occurrence of direct alternate adsorption of cations. Ca2+ is 
significantly correlated with Mg2+ at the 0.01 level with a correlation coefficient of 0.83, indicating that they may have the same 

Fig. 4. Aquifer water chemistry Piper trilinear diagram.  

Fig. 5. Heat map of correlation coefficients among indicators.  
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source. The negative correlations of HCO3
− with Ca2+ and Mg2+ are significant at the 0.01 level with correlation coefficients of − 0.80 

and − 0.76, indicating that alternate cation adsorption and solubilization by filtration may co-exist. 

5.2. Analysis of the mine water source identification model 

5.2.1. Cluster analysis 
The systematic cluster analysis used in this study is a natural upward aggregation clustering, which classifies the data at different 

levels until the requirements are met, thus forming a tree-like clustering structure for analysis. The sample data were imported into 
SPSS software, opened in the order of analysis, classification, and systematic clustering. Eight main factors, namely K++Na+, Ca2+, 
Mg2+, Cl− , SO4

2− , HCO3
− , TDS, and pH, were used as variables in the systematic cluster analysis dialog box, and the intergroup linkage 

and squared Euclidean distance calculation methods were selected to obtain the systematic cluster analysis of the water source of the 
water inrush. The resulting spectrum diagram can be seen in Fig. 6. Samples were divided into 5 groups using a relative distance of 3 as 
the criterion for division. The correlation of the upper water, partly sandstone water and partly limestone water samples is strong, and 
they are concentrated in one group respectively in the spectrogram. However, the second group mixed multiple water samples to the 
extent that it was difficult to distinguish the origin of test water sample 2 from test water sample 3. Test water sample 4 was grouped 
separately, and its water source type could not be accurately determined from the results of systematic cluster analysis alone. 

5.2.2. Factor analysis 
The above correlation analysis results show that the correlation coefficients among some variables are too large. The existence of 

redundant information in the data will affect the discrimination result [39,40]. Therefore, factor analysis is used to reduce the 
dimension of variables. K++Na+, Ca2+, Mg2+, Cl− , SO4

2− , HCO3
− , TDS and pH in this factor analysis were numbered X1, X2, X3, X4, X5, 

X6, X7and X8, respectively. The main control variables (X1–X8) of the 35 sets of groundwater sample data collected in the laboratory 
were imported into the SPSS software for factor analysis. First, the raw data were standardized, and the KMO (Kaiser-Meyer-Olkin) 
sampling aptness measure was 0.655 > 0.5, which showed a medium degree of suitability for factor analysis. The Bartlett sphericity 
test significance was 0.000 < 0.005, and the data demonstrated an overall normal distribution. Each variable was independent of each 
other to a certain extent, which was suitable for further analysis. Variables X1, X2, X3, X4, X5 and X7 have a variable commonality of 
82% or more, and the explanatory power of this variable is strong. Meanwhile, variables X6 and X8 have variable commonalities of 
75.5% and 47.7%, respectively. 

In Table 2, the eigenvalues of the first three variables of the groundwater samples were 3.393, 2.151, and 1.114, which were all 

Fig. 6. Cluster analysis tree graph.  
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greater than one, and the cumulative contribution rate reached 83.223%. The first three variables could explain most of the infor-
mation of the original variables. Accordingly, the three principal factors were extracted. The three variables were extracted using 
principal component analysis. The factor variables were rotated and transformed by using Caesar’s normalized maximum variance 
method to make them more interpretable, and the principal factor score coefficient matrix was calculated, as shown in Table 3. 

The evaluation factors were reduced from eight to three dimensions, eliminating the correlation between the indicators to a certain 
extent. The integrated decision model for the three main factors was obtained from the main factor score matrix (Table 3). Specifically, 
the expression for the integrated score of each sample was derived as follows (Equations (1)–(3): 

Y1 = − 0.082X1 + 0.338X2 + 0.322X3 + 0.224X4 − 0.011X5 − 0.333X6 − 0.020X7 − 0.058X8, (1)  

Y2 = 0.291X1 + 0.049X2 + 0.025X3 + 0.462X4 − 0.077X5 − 0.096X6 + 0.287X7 + 0.226X8, (2)  

Y3 = 0.127X1 − 0.051X2 + 0.039X3 − 0.282X4 + 0.740X5 + 0.008X6 + 0.257X7 − 0.323X8. (3)  

5.2.3. Particle swarm optimization BP neural network model 
The optimization variables in the optimization problem are determined by the positions of the particles. Meanwhile, the flight 

direction and rate magnitude are determined by the velocities of the particles, and the fitness function constructed by the optimization 
objective determines the degree of superiority or inferiority of the performance of each particle. The author writes the PSO algorithm 
iterative code based on computer knowledge (Table 4). The PSO algorithm flow is as follows: 

First, the position and velocity of the randomly initialized particle in the solution space and the position xim and velocity v1m of the 
initialized particle in the mth dimension (1≦md) are: 

xim(1)= xmin + p1(xmax − xmin), (4)  

v1m(1)=
p2（xmax − xmin）

Δt
, (5) 

In equations (4) and (5): xmax and xmin are the maximum and minimum values of the optimized variable X, respectively; Δt is the 
time interval; and p1 and p2 are the random numbers in the interval [0,1]. 

Second, the particle population will generate individual extrema pbest and global extrema Gbest at the tth iteration generation, whose 
positions are denoted as follows (Equations (6) and (7)): 

pi(t) = (pi1(t) pi2(t)pi3(t)……piN(t)), (6)  

pg(t)=
(
pg1(t) pg2(t)pg3(t)……pgN(t)

)
. (7) 

Finally, after the above-mentioned two extremes are obtained, the mth dimensional (1≦md) velocity vim (t+1) and position xim 

(t+1) of the particle at iteration (t+1) are: 

vim(t+ 1)=ω vim(t) + φ1q1(pim(t) − xim(t)), (8)  

xim(t+ 1)= xim(t) + vim(t) ∗ Δt, (9) 

In equations (8) and (9): ω is the inertia weight, and φ1 is the acceleration coefficient. 
The BP neural network is trained using a gradient descent algorithm. Meanwhile, the backpropagation error signal is utilized to 

continuously correct the weights and thresholds, resulting in a slow learning speed of the aforementioned algorithm and easy to fall 
into local minimal values. The global optimization capability of the particle swarm optimization algorithm can effectively solve this 
drawback. The initialization of the particle velocity, position, inertia factor, and other parameters is carried out through several it-
erations to continuously update the particle velocity and position and calculate the individual and group extreme values of the par-
ticles to minimize the error, the output to obtain the global optimal particle position, and the initial weights and thresholds of the BP 
neural network to initialize the process according to the reverse error to continuously update the weights and thresholds until all 
sample errors reach the termination condition and complete the particle swarm of the BP neural network. Finally, the optimization of 
the BP neural network by particle swarm is completed. The particle swarm algorithm is used to optimize the traditional BP neural 

Table 2 
Variance interpretation of the initial eigenvalues.  

Variables Eigenvalues Percentage of variance Accumulation rate (%) 

X1 3.393 42.410 42.410 
X2 2.151 26.882 69.292 
X3 1.114 13.931 83.223 
X4 0.767 9.585 92.808 
X5 0.290 3.622 96.429 
X6 0.215 2.682 99.111 
X7 0.067 0.841 99.953 
X8 0.004 0.047 100.000  
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network, thus greatly accelerating the convergence speed and improving the learning efficiency [41–43]. The model flow of coupling 
the particle swarm optimization algorithm with BP neural network is shown in Fig. 7. 

5.2.4. FA-PSO-BP neural network model 
The code is written in the editor dialog box using MATLAB software, and the parameters, such as the number of particle iterations, 

particle swarm size, and inertia factor, are initialized with an allowable error of 0.001 (Table 5). The three main factors extracted after 
factor analysis are used as input variables for water source identification, the number of implied layers is set to seven, and the output 
values of UW, MW, LW, SW, and CW are set to one, two, three, four, and five (Fig. 8). Meanwhile, and the training and test sets are 
randomly divided in the ratio of 8:2. 

The performance of the neural network model is evaluated through several iterations (Fig. 9), and the FA-BP neural network model 
achieves the minimum mean square error of 0.072065 for the validation and test sets at epochs = 7 (Fig. 9a). The minimum mean 
square error of the FA-PSO-BP neural network model is 0.057592 at epoch = 5 (Fig. 9b)，MSE is optimized by 0.014473. The FA-PSO- 
BP neural network model achieves the minimum mean square error of 4.002 × 10− 5 at epoch = 10. When the epoch = 10, the lowest 
point of the gradient image is 4.002 × 10− 5, which is the optimal position, and the error accuracy parameter Mu = 1.0 × 10− 10. The 
error curve of the sample no longer decreases for the five consecutive iterations, and the training error is not improved. Accordingly, 
the training is stopped (Fig. 9d). By contrast, the FA-BP neural network model was cycled 13 times, and the lowest gradient point was 
4.4602 × 10− 3. The error accuracy parameter reached 1.0 × 10− 9, and the error was minimized by six consecutive iterations (Fig. 9c). 
The FA-PSO-BP neural network model has a faster merit seeking speed and a smaller mean square error. The R-values of the regression 
coefficients for the training, validation, test, and overall data of the FA-PSO-BP neural network model were 0.98850, 0.84175, 

Table 3 
Main factor score coefficient matrix.  

Variable category Y1 Y2 Y3 

K++Na+ − 0.082 0.291 0.127 
Ca2+ 0.338 0.049 − 0.051 
Mg2+ 0.322 0.025 0.039 
Cl− 0.224 0.462 − 0.282 
SO4

2− − 0.011 − 0.077 0.740 
HCO3

− − 0.333 − 0.096 0.008 
TDS − 0.020 0.287 0.257 
pH − 0.058 0.226 − 0.323  

Table 4 
PSO algorithm iteration code summary.  

PSO algorithm iterative process 

k = 1 
while k ≤ MaxNum 
ObjV=Objfun (x,P,T,hiddennum, P_test,T_test); 
for i = 1:particlesize 
f(i) = fitness (x (i,1));  

if ObjV(i) < personalbest_faval(i) 
personalbest_faval(i) = ObjV(i); 
personalbest_x (i,) = x (i,); 
end 
end 
[globalbest_favalN,i] = min (personalbest_faval); globalbest_xn = personalbest_x (i,); 
trace (1:N,k) = globalbest_xn; 
trace (end,k) = globalbest_favalN; 
for i = 1:particlesize 
v (i,) = w*v (i,) + c1*rand*(personalbest_x (i,) - x (i,)) + c2*rand*(globalbest_x -x (i,)); 
for j = 1:narvs 
if v (i,j) > vmax 
v (i,j) = vmax; 
elseif v (i,j) < -vmax 
v (i,j) = -vmax; 
end 
end 
x (i,) = x (i,) + v (i,); 
end 
globalbest_faval = globalbest_favalN; 
globalbest_x = globalbest_xn; 
k = k + 1; 
end  
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Fig. 7. PSO-BP neural network model flow.  

Table 5 
PSO algorithm parameter setting summary.  

Parameters Related settings 

E0 0.001 
MaxNum 50 
narvs N 
particlesize 15 
c1 1.5 
c2 1.5 
w 0.8 
vmax 1 
x − 5 + 10 * rand (particlesize, narvs) 
v 2 * rand (particlesize, narvs)  
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0.62223, and 0.89758 (Fig. 9f), respectively. Meanwhile, the R-values of the regression coefficients for each data of the FA-BP neural 
network model respectively were 0.98703, 0.74495, 0.43175, and 0.88885 (Fig. 9e), indicating that the water source discrimination 
model constructed by the FA-PSO-BP neural network was significantly more accurate. 

The confusion matrix is a common evaluation metric for the classification models [44,45]. Majority of the evaluation metrics are 
derived from the confusion matrix. In this work, we choose three secondary metrics of the confusion matrix, namely, accuracy, 
precision, and recall, to evaluate the prediction results of the neural network model (Figures (10) and (11)). The numbers of samples of 
categories 1–5 were selected from the training set of the FA-BP neural network model as 4, 2, 5, 8, and 9 (Fig. 10a), among which two 
samples of category 3 were discriminated as category 5. One sample of category four was discriminated as category three, and the 
accuracy rates were 75% and 81.8%. The recall rates of category 3 and 4 were 60% and 87.5%, respectively, and the overall accuracy 
rate reached 89% (Fig. 10c). The number of samples from categories 1 to 5 was randomly selected in the test set as 1, 3, 0, 1, and 2, 
respectively (Fig. 10b). One sample of category 4 was discriminated as category 5, the accuracy rate of category 5 was 50%, the recall 
rate of category 4 was 50%, and the overall accuracy rate reached 85.7% (Fig. 10d). The training set of the FA-PSO-BP neural network 
model was randomly selected from class 1 to 5 sample numbers 4, 3, 5, 10, and 6, respectively (Fig. 11a). One sample of class 4 was 
discriminated as class 3, and the precision rate of class 3 was 83.3%. The recall rate of class 4 was 90%, and the overall accuracy rate 
reached 96.4% (Fig. 11c). The test set was randomly selected from class 1 to 5 sample numbers 1, 2, 0, 2, and 4, respectively (Fig. 11b). 
The precision, recall, and accuracy rates were 100% (Fig. 11d). The ratio of the training set to the test set is fixed at 8:2, and the samples 
are randomly generated. The FA-PSO-BP neural network model regression fits better by analyzing the precision, recall, and accuracy of 
the confusion matrix of the prediction results. 

Among the 35 groups of water samples, seven groups of samples to be tested were randomly selected and substituted into the cluster 
analysis model, FA-BP water source discrimination model and FA-PSO-BP water source discrimination model for validation (Table 6). 
In three of the seven groups of samples to be tested, cluster analysis model could not accurately discriminate, and the accuracy rate was 
only 57.1%. The FA-BP water source discrimination model produced a misjudgment between the LW and the CW with a correct rate of 
85.7%, and the FA-PSO-BP water source discrimination model had a correct rate of 100%, which improved by 14.3%. The correct rate 
of discrimination is significantly improved, and it is more instructive for the identification of water sources of water inrush in the Gubei 
mining area. 

6. Discussion 

6.1. Water chemistry characterization 

There are many factors that affect the chemical characteristics of groundwater, such as hydrogeological conditions, human ac-
tivities, water-rock interaction, etc. The author can only simply reveal the hydrochemical characteristics of groundwater through 
conventional hydrochemical analysis methods, and conduct appropriate analysis and reasoning on hydrogeological conditions. A 
comprehensive grasp of the main controlling factors of groundwater chemical characteristics in the study area still needs further 
exploration and research. The surface water in the study area is relatively scarce, while the atmospheric precipitation recharge is very 
abundant. The pore development of the upper aquifer of the unconsolidated formation provides a good runoff condition for the 
recharge of atmospheric precipitation, so that the ion concentration and salinity of the upper water are low. The chemical composition 

Fig. 8. FA-PSO-BP neural networks model structure diagram.  
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Fig. 9. Neural network model performance evaluation graph (a):FA-BP neural network model performance graph; (b):FA-PSO-BP neural network 
model performance graph; (c):FA-BP neural network model training state graph; (d):FA-PSO-BP neural network model training state graph; (e):FA- 
BP neural network model regression graph; (f):FA-PSO-BP neural network model regression graph. 
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of upper water and other kinds of water samples is quite different, it is inferred that the water barrier between upper water and middle 
water prevents the downward flow of upper water, making it difficult to produce hydraulic connection between upper water and 
middle water, and eventually leading to the sudden increase in the TDS of middle water, lower water, sandstone water and limestone 
water. Sandstone fissure aquifer is thick, and the development of sandstone fissure is very uneven, and there are large differences in 
water quality variation between sandstone aquifer and limestone aquifer, resulting in huge differences in some ions in the same 
aquifer. 

6.2. Mine water source identification model 

Correlation analysis not only reflects the chemical characteristics of groundwater, but also shows that there are correlations and 
multicollinearity among the variables of groundwater samples. The redundant information generated by the sample data will affect the 
accuracy of the water source discrimination results. Therefore, it is necessary to use factor analysis to reduce the dimension of 
groundwater sample data.The traditional BP artificial neural network model can achieve self-optimization through backpropagation. 
The model has strong self-learning function and strong robustness, but it is easy to fall into the local optimal solution and slow 
convergence speed.Particle swarm optimization has the ability of global optimization, which can effectively improve the traditional BP 
artificial neural network model.The research shows that the BP artificial neural network model after particle swarm optimization has 
better performance than the traditional BP artificial neural network model in terms of performance and fitting effect. FA-PSO-BP 
artificial neural network model is more accurate than FA-BP artificial neural network model and cluster analysis. Therefore, FA- 
PSO-BP artificial neural network model is worthy of further promotion in groundwater source identification.However, the model 
needs to learn and train a large amount of data to establish a database in order to accurately identify different water sample sources, 
which increases the difficulty of further promotion of the model. In this paper, the identification model of mine water inrush source in 
the study area is only based on groundwater chemical information, without considering the influence of groundwater temperature, 

Fig. 10. The prediction results of the FA-BP neural network model.(a):FA-BP neural network model train results; (b):FA-BP neural network model 
test results; (c):FA-BP neural network model train results confusion matrix; (d):FA-BP neural network model test results confusion matrix. 
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human activities and other factors. In addition, limited by the quantity of groundwater samples, the applicability of this model needs to 
be further improved. 

7. Conclusion 

The statistical analysis, major ion analysis, and correlation analysis of K++Na+, Ca2+, Mg2+, Cl− , SO4
2− , HCO3

− , TDS, and pH of the 
water quality data of the different aquifers in the Gubei mine area were carried out to obtain the water chemistry characteristics of the 
different aquifers in the study area. The change of hydrochemical characteristics of groundwater shows obvious vertical division of 
water quality. The surface water source is scarce, but the atmospheric precipitation is abundant, so the shallow layer has abundant 
recharge. The groundwater chemical characteristics of the upper aquifer significantly differ from the water quality patterns of the other 

Fig. 11. The prediction results of the FA-PSO-BP neural network model.(a):FA-PSO-BP neural network model train results; (b):FA-PSO-BP neural 
network model test results; (c):FA-PSO-BP neural network model train results confusion matrix; (d):FA-PSO-BP neural network model test results 
confusion matrix. 

Table 6 
Comparison of the regeneration results.  

Sample ID FA-BP neural network model results FA-PSO-BP neural network model results Cluster analysis model results Real results 

1* UW UW UW UW 
2* MW MW / MW 
3* LW LW / LW 
4* LW SW / SW 
5* SW SW SW SW 
6* CW CW SW CW 
7* CW CW CW CW  
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aquifers. The proportion of cation K++Na+ and anion Cl− occupy a clear advantage and are the key ions affecting the change of TDS. 
The water quality type is dominated by Cl–K+Na type, the overall water quality is weakly alkaline, and the alternate cation adsorption 
and dissolution filtration dissolution easily occur in the aquifer. 

The BP neural network exhibits self-learning ability, generalization ability, and fault tolerance ability, and it learns and stores the 
information characteristics according to the input data reflection. The BP neural network in the learning process of the randomly 
selected weights and thresholds easily falls into local minima. Accordingly, a particle swarm optimization BP neural network model is 
proposed, and the particle swarm algorithm continuously optimizes the initial weights and thresholds of the BP neural network 
through the global optimal parameters of the particles to obtain the self-fitness value and the optimal extreme value. The performance 
and training effect of FA-PSO-BP neural network model are better than the FA-BP neural network model. The training learning ac-
curacy reaches 96.4%, and the back generation results are all correct. We need to extensively collect the actual measurement data and 
establish a training sample library to further enhance the applicability of the model. Applying the model to the problem of mine water 
source identification can greatly improve the efficiency and accuracy, which is of great practical significance to ensure safe production 
in coal mines. 
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