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Abstract: An efficient and practical method for the synthesis of 2,6-diaryl-4-oxo-N,N′-di(pyridin-2
-yl)cyclohexane-1,1-dicarboxamide is described in this present study, which occurs through a
double Michael addition reaction between diamide and various dibenzalacetones. The reaction
was carried out in dichloromethane (DCM) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU). The anticancer activities of the synthesized compounds were evaluated in several cancer cell
lines, including MCF-7, MDA-MB-231, SAS, PC-3, HCT-116, HuH-7 and HepG2 cells. From these
experiments, we determined that MDA-MB-231 was the most sensitive cancer cell line to the
compounds 3c, 3e, 3d, 3j and 3l, which exhibited variable anticancer activities (3l [IC50 = 5 ± 0.25 µM]
> 3e [IC50 = 5± 0.5 µM] > 3c [IC50 = 7 ± 1.12 µM] > 3d [IC50 = 18± 0.87 µM] > 3j [IC50 = 45 ± 3 µM]).
Of these, 3l (substituted p-trifluoromethylphenyl and chloropyridine) showed good potency
(IC50 = 6 ± 0.78 µM) against HCT-116 colorectal cancer cells and exhibited high toxicity against
HuH-7 liver cancer cells (IC50 = 4.5 ± 0.3 µM). These values were three times higher than the
values reported for cisplatin (IC50 of 8 ± 0.76 and 14.7 ± 0.5 µM against HCT-116 and HuH-7
cells, respectively). The highest α-glucosidase inhibitory activity was detected for the 3d, 3i and 3j
compounds. The details of the binding mode of the active compounds were clarified by molecular
docking studies.

Keywords: malonamide; Michael addition reaction; cytotoxicity; cancer; α-glucosidase; docking

1. Introduction

Several malonamide-based anticancer agents with promising cytotoxic activities have been
identified from natural and synthetic sources [1,2]. For instance, golvatinib (E-7050) is a clinical agent
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with dual inhibitory activity against c-Met and vascular endothelial growth factor receptor-2 (VEGFR-2)
tyrosine kinases and is known to exhibit high antineoplastic potential [3] (Figure 1). BMS-777607,
one of the malonamide-based molecules with Met inhibition activity, has entered phase II clinical
trials [4–7]. Chu et al. provided a malonamide-based small molecule I, which is thought to be effective
as a selective κ optical receptor agonist [8]. Our research team recently developed several malonamide
motifs as α-glucosidase inhibitory agents [9,10], which have moderate cytotoxicity against HeLa, H460,
MCF-7 and 3T3 cell lines [9].

Functionalized cyclohexanones that utilizes stereogenic centers as valuable building blocks
are known to be present at the core of several natural products and drug candidates.
Functionalized cyclohexanones are embedded in the antidepressant and dissociative anesthetic drugs
Ketanest®S [11] and Vasoxyl® methoxamine (for the treatment of hypotension) [12]. These molecules
possess antibacterial [13], anticonvulsant [14], antifungal and anticancer [15] properties. In general,
cyclohexanone is a common scaffold in various bioactive heterocycles of medicinal interests, particularly
those used for the treatment of asthma and central nervous system (CNS)- and chronic obstructive
pulmonary diseases (COPD)-related diseases, due to its inhibitory activity against phosphodiesterase 4
(PDE4) [16,17].

As a continuation of our search for malonamide-based potent anticancer agents, in this
present study, we demonstrate the preparation of a new library of malonamide-based compounds
(3a–m) through the incorporation of important scaffolds, namely cyclohexanone and dicarboximide
derivatives, in a single molecule and highlight their anticancer and α-glucosidase inhibitory activities.
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2. Results

2.1. Synthesis of 3a–m

Anticancer compounds incorporating 2,6-diaryl-4-oxo-N,N′-di(pyridin-2-yl)cyclohexane-1,
1-dicarboxamide 3a–m via a double Michael addition reaction were prepared according to the
previously described method [8,9]. The reaction was carried out by mixing diamide 1a,b that was
carrying an active methylene group with dienone 2a–m (Scheme 1, Table 1) in dichloromethane
(DCM) at room temperature (24 ◦C) for 2–3 h. The process was carried out in the presence of DBU
(1,8-Diazabicyclo[5.4.0]undec-7-ene) to obtain the final compound 3a–m at an acceptable yield (33–89%).
The chemical structures of the Michael-adducts were deduced with infrared (IR) spectroscopy, mass
spectrometry (MS), 1H-nuclear magnetic resonance (NMR), 13C-NMR and elemental analysis (CHN).
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# R 2a–m Ar Product 3a–m Yield, %

1 H 2a C6H5 3a 89

2 Cl 2b p-CH3C6H4 3b 33

3 H 2c p-ClC6H4 3c 64

4 H 2d 2,4-Cl2C6H3 3d 60

5 H 2e p-BrC6H4 3e 56

6 Cl 2f m-NO2C6H4 3f 62

7 Cl 2g p-MeOC6H4 3g 72

8 Cl 2h β-Naphthalene 3h 58

9 Cl 2i 2-Thiophene 3i 60

10 Cl 2j 2-Furan 3j 52

11 Cl 2k m-BrC6H4 3k 44

12 Cl 2l p-CF3C6H4 3l 37

13 H 2m p-FC6H4 3m 85

2.2. Biological Activities

2.2.1. Anticancer Activity

To evaluate the anticancer activity of the 13 newly synthesized compounds, we screened their
activities at a concentration of 50 µM against seven cancer cell lines, including breast cancer (positive
[MCF-7] and negative [MDA-MB-231] for estrogen receptor expression), tongue carcinoma (SAS),
prostate cancer (PC-3), colorectal cancer (HCT-116) and liver cancer (HuH-7 and HepG2) cell lines.
The results revealed that only five compounds (3c, 3d, 3e, 3k and 3l) showed different levels of
anticancer activities (Table 2). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay was performed to determine the concentration of the active compounds needed to kill 50% of
cells. The results revealed that the compound 3c (substituted p-chlorophenyl) killed 50% of ER-negative
breast cancer cells (IC50 = 7 ± 1.12 µM) and HepG2 (IC50 = 8 ± 0.89 µM) at concentrations lower
than that of the common chemotherapeutic drug cisplatin (IC50 = 15 ± 0.71 and 10 ± 0.65 µM
against ER-negative breast cancer cells and HepG2, respectively). Furthermore, the anticancer
activities of the compounds 3e (substituted p-bromophenyl, IC50 = 5 ± 0.5 µM) and 3l (substituted
p-trifluoromethylphenyl and chloropyridine, IC50 = 5 ± 0.25 µM) were stronger than the activity of
cisplatin (IC50 = 15± 0.71 µM) against MDA-MB-231 cells. The compounds 3c, 3e and 3l also exhibited
moderate anticancer activities against the ER-positive MCF-7 cell lines (IC50 = 10 ± 0.62, 12 ± 0.54 and
18 ± 1.71 µM, respectively). Only two compounds (3c and 3l) exhibited moderate anticancer activities
against the tongue carcinoma cell line (SAS, IC50 = 15 ± 1.3 and 9 ± 0.38 µM, respectively). Of these
molecules, the compound 3l (substituted p-trifluoromethylphenyl and chloropyridine) showed good
potency (IC50 = 6 ± 0.78 µM) against HCT-116 colorectal cancer cells and exhibited high efficacy
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against HuH-7 liver cancer cells (IC50 = 4.5 ± 0.3 µM). These values were three times higher than the
values reported for cisplatin (IC50 of 8 ± 0.76 and 14.7 ± 0.5 µM against HCT-116 and HuH-7 cells,
respectively) (Table 2).

Table 2. The cytotoxic activities of the test compounds against seven cancer cell lines representing
five different types of cancers (breast, tongue, prostate, colon and liver). Cell viability was evaluated
with the MTT assay and the IC50 (µM) value was calculated. The values are represented as the
mean ± standard deviation from three independent experiments. NA indicates that the compounds
were not active during the initial screening of their anticancer activities using crystal violet assay.

Compounds a,b Breast Oral Prostate Colon Liver

MCF-7 MDA-MB-231 SAS PC-3 HCT-116 HuH-7 HepG2

3a NA c NA NA NA NA NA NA

3b NA NA NA NA NA NA NA

3c 10 ± 0.62 7 ± 1.12 15 ± 1.3 25 ± 1.42 NA NA 8 ± 0.89

3d >50 ± 1.17 18 ± 0.87 NA NA NA NA > 50

3e 12 ± 0.54 5 ± 0.5 NA NA NA NA 8 ± 0.96

3f NA NA NA NA NA NA NA

3g NA NA NA NA NA NA NA

3h NA NA NA NA NA NA NA

3i NA NA NA NA NA NA NA

3j 50 ± 0.78 45±3 NA NA NA NA >50 ± 1.08

3k NA NA NA NA NA NA NA

3l 18 ± 1.71 5 ± 0.25 9 ± 0.38 > 50 ± 2 6 ± 0.78 4.5 ± 0.3 25 ± 0.38

3m NA NA NA NA NA NA NA

Cisplatin 9 ± 2.43 15 ± 0.71 4.5 ± 0.34 12 ± 1.25 8 ± 0.76 14.7 ± 0.5 10 ± 0.65
a All test compounds showed a value of IC50 > 100 µM against all seven cell lines (very high safety margin); b In
comparison with cisplatin IC50 (µM) value, which was very marginal and in the range of 15–20 µM for MCF-7,
MDA-MB-231, SAS, PC-3, HCT-11, HuH-7 and HepG2; c NA, no or negligible activity.

2.2.2. α-Glucosidase Inhibitory Activity

The synthesized compounds were screened for their ability to inhibit α-glucosidase activity and
the results are summarized in Table 3. Among all the compounds, 3d, 3i and 3j exhibited excellent
α-glucosidase inhibitory activities while the rest of the compounds were inactive.

However, the compound 3j (substituted furan and chloropyridine moieties) showed the highest
α-glucosidase inhibitory activity with an IC50 value of 124.24 ± 0.16 µmol/L, followed by the
compounds 3d (substituted 2,4-dichlorobenzene and pyridine moieties; IC50 of 148.18 ± 3.02 µmol/L)
and 3i (substituted thiophene and chloropyridine moieties; IC50 of 418.21 ± 1.02 µmol/L). Acarbose
was used as a standard control (IC50 = 32.71 ± 1.17 µmol/L).

Table 3. Results of α-glucosidase inhibitory activity.

Compounds IC50 (± SEM µmol/L)

3d 148.18 ± 3.02

3i 418.21 ± 1.02

3j 124.24 ± 0.16

Acarbose 32.71 ± 1.17
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2.3. Molecular Docking Study

As evident from the data represented in Table 1, the synthesized compounds exhibited diversity
in their anticancer activities and only compounds 3l, 3c and 3e exerted strong anticancer activities.
We subsequently investigated the protein that interacts with these three compounds in a unique
binding mode and exhibits strong binding interactions in a manner different from those with the
inactive analogues. Docking procedures were performed in the presence of different proteins, including
tyrosine kinase (ID: 3F82 [6], mammalian target of rapamycin (mTOR; ID: 4JSV) [18], epidermal growth
factor receptor (EGFR; ID: 1M17) [19] and extracellular signal-regulated kinase (ERK; ID: 2OJG) [20]
and 2OJJ [20–23].

We found that the active compounds docked well with EGFR and showed a specific strong
interaction pattern. The compound 3l formed HB (acceptor) with the oxygen of amidic carbonyl of the
amino acid residue Gly 772 AA, (Figure 2A). This amino acid interacts with the standard erlotinib in
a non-HB manner [19]. Both the compounds 3e and 3c showed similar behavior in terms of binding
mode and docking pose with the receptor through hydrophobic–hydrophobic interactions (Figure 2B).
The inactive analogs, such as the compound 3m, showed a different binding interaction in comparison
to 3c and 3e.
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2.4. Structure–Activity Relationship (SAR)

The reason underlying the potent activity of only those three compounds was further investigated.
The analysis showed that there is a similarity in the three-dimensional shape and electrostatic
potential of those three compounds [24]. Shape similarity (3D similarity) is considered to be a
fundamental descriptor for computational drug discovery and is an important characteristic to correctly
model and accurately understand the protein–ligand interaction. The shape provides information
on neighborhood behavior and the high similarity in shape is reflective of the consistent biological
properties [25].

The final compounds contained four aromatic rings as the substituents of the cyclohexanone ring
(3, 4, 4, 5), which indicates its highly lipophilic nature that may facilitate the efflux of drugs outside the
cells and subsequently decrease the activity.

Based on the docking results for all final compounds, it was found that the pyridine carboxamides
and the para-substituent in the phenyl ring linked to the cyclohexanone ring determine the geometry
of each compound (3D structure) and reflect the orientation of each scaffold in the side of the
receptor clefts. The presence of the dipyridine carboxamide skeleton is essential for the activity
of the compound. The substitution of pyridine ring is not important, while the para-substitution with
an electron-withdrawing group (except fluorine) on the aromatic moiety is essential.

3. Materials and Methods

3.1. Experimental

General procedure (GP): Dienones 2a–m (0.25 mmol) and diamide 1a or 1b (74 mg, 0.25 mmol)
were dissolved in 10 mL of dry CH2Cl2 in a 25 mL round bottom flask. DBU (3 eq, 114 mg, 0.75 mmol)
was added to the reaction, which was subsequently stirred for 2–3 h. After the reaction was completed
as determined by TLC, the crude material was subjected to column chromatography using ethyl
acetate/n-hexane (2:3) to give the desired compounds 3a–m.

4-Oxo-2,6-diphenyl-N,N′-di(pyridin-2-yl)cyclohexane-1,1-dicarboxamide (3a). Yield 120 mg
(0.22 mmol, 89%); m.p. 248–249 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.35 and 2.37 (dd, 2H, J = 4.4 Hz
and 11.6 Hz, CH2), 2.69 (t, 2H, J = 12.0 Hz, CH), 3.99 and 4.01 (dd, 2H, J = 4.8 Hz and 10.4 Hz, CH2),
6.87 (t, 1H, J = 6.8 Hz, Ar-H), 6.94 (s, 1H, NH), 7.06 (t, 2H, J = 7.2 Hz, Ar-H), 7.17 (t, 4H, J = 8.0 Hz,
Ar-H); 7.36 (d, 4H, J = 7.6 Hz, Ar-H), 7.47–7.58 (m, 3H, Ar-H), 7.76 (d, 1H, J = 8.4 Hz, Ar-H), 7.93 (d,
1H, J = 4.4 Hz, Ar-H), 8.02 (dt, 1H, J = 2.0 Hz and 5.6 Hz, Ar-H), 8.70 and 8.71 (dd, 1H, J = 1.2 Hz
and 4.8 Hz, Ar-H), 11.11 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 42.9, 46.1, 58.7, 87.3, 113.5,
119.9, 123.8, 125.3, 127.4, 128.7, 128.6, 138.3, 138.6, 142.2, 148.2, 149.8, 150.4, 150.6, 168.1, 170.4; IR (KBr,
cm−1) νmax = 3434, 3028, 1688, 1651, 1574, 1532, 1467, 1403., 1296, 1161, 757, 702, 555; [Anal. Calcd. for
C30H26N4O3: C, 73.45; H, 5.34; N, 11.42; Found: C, 73.57; H, 5.46; N, 11.33]; LC/MS (ESI, m/z): [M+],
found 490.20, C30H26N4O3 for 490.20.

N,N′-bis(5-Chloropyridin-2-yl)-4-oxo-2,6-di-p-tolylcyclohexane-1,1-dicarboxamide (3b). Yield 48 mg
(0.09 mmol, 33%); m.p. 145–146 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.10 (s, 6H, CH3), 2.29–2.33 (m,
2H, CH2), 2.66 (t, 2H, J = 11.4 Hz, CH), 3.93 and 3.95 (dd, 2H, J = 4.8 Hz and 11.4 Hz, CH2), 6.96 (d, 4H,
J = 8.0 Hz, Ar-H), 7.03 (s, 1H, NH), 7.18 (d, 4H, J = 8.0 Hz, Ar-H), 7.55 (d, 1H, J = 8.4 Hz, Ar-H), 7.70
and 7.72 (dd, 1H, J = 2.8 Hz and 9.2 Hz, Ar-H), 7.83 (d, 1H, J = 8.4 Hz, Ar-H), 8.01 (d, 1H, J = 2.0 Hz,
Ar-H), 8.14 and 8.16 (dd, 1H, J = 2.8 Hz and 8.0 Hz, Ar-H), 8.76 (d, 1H, J = 2.4 Hz, Ar-H), 11.16 (s, 1H,
NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 20.9, 42.8, 45.7, 58.9, 87.6, 114.5, 125.6, 126.6, 128.5, 129.3, 130.9,
136.4, 138.2, 138.4, 139.0, 146.6, 148.3, 148.2, 149.2, 168.4, 170.7; IR (KBr, cm−1) νmax = IR (KBr, cm−1)
νmax = 3231, 3088, 1737, 1691, 1656, 1563, 1468, 1375, 1281, 1244, 1175, 1112, 1014, 828, 807, 682; [Anal.
Calcd. for C32H28Cl2N4O3: C, 65.42; H, 4.80; N, 9.54; Found: C, 65.31; H, 4.93; N, 9.67; LC/MS (ESI,
m/z): [M+], found 586.10; C32H28Cl2N4O3 for 586.15.
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2,6-bis(4-Chlorophenyl)-4-oxo-N,N′-di(pyridin-2-yl)cyclohexane-1,1-dicarboxamide (3c). Yield 90 mg
(0.16 mmol, 64%); m.p. 231–232 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.30 and 2.33 (dd, 2H, J = 5.6 Hz
and 12.0 Hz, CH2), 2.69 (t, 2H, J = 12.4 Hz, CH), 4.00 and 4.02 (dd, 2H, J = 4.8 Hz and 10.4 Hz, CH2),
6.87 (t, 1H, J = 4.8 Hz, Ar-H), 7.01 (s, 1H, NH), 7.23 (d, 4H, J = 8.4 Hz, Ar-H); 7.37 (d, 4H, J = 8.4 Hz,
Ar-H), 7.48–7.51 (m, 1H, Ar-H), 7.54 (d, 1H, J = 8.0 Hz, Ar-H), 7.60 (t, 1H, J = 7.2 Hz, Ar-H), 7.76 (d,
1H, J = 8.8 Hz, Ar-H), 7.98–8.03 (m, 2H, Ar-H), 8.69–8.70 (m, 1H, Ar-H), 11.11 (s, 1H, NH); 13C-NMR
(DMSO-d6, 100 MHz) δ: 42.7, 45.3, 58.5, 87.2, 113.5, 120.2, 124.0, 125.5, 128.7, 130.6, 132.1, 138.5, 138.7,
141.0, 148.4, 149.8, 150.2, 150.4, 167.9, 170.2; IR (KBr, cm−1) νmax = 3434, 3075, 1695, 1651, 1590, 1577,
1531, 1469, 1433, 1327, 1295, 1161, 1110, 1053, 991, 774, 555; [Anal. Calcd. for C30H24Cl2N4O3: C,
64.41; H, 4.32; N, 10.01; Found: C, 64.12; H, 4.53; N, 10.15]; LC/MS (ESI, m/z): [M+], found 558.10,
C30H24Cl2N4O3 for 558.12.

2,6-bis(2,4-Dichlorophenyl)-4-oxo-N,N′-di(pyridin-2-yl)cyclohexane-1,1-dicarboxamide (3d). Yield
94 mg (0.15 mmol, 60%); m.p. 210–211 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.03 and 2.05 (dd, 2H,
J = 5.2 Hz and 11.6 Hz, CH2), 2.89 (t, 2H, J = 11.6 Hz, CH), 4.53 and 4.55 (dd, 2H, J = 6.0 Hz and 11.2 Hz,
CH2), 6.94–6.97 (m, 1H, Ar-H), 7.08 (s, 1H, NH), 7.37 (d, 1H, J = 7.6 Hz, Ar-H); 7.39 (d, 1H, J = 2.0 Hz,
Ar-H), 7.41 (d, 1H, J = 2.0 Hz, Ar-H), 7.45 (d, 2H, J = 2.4 Hz, Ar-H), 7.47–7.50 (m, 1H, Ar-H), 7.58–7.62
(m, 1H, Ar-H), 7.68 (t, 3H, J = 8.4 Hz, Ar-H), 7.97 (dt, 1H, J = 2.0 Hz and 7.6, Ar-H), 8.05–8.06 (m, 1H,
Ar-H), 8.65–8.67 (m, 1H, Ar-H), 11.00 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 41.9, 42.8, 55.9,
86.9, 113.5, 120.3, 124.2, 125.4, 128.5, 129.3, 132.6, 134.6, 138.6, 138.8, 139.7, 148.4, 149.8, 149.9, 150.5,
166.9, 171.1; IR (KBr, cm−1) νmax = 3435, 3076, 1694, 1650, 1589, 1573, 1530, 1467, 1435, 1329, 1296, 1163,
1111, 1050, 995, 820, 775, 569; [Anal. Calcd. for C30H22Cl4N4O3: C, 57.35; H, 3.53; N, 8.92; Found: C,
57.54; H, 3.67; N, 9.13]; LC/MS (ESI, m/z): [M+], found 626.10, C30H22Cl4N4O3 for 626.04.

2,6-bis(4-Bromorophenyl)-4-oxo-N,N′-di(pyridin-2-yl)cyclohexane-1,1-dicarboxamide (3e). Yield 90 mg
(0.14 mmol, 56%); m.p. 227–228 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.31 and 2.34 (dd, 2H, J = 4.4 Hz
and 12.0 Hz, CH2), 2.69 (t, 2H, J = 12.4 Hz, CH), 4.00 and 4.02 (dd, 2H, J = 4.4 Hz and 10.8 Hz, CH2),
6.93 (t, 1H, J = 6.0 Hz, Ar-H), 7.00 (s, 1H, NH), 7.31 (d, 4H, J = 8.4 Hz, Ar-H); 7.39 (d, 4H, J = 8.4 Hz,
Ar-H), 7.49 (t, 1H, J = 6.0 Hz, Ar-H), 7.52 (d, 1H, J = 8.0 Hz, ArH), 7.61 (t, 1H, J = 8.0 Hz, Ar-H), 7.78 (d,
1H, J = 8.0 Hz, Ar-H), 7.91–8.03 (m, 2H, Ar-H), 8.69 and 8.70 (dd, 1H, J = 1.2 Hz and 3.6 Hz, Ar-H),
11.11 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 42.6, 45.4, 58.4, 87.2, 113.5, 120.2, 120.7, 124.0,
125.5, 130.9, 131.7, 138.5, 138.7, 141.4, 148.4, 149.8, 150.2, 150.4, 167.9, 170.2; IR (KBr, cm−1) νmax = 3414,
3055, 1687, 1651, 1589, 1574, 1531, 1487, 1467, 1435, 1402, 1297, 1158, 1071, 1010, 993, 838, 819, 773, 554;
[Anal. Calcd. for C30H24Br2N4O3: C, 55.58; H, 3.73; N, 8.64; Found: C, 55.71; H, 3.86; N, 8.53]; LC/MS
(ESI, m/z): [M+], found 646.00 C30H24Br2N4O3 for 646.02.

N,N′-bis(5-Chloropyridin-2-yl)-2,6-bis(3-nitrophenyl)-4-oxocyclohexane-1,1-dicarboxamide (3f). Yield
100 mg (0.15 mmol, 62%); m.p. 174–175 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.29 and 2.32 (dd, 2H,
J = 5.6 Hz and 12.8 Hz, CH2), 2.74 (t, 1H, J = 513.2 Hz, CH), 3.02 (t, 1H, J = 13.2 Hz, CH), 4.06 and 4.09
(dd, 1H, J = 6.0 Hz and 10.1 Hz, CH2), 4.28 and 4.31 (dd, 1H, J = 6.4 Hz and 10.1 Hz, CH2), 7.17 (s,
1H, NH), 7.33 (d, 1H, J = 8.8 Hz, Ar-H), 7.47 (t, 1H, J = 7.6 Hz, Ar-H), 7.55 (d, 1H, J = 8.4 Hz, Ar-H),
7.66–7.70 (m, 2H, Ar-H), 7.75 (d, 1H, J = 8.0 Hz, Ar-H), 7.94 and 7.96 (dd, 1H, J = 2.0 Hz and 8.0 Hz,
Ar-H), 8.02 (d, 2H, J = 7.6 Hz, Ar-H), 8.15–8.20 (m, 3H, Ar-H), 8.27 (d, 1H, J = 2.4 Hz, Ar-H), 8.70 (d, 1H,
J = 2.4 Hz, Ar-H), 10.78 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 43.9, 44.6, 59.1, 87.4, 114.9, 122.0,
123.0, 124.4, 124.5, 126.0, 126.7, 130.0, 130.4, 131.0, 133.7, 135.9, 138.2, 138.4, 141.5, 145.8, 146.9, 147.8,
148.0, 148.1, 148.8, 149.6, 158.4, 168.5, 170.7; IR (KBr, cm−1) νmax = 3236, 3087, 1733, 1693, 1650, 1568,
1528, 1463, 1374, 1351, 1286, 1240, 1170, 1114, 1015, 826, 806, 686; [Anal. Calcd. for C30H22Cl2N6O7:
C, 55.48; H, 3.41; N, 12.94; Found: C, 55.62; H, 3.54; N, 13.08; LC/MS (ESI, m/z): [M+], found 648.10;
C30H22Cl2N6O7 for 648.09.

N,N′-bis(5-Chloropyridin-2-yl)-2,6-bis(4-methoxyphenyl)-4-oxocyclohexane-1,1-dicarboxamide (3g).
Yield 110 mg (0.18 mmol, 72%); m.p. 203–204 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.30 and 2.33 (dd,
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2H, J = 5.2 Hz and 11.6 Hz, CH2), 2.66 (t, 2H, J = 11.6 Hz, CH), 3.58 (s, 6H, OCH3), 3.91 and 3.94 (dd,
2H, J = 4.8 Hz and 11.6 Hz, CH2), 6.72 (d, 4H, J = 9.6 Hz, Ar-H), 7.02 (s, 1H, NH), 7.22 (d, 4H, J = 9.6
Hz, Ar-H), 7.57 (d, 1H, J = 9.6 Hz, Ar-H), 7.71 and 7.73 (dd, 1H, J = 2.4 Hz and 8.8 Hz, Ar-H), 7.84
(d, 1H, J = 9.2 Hz, Ar-H), 8.02 (d, 1H, J = 2.8 Hz, Ar-H), 8.13 and 8.15 (dd, 1H, J = 2.8 Hz and 8.0 Hz,
Ar-H), 8.77 (d, 1H, J = 2.4 Hz, Ar-H), 11.16 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 40.5, 45.2,
55.3, 59.3, 87.6, 114.1, 114.6, 125.6, 126.7, 129.7, 130.9, 133.9, 138.2, 138.3, 146.6, 148.3, 148.8, 149.2, 158.4,
168.5, 170.7; IR (KBr, cm−1) νmax = 3124, 2960, 2833, 1693, 1656, 1610, 1569, 1512, 1460, 1409, 1376, 1305,
1251, 1177, 1156, 1107, 1031, 1015, 837, 574; [Anal. Calcd. for C32H28Cl2N4O5: C, 62.04; H, 4.56; N, 9.04;
Found: C, 61.87; H, 4.45; N, 9.19; LC/MS (ESI, m/z): [M+], found 618.14 C32H28Cl2N4O5 for 618.14.

N,N′-bis(5-Chloropyridin-2-yl)-2,6-di(naphthalen-2-yl)-4-oxocyclohexane-1,1-dicarboxamide (3h).
Yield 95 mg (0.14 mmol, 58%); m.p. 114–115 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.22–2.27 (m,
2H, CH2), 3.07 (t, 2H, J = 12.0 Hz, CH), 5.24–5.27 (m, 2H, CH2), 6.80 (d, 1H, J = 9.2 Hz, Ar-H), 7.07
(s, 1H, NH), 7.26 and 7.28 (dd, 1H, J = 2.4 Hz and 8.8 Hz, Ar-H), 7.39–7.47 (m, 5H, Ar-H), 7.58 (t, 2H,
J = 8.0 Hz, Ar-H), 7.66 (d, 2H, J = 8.4 Hz, Ar-H), 7.72 (d, 2H, J = 8.4 Hz, Ar-H), 7.76 (d, 2H, J = 8.4 Hz,
Ar-H), 7.92 (d, 1H, J = 2.8 Hz, Ar-H), 8.10 and 8.12 (dd, 1H, J = 2.8 Hz and 8.8 Hz, Ar-H), 8.47 (d, 2H,
J = 8.4 Hz, Ar-H), 8.77 (d, 1H, J = 2.8 Hz, Ar-H), 11.13 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ:
40.7(merged with dmso-d6), 44.4, 57.0, 87.5, 114.0, 123.5, 124.5, 125.3, 126.0, 126.1, 126.3, 126.6, 127.6,
128.8, 131.1, 131.7, 133.7, 137.5, 138.5, 140.2, 146.4, 148.4, 148.8, 148.9, 168.1, 172.3; IR (KBr, cm−1) νmax

= 3234, 3085, 1737, 1692, 1654, 1569, 1521, 1464, 1377, 1359, 1287, 1248, 1173, 1113, 1018, 824, 807; [Anal.
Calcd. for C38H28Cl2N4O3: C, 69.20; H, 4.28; N, 8.49; Found: C, 69.11; H, 4.19; N, 8.67; LC/MS (ESI,
m/z): [M+], found 658.10; C38H28Cl2N4O3 for 658.15.

N,N′-bis(5-Chloropyridin-2-yl)-4-oxo-2,6-di(thiophen-2-yl)cyclohexane-1,1-dicarboxamide (3i). Yield
85 mg (0.15 mmol, 60%); m.p. 165–166 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.36 (d, 2H, J = 11.6 Hz,
CH2), 2.75 (t, 2H, J = 11.6 Hz, CH), 4.26 and 4.28 (m, 2H, J = 4.4 Hz and 10.0 Hz, CH2), 6.83 (t, 2H,
J = 4.0 Hz, Ar-H), 6.99 (d, 2H, J = 2.4 Hz, Ar-H), 7.13 (s, 1H, NH), 7.24 (d, 2H, J = 4.4 Hz, Ar-H), 7.48 (d,
1H, J = 8.4 Hz, Ar-H), 7.80 (d, 1H, J = 11.2 Hz, Ar-H), 7.99 (d, 1H, J = 8.4 Hz, Ar-H), 8.09 (s, 1H, Ar-H),
8.13 (d, 1H, J = 7.2 Hz, Ar-H), 8.73 (s, 1H, Ar-H), 11.31 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ:
40.5 (merged with dmso-d6), 40.5, 43.9, 59.9, 87.4, 114.8, 125.5, 125.9, 126.1, 126.5, 127.4, 131.0, 138.3,
138.4, 144.7, 146.8, 148.3, 148.6, 149.3, 168.5, 170.0; IR (KBr, cm−1) νmax = 3426, 3236, 2951, 2925, 1687,
1569, 1530, 1461, 1374, 1291, 1155, 1111, 1015, 851, 835, 696, 582; [Anal. Calcd. for C26H20Cl2N4O3S2:
C, 54.64; H, 3.53; N, 9.80; Found: C, 54.72; H, 3.41; N, 9.97; LC/MS (ESI, m/z): [M+], found 570.00;
C26H20Cl2N4O3S2 for 570.04.

N,N′-bis(5-Chloropyridin-2-yl)-2,6-di(furan-2-yl)-4-oxocyclohexane-1,1-dicarboxamide (3j). Yield
70 mg (0.13 mmol, 52.0%); m.p. 160–161 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.27 and 2.29 (dd, 2H,
J = 4.4 Hz and 11.2 Hz, CH2), 2.57 (t, 2H, J = 11.2 Hz, CH), 4.07 and 4.10 (dd, 2H, J = 4.8 Hz and 10.8 Hz,
CH2), 6.20 (d, 2H, J = 2.8 Hz, Ar-H), 6.23–6.24 (m, 2H, Ar-H), 7.07 (s, 1H, NH), 7.37 (d, 1H, J = 8.4 Hz,
Ar-H), 7.40 (s, 2H, Ar-H), 7.81 and 7.83 (dd, 1H, J = 2.8 Hz and 8.8 Hz, Ar-H), 8.01 (d, 1H, J = 8.4 Hz,
Ar-H), 8.05 and 8.08 (dd, 1H, J = 2.4 Hz and 8.4 Hz, Ar-H), 8.15 (d, 1H, J = 2.8 Hz, Ar-H), 8.67 (d, 1H,
J = 2.8 Hz, Ar-H), 11.40 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 38.7, 39.3, 40.6, 55.9, 87.1, 107.3,
110.9, 114.8, 125.8, 126.4, 130.8, 138.2, 138.4, 143.0, 146.8, 148.0, 148.6, 149.6, 154.6, 168.3, 169.9; IR (KBr,
cm−1) νmax = 3420, 3243, 2952, 1691, 1630, 1569, 1530, 1463, 1418, 1375, 1291, 1163, 1112, 1014, 809,
735; [Anal. Calcd. for C26H20Cl2N4O5: C, 57.90; H, 3.74; N, 13.15; Found: C, 58.11; H, 3.63; N, 12.89;
LC/MS (ESI, m/z): [M+], found 538.1; C26H20Cl2N4O5 for 538.08.

2,6-bis(3-Bromophenyl)-N,N′-bis(5-chloropyridin-2-yl)-4-oxocyclohexane-1,1-dicarboxamide (3k).
Yield 78 mg (0.11 mmol, 44.0%); m.p. 213–214 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.32 and 2.35 (dd,
2H, J = 4.8 Hz and 11.6 Hz, CH2), 2.69 (t, 2H, J = 11.2 Hz, CH), 4.00 and 4.04 (dd, 2H, J = 5.2 Hz and
10.8 Hz, CH2), 7.15 (s, 1H, NH), 7.17 (t, 2H, J = 8.0 Hz, Ar-H), 7.30 (t, 4H, J = 8.0 Hz, Ar-H), 7.53 (s, 2H,
Ar-H), 7.56 (d, 1H, J = 8.0 Hz, Ar-H), 7.76 and 7.78 (dd, 1H, J = 2.0 Hz and 8.8 Hz, Ar-H), 7.83 (d, 1H,
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J = 8.0 Hz, Ar-H), 8.05 (d, 1H, J = 2.8 Hz, Ar-H), 8.18 and 8.20 (dd, 1H, J = 2.8 Hz and 8.0 Hz, Ar-H),
8.74 (d, 1H, J = 2.4 Hz, Ar-H), 11.09 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 42.2, 45.4, 58.8, 87.6,
114.5, 121.9, 126.0, 126.6, 127.4, 130.5, 131.0, 131.2, 131.8, 138.3, 138.6, 144.3, 146.8, 148.2, 148.6, 148.8,
167.9, 170.3; IR (KBr, cm−1) νmax = 3386, 3249, 2930, 1688, 1657, 1569, 1519, 1460, 1372, 1305, 1286, 1153,
1114, 1009, 834, 804, 696; [Anal. Calcd. for C30H22Br2Cl2N4O3: C, 50.24; H, 3.09; N, 7.81; Found: C,
50.07; H, 3.26; N, 7.92; LC/MS (ESI, m/z): [M+], found 714.00; C30H22Br2Cl2N4O3 for 713.94.

N,N′-bis(5-Chloropyridin-2-yl)-4-oxo-2,6-bis(4-(trifluoromethyl)phenyl)cyclohex-ane-1,1-dicarboxamide
(3l). Yield 64 mg (0.92 mmol, 37.0%); m.p. 138–139 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.36 and 2.39
(dd, 2H, J = 4.4 Hz and 11.6 Hz, CH2), 2.75 (t, 2H, J = 11.2 Hz, CH), 4.14 and 4.16 (dd, 2H, J = 5.2 Hz
and 10.8 Hz, CH2), 7.23 (s, 1H, NH), 7.53–7.57 (m, 9H, Ar-H), 7.67 (d, 1H, J = 8.8 Hz, Ar-H), 7.72–7.43
(m, 1H, Ar-H), 7.98–7.99 (m, 1H, Ar-H), 8.15 and 8.18 (dd, 1H, J = 2.8 Hz and 8.4 Hz, Ar-H), 8.77 (d, 1H,
J = 2.8 Hz, Ar-H), 10.99 (s, 1H, NH); 13C-NMR (DMSO-d6, 100 MHz) δ: 42.0, 45.8, 58.6, 87.6, 114.3,
123.1, 125.7, 125.9, 126.9, 128.0, 128.4, 129.5, 131.2, 138.2, 138.5, 146.4, 146.7, 148.4, 148.5, 148.7, 167.7,
170.2; IR (KBr, cm−1) νmax = 3195, 2956, 1693, 1653, 1570, 1523, 1463, 1399, 1376, 1324, 1163, 1124, 1068,
1017, 841, 609; [Anal. Calcd. for C32H22Cl2F6N4O3: C, 55.27; H, 3.19; N, 8.06; Found: C, 55.13; H, 3.39;
N, 8.17; LC/MS (ESI, m/z): [M+], found 694.10; C32H22Cl2F6N4O3 for 694.10.

2,6-bis(4-Fluorophenyl)-4-oxo-N,N′-di(pyridin-2-yl)cyclohexane-1,1-dicarboxamide (3m). Yield 112 mg
(0.21 mmol, 85%); m.p. 245–246 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ: 2.32 and 2.35 (dd, 2H, J = 4.4 Hz
and 11.2 Hz, CH2), 2.69 (t, 2H, J = 12.0 Hz, CH), 4.07 and 4.04 (m, 2H, CH2), 6.89–6.92 (m, 1H, Ar-H),
6.93 (s, 1H, NH), 7.02 (t, 4H, J = 9.2 Hz, Ar-H), 7.37–7.41 (m, 4H, Ar-H), 7.48–7.51 (m, 1H, Ar-H),
7.53–7.56 (m, 1H, ArH), 7.57–7.61 (m, 1H, Ar-H), 7.76–7.78 (m, 1H, Ar-H), 7.96–7.98 (m, 1H, Ar-H), 8.01
(dt, 1H, J = 2.0 Hz and 8.0 Hz, Ar-H), 8.69–8.71 (m, 1H, Ar-H), 11.11 (s, 1H, NH); 13C-NMR (DMSO-d6,
100 MHz) δ: 42.9, 45.2, 58.8, 87.2, 113.5, 115.4, 115.6, 120.1, 123.9, 125.5, 130.6, 130.7, 138.2, 138.3, 138.4,
138.6, 148.3, 149.8, 150.3, 150.5, 160.3, 162.7, 168.1, 170.3; IR (KBr, cm−1) νmax = 3421, 3065, 1678, 1655,
1589, 1576, 1533, 1488, 1462, 1434, 1408, 1291, 1154, 1077, 1011, 993, 839, 815, 770, 559; [Anal. Calcd. for
C30H24F2N4O3: C, 68.43; H, 4.59; N, 10.64; Found: C, 68.57; H, 4.71; N, 10.42]; LC/MS (ESI, m/z): [M+],
found 526.20 C30H24F2N4O3 for 526.18.

3.2. Anticancer Activity

3.2.1. Cell Lines and Drugs

The cytotoxic activity of the new synthesized compounds was tested in different mammalian
cancer cells, breast cancer (+ve ER) (MCF-7), breast cancer (−ve ER) (MDA-MB-231), tongue
(oral cancer) (SAS), prostate cancer (PC-3), colorectal cancer (HCT-116) and hepatocellular carcinoma
(HuH-7 and HepG-2). The cell lines were obtained from the American Type Culture Collection (ATCC).
The cells were cultivated at 37 ◦C and 5% CO2 in DMEM (Lonza) medium supplemented with 10%
fetal bovine serum (Lonza), 100 IU/mLpenicillin and 100 µg/mL streptomycin (Lonza). Cisplatin was
used as a positive control and was obtained from Sigma-Aldrich. The synthesized compounds were
solubilized in DMSO and stored at −20 ◦C. For the initial screening, 0.5% crystal violet was used [21].
The viability of the cells were determined by using the MTT reagent [22,23].

3.2.2. Cytotoxicity Assay

“The cells were seeded in a 96-well plate and serial dilutions of the tested compounds or cisplatin
was added after overnight incubation of the cells at 37 ◦C and 5% CO2. DMSO was used as a negative
control (0.1%). After that, MTT (5 mg/mL PBS) was added after 48 hours of incubation. The formazan
crystals were solubilized by the acidified SDS solution. The absorbance was recorded at 570 nm by
Biotech ELx-800™ plate reader (Winooski, VT, USA). The viability assay was performed 3 times and
the standard deviation was determined (±). IC50 was calculated as the concentration that causes 50%
inhibition of cell growth. The selectivity index was calculated as previously reported” [26,27].
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3.2.3. α-Glucosidase Inhibitory Assay

“Certain aliquots (40 µL) of compounds (prepared in 50% DMSO and 50% water) at different
concentrations (3–500 µg/mL) were pre-incubated with a potassium phosphate buffer (80 µL, pH
6.8), containing 67 mM potassium phosphate and 2.0 unit/ml α-glucosidase in a 96-well plate for
10 min. After that, 40 µL of 5 mM p-nitrophenyl-α-D-glucopyranoside solution (p-NPG) in potassium
phosphate buffer was added into the mixture and incubated for another 10 min. After incubation,
100 mM Na2CO3 (60 µL) was added into the mixture to terminate the reaction and the absorbance of
the mixture was measured at a wavelength of 415 nm. The experiment was also carried out using a
standard inhibitor, namely acarbose (positive control). The concentration resulting in 50% inhibition
of α-glucosidase activity (IC50) was determined by using GraphPad Prism 5 statistical package
(GraphPad® Software Inc., San Diego, CA, USA). All data were expressed as means ± standard
deviations of triplicate determinations” [28].

3.2.4. Molecular Docking Study

The docking studies were performed using the OpenEye Modeling software (License 2018-2019,
OpenEye Scientific, NM, USA) [29–31]. A virtual library of the target compounds was used and their
energies were minimized using the MMFF94 force field, followed by the generation of multi-conformers
using the OMEGA application. The whole library of minimized energy values was used to dock an
appropriate target according to the reported crystalized standard. The receptor PDB files for EGFR
were downloaded from the Protein Data Bank (PDB:ID: 1M17). Both the ligand input file and the
receptor input file were used as the input into FRED to perform the molecular docking simulations.
Multiple scoring functions were employed to predict the energy profile of the ligand–receptor complex.
The VIDA application was employed as a visualization tool to show the pose of the ligands and the
potential binding interactions of the ligands to the receptor of interest.

4. Conclusions

The present study mainly focuses on the synthesis of a new series of pyridine-dicarboximide-
cyclohexanone-based chemical entities with improved anticancer activities. This new series was
obtained via the DBU basic system, which exerts significant effects by promoting the Michael addition
reaction. The synthesized compounds were screened against different cancer cell lines and were
evaluated for their α-glucosidase inhibitory activities. Consequently, the compounds 3c, 3e and 3l
showed the most promising anticancer activities against different cancer cell lines. Thus, further studies
are warranted to evaluate the underlying mechanism.
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