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Abstract
Introduction Diabetic patients with a long disease duration usually accompanied complication such as diabetic retinopathy, 
but in some patients had no complication.
Objectives We analyzed differences in plasma metabolites according to the presence or absence of diabetic retinopathy (DR) 
in type 2 diabetic (T2D) patients with disease duration ≥ 15 years.
Methods A cohort of 183 T2D patients was established. Their biospecimens and clinical information were collected in 
accordance with the guidelines of the National Biobank of Korea, and the Korean Diabetes Association. DR phenotypes 
of the subjects were verified by ophthalmologic specialists. Plasma metabolites were analyzed using gas chromatography 
time-of-flight mass spectrometry and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. 
And these results were analyzed using multivariate statistics.
Results For metabolomic study, propensity score matched case and control subjects were chosen. Mean age of the subjects 
was 66.4 years and mean T2D duration was 22.2 years. Metabolomic identification revealed various carbohydrates, amino 
acids, and organic compounds that distinguished between age- and sex-matched non-diabetic controls and T2D subjects. 
Among these, glutamine and glutamic acid were suggested as the most distinctive metabolites for the presence of DR. 
Receiver operating characteristics curves showed an excellent diagnostic value of combined (AUC = 0.739) and the ratio 
(AUC = 0.742) of glutamine and glutamic acid for DR. And these results were consistent in validation analyses.
Conclusion Our results imply that plasma glutamine, glutamic acid, and their ratio may be valuable as novel biomarkers 
for anticipating DR in T2D subjects.
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1 Introduction

Diabetic retinopathy (DR) is a chronic complication that 
is directly referenced in the diagnosis of diabetes mel-
litus, and is more specific to hyperglycemia than other 
chronic, diabetes-related complications (Cheung et al. 
2010; Song and Wong 2014). If DR is detected early 
on, proper management can prevent the progression and 
deterioration of retinopathy; but if the condition is not 
properly managed, it can lead to severe vision loss or 
blindness (Cheung et al. 2010; Song and Wong 2014). 
Currently, DR is regarded as the leading cause of blind-
ness in adults (Cheung et al. 2010; Kempen et al. 2004).

Despite this clinical significance, however, DR is 
not well screened compared with other complications. 
According to one study, the screening rate of DR in 
Korea is 36.3%, which is significantly lower than that 
for other complications (Byun et al. 2013). Other studies 
have shown similar results (Fathy et al. 2016; Rhee et al. 
2005). The reason for the low screening rate for DR is that 
it requires additional equipment such as a fundus camera, 
and it is difficult to perform easily compared with other 
tests, as it requires skilled medical staff (Byun et al. 2013; 
Lee and Song 2016; Mukamel et al. 1999).

To improve this situation, it is necessary to identify 
biomarkers that can screen, judge therapeutic effects, and 
predict the prognosis of DR. However, studies in related 
fields have not been successful, and few studies have 
investigated biomarkers for predicting the outcomes of 
DR, despite the great clinical importance of this endeavor.

We have constructed and operated a geriatric cohort 
and a biorepository for patients with type 2 diabetes 
of over 15  years of disease duration. This study was 
conducted to identify biomarkers for predicting DR in 
patients in this cohort undergoing detailed retinopathy 
phenotyping. We focused in particular on subjects with a 
long disease duration but no complications, and identified 
biomarkers that play a protective role in DR and are likely 
to be associated with its prognosis.

2  Methods

2.1  Subjects and study design

This study was conducted as part of the National Biobank 
project, using the baseline characteristics of prospective 
cohort study registrants collected from September 2014 
to July 2015. The subjects of this cohort were type 2 dia-
betes patients with a disease duration of 15 years or more.

Clinical information on the subjects was registered 
based on the standardized methods for multi-center clin-
ical data registration approved by the Korean Diabetes 
Association, and biospecimens were collected in accord-
ance with the guidelines of the National Biobank of Korea 
(National Biobank of Korea 2017).

2.2  Ethics statement

This study was approved by the institutional review board of 
Kyung Hee University Hospital (IRB No. KMC IRB 1428-
04). Written informed consent was obtained from all partici-
pants. Information on this study was provided by a clinical 
research information service (CRIS, No. KCT0001269), 
which is a Korean national service connected with the 
International Clinical Trials Registry Platform of the World 
Health Organization (https ://cris.nih.go.kr).

2.3  Diabetic retinopathy phenotyping

The DR status of each participant was assessed through 
color fundus photography (FF 540 Plus; Carl Zeiss Med-
itech, Jena, Germany) and optical coherence tomography 
(HD-OCT; Carl Zeiss Meditech, Dublin, CA, USA). In 
accordance with Early Treatment Diabetic Retinopathy 
Study (ETDRS) criteria, DR was graded into three catego-
ries: no DR, non-proliferative diabetic retinopathy (NPDR), 
or proliferative diabetic retinopathy (PDR) (Wilkinson et al. 
2003; Wu et al. 2013). Two or more ophthalmologists classi-
fied the DR status based on the results of the exams. If there 
was discordance between the evaluators, they reviewed the 
images and agreed on the final interpretation.

2.4  Statistical analyses for clinical data

In this study, we compared the clinical characteristics of 
patients with and without DR, focusing on identifying the 
characteristics of subjects who did not have retinopathy 
despite a long history of type 2 diabetes. Validation and sta-
tistical analyses of the clinical data were performed inde-
pendently by a statistician. Means, proportions, and distri-
butions of characteristics were compared between patients 
with or without DR. After initial analysis, case and control 
sets were selected by propensity score matching (PSM) with 
similar clinical characteristics aside from DR, and corre-
sponding samples were used for the metabolomic study. SAS 
software (ver. 9.3; SAS Institute Inc., Cary, NC, USA) was 
used for all statistical analyses.

https://cris.nih.go.kr
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2.5  Sample preparation for metabolomic study

Age-matched non-diabetic controls were used for the metab-
olomic study. The subject’s specimen for metabolomic study 
was collected by a skilled sampler. And the blood was imme-
diately centrifuged at 4 °C, 1600×g for 15 min in an EDTA 
tube. Then, each 300 µL aliquot was stored at − 70 °C deep 
freezer. Metabolites were extracted from 200 µL of plasma. 
A solution of 600 µL of methanol and 10 µL of internal 
standard solution (2-chlorophenylalanine, 1  mg/mL in 
water) was added to the serum and then homogenized using 
a sonicator for 5 min. After homogenization, the suspen-
sion was held at − 20 °C for 60 min, and then centrifuged 
at 12,000 rpm and 4 °C for 10 min. The supernatant was 
filtered through a 0.2-µm polytetrafluoroethylene (PTFE) 
filter and dried using a speed vacuum concentrator (Modul-
spin 31; Biotron, Korea). Dried extracts were re-dissolved 
in 250 µL of methanol for ultra-performance liquid chro-
matography–quadrupole/time-of-flight mass spectrometry 
(UPLC–Q–TOF–MS) analysis, and 100 µL of the sam-
ples were dried under a vacuum for gas chromatography 
(GC)–TOF–MS analysis.

2.6  GC–TOF–MS analysis

For GC–TOF–MS analysis, dried samples were oximated 
with 50 µL of methoxyamine hydrochloride (20 mg/mL in 
pyridine) for 90 min at 30 °C, and silylated with 50 µL of 
N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) 
for 30 min at 37 °C. GC–TOF–MS analysis was performed 
using an Agilent 7890 gas chromatography system (Agilent 
Technologies, Palo Alto, CA, USA) coupled with an Agi-
lent 7693 auto-sampler (Agilent Technologies) and equipped 
with a Pegasus® HT TOF MS (LECO Corp., St. Joseph, MI, 
USA) system. An Rtx-5MS column (i.d., 30 m × 0.25 mm, 
0.25 µm particle size; Restek Corp., Bellefonte, PA, USA) 
was used with a constant flow of 1.5 mL/min of helium 
as the carrier gas. Samples (1-µL aliquots) were injected 
into the GC with splitless mode. The oven temperature was 
maintained at 75 °C for 2 min, then incrementally raised 
15 °C/min to 300 °C, and finally held for 3 min. The tem-
peratures of the front inlet and transfer line were 250 and 
240 °C, respectively. The electron ionization was carried out 
at − 70 eV and full scanning over the range of 50–1000 m/z 
was used for mass data collection.

2.7  UPLC–Q–TOF–MS analysis

UPLC was performed on a Waters ACQUITY UPLC™ 
system (Waters Corp., Milford, MA, USA) equipped 
with a binary solvent delivery system, a UV detector, and 
an auto-sampler. Chromatographic separation was per-
formed on a Waters ACQUITY BEH C18 column (i.d., 

100 mm × 2.1 mm, 1.7 µm particle size; Waters Corp.) and 
the injection volume was 5 µL. The column temperature was 
set at 37 °C and the flow rate was 0.3 mL/min. The mobile 
phase consisted of 0.1% v/v formic acid in water (A) and 
0.1% v/v formic acid in acetonitrile (B). The initial condition 
was 5% B for 1 min and linearly increased to 100% B over 
9 min. Total run time was 14 min including re-equilibration 
of the column to the initial conditions. For MS experiments, 
the Waters Q–TOF Premier (Micromass MS Technologies, 
Manchester, UK) was operated in negative ion mode with 
an m/z range of 100–1000. The source temperature was set 
at 100 °C, the collision energy was set at 10 eV, the col-
lision gas flow was 0.3 mL/min, and the desolvation gas 
was set to 650 L/h at a temperature of 300 °C. The cap-
illary voltage and sample cone voltage were set at 2.5 kV 
and 50 V, respectively. The V mode was used for the mass 
spectrometer and data were collected in the centroid mode 
with a scan accumulation of 0.2 s. Leucine encephalin was 
used as reference lock mass (m/z 554.2615) by independent 
LockSpray interference.

2.8  Data processing and multivariate statistical 
analysis for metabolomic study

The GC–TOF–MS data were acquired and preprocessed 
using the LECO Chroma TOF™ software (version 4.44, 
LECO Corp.) and converted into the NetCDF format (*.cdf) 
using the LECO Chroma TOF™ software. The raw data 
from UPLC–Q–TOF–MS analysis were acquired by Mass-
Lynx software (version 4.1, Waters Corp.). Raw data files 
were converted into the NetCDF format (*.cdf) using the 
MassLynx DataBridge software (version 4.1, Waters Corp.). 
After conversion, peak detection, retention time correction, 
and alignment were processed using the Metalign software 
package (http://www.metal ign.nl). The resulting data were 
exported to a Microsoft Excel file. Multivariate statistical 
analysis was conducted using SIMCA-P+ (version 12.0; 
Umetrics, Umeå, Sweden). The data sets were auto-scaled 
(unit variance scaling) and mean-centered in a column-wise 
fashion. Principal component analysis (PCA) and orthogonal 
partial least squares–discriminant analysis (OPLS–DA) were 
performed to compare each data set. The variables were 
selected based on variable importance to projection (VIP) 
values of the OPLS–DA. Significant differences were deter-
mined by analysis of variance (ANOVA), Student’s t-test, 
and Duncan’s multiple range tests using PASW Statistics 
18 software (SPSS Inc., Chicago, IL, USA). The box and 
whisker plots were rendered using the relative peak area 
of unique masses of metabolites by STATISTICA 7 soft-
ware (StatSoft Inc., Tulsa, OK, USA). Receiver operating 
characteristic (ROC) curves and logistic regression analysis 

http://www.metalign.nl
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were generated by using Medcalc software (version 14.8.1; 
Medcalc Software, Mariakerke, Belgium).

2.9  Validation by amino acid quantification

Quantification was performed using an amino acid analyzer 
(Biochrom 30+; Biochrom Ltd., Cambridge, UK) to confirm 
the metabolomic study results. Pairs of case and control sets 
(n = 48) were selected again through PSM.

3  Results

3.1  Study progression and characteristics after PSM

Of the 220 subjects recruited to the study, clinical data and 
samples were collected from 198 subjects who provided 
consent. After the withdrawal of 15 subjects, a total of 183 
completed ophthalmologic exams (Figure S1). The mean 
age of the participants was 66.8 years, the median dura-
tion of diabetes mellitus was 22.6 years, and 49.7% were 
male. Among a total of 183 participants who underwent 
ophthalmologic assessment, 124 (67.8%) were diagnosed 
with DR; 72 (39.3%) had NPDR and 52 (28.4%) had PDR. 
Statistically significant differences were found for several 
factors. PSM was performed based on these data, and 
32 pairs of cases and controls with no significant differ-
ences in clinical characteristics except for the presence or 
absence of DR were selected (Table S1). These pairs were 
used for the metabolomic study.

3.2  Plasma metabolite differences 
between subjects grouped by DR status

Significantly discriminated non-targeted metabolites 
among non-diabetic controls and subjects with no DR, 
NPDR, or PDR were investigated to discover biomarkers 
of diabetes and DR. Plasma samples were analyzed using 
GC–TOF–MS and UPLC–Q–TOF–MS; 39,154 and 6185 
mass spectral variables, respectively, were used for further 
multivariate analysis.

In the PCA with score plots derived from GC–TOF–MS 
data sets, the non-diabetic control group was clearly clus-
tered from other groups along with PC1 (9.9%), while the 
groups of patients with diabetes and DR were not clearly 
separated from each other (Fig. 1a). However, when we 
applied an orthogonal partial least squares discriminant 
analysis (OPLS–DA) model with supervised methods, 
all three groups were clearly separated from each other 
with model values of  R2X(cum) = 0.214,  R2Y(cum) = 0.977, 
and  Q2

(cum) = 0.449, which indicated the fitness and 

prediction accuracy of the model (Fig. 1b). The quality 
of the model was evaluated by cross-validation analysis 
(p-value = 2.25e−18).

Similar distribution patterns were observed in the PCA 
and OPLS–DA of the UPLC–Q–TOF–MS data sets. In 
the PCA, the non-diabetic control group was discrimi-
nated from the other groups by PC2 (5.0%). However, 
the non-DR and DR subgroups were undifferentiated 
(Fig. 1c). In the OPLS–DA score plots, the non-diabetic 
control group and subjects with and without DR were 
discriminated from each other with model values of 
 R2X(cum) = 0.145,  R2Y(cum) = 0.933, and  Q2

(cum) = 0.497, 
and the p-value = 1.64e−26 was obtained from cross-val-
idation analysis (Fig. 1d).

To select the metabolites responsible for these separa-
tions, VIP values > 0.7 of OPLS–DAs were used. The VIP 
value is an important parameter for detecting potential bio-
marker candidates that reflects the correlation of the metabo-
lites with different biological states. For evaluating statistical 
significance, p < 0.05 derived from t-test was applied.

Selected metabolites were identified by comparing MS 
fragment patterns with commercial standard compounds and 
various databases, including the National Institutes of Stand-
ards and Technology (NIST) library, the Human Metabo-
lome Database (HMDB, http://www.hmdb.ca/), and Wiley 
8. The detailed information of these metabolites is presented 
in Tables S2 and S3. A total of 31 metabolites, including 7 
amino acids, 6 organic compounds, 7 carbohydrates, and 
11 lysophosphatidylcholines (lysoPCs), were identified as 
metabolites that differed significantly among the experimen-
tal groups. The relative metabolite levels were converted into 
fold changes and are also presented in Tables S2 and S3.

3.3  Combination of multi‑metabolite biomarkers 
for the diagnosis of diabetes and diabetic 
retinopathy

Box and whisker plots and ROC curves were constructed 
for the selected 31 metabolites using the relative metabolite 
contents of the experimental groups (Figs. S2–S5). Twenty-
eight of the metabolites showed good discriminatory power 
for non-diabetic versus diabetic subjects, with an area under 
the curve (AUC) > 0.7, except for urea (9) and two lysoPCs 
of C14:0 (21) and C20:3 (29) (Tables S2, S3 and Figs. 
S2–S5).

Among the assigned metabolites, several amino acids and 
carbohydrates showed dramatic increases and decreases in 
diabetic subjects compared with their levels in non-diabetic 
controls. Asparagine (2.30-fold, 6), glutamine (2.83-fold, 
7), fructose (2.02-fold, 15), and myo-inositol (2.02-fold, 
20) were markedly increased in diabetic subjects, while 
aspartic acid (0.46-fold, 2), glutamic acid (0.25-fold, 5), 

http://www.hmdb.ca/
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and 1,5-anhydroglucitol (0.25-fold, 14) were markedly 
decreased.

The combination of four of these amino acids, aspara-
gine (6), aspartic acid (2), glutamine (7), and glutamic 
acid (5), highly improved the specificity in distinguish-
ing diabetic subjects from non-diabetic controls, with a 
combined AUC value of 1.00 (Fig. 2a). The combination 
of three carbohydrates, namely, 1,5-anhydroglucitol (14), 
fructose (15), and myo-inositol (20), yielding a combined 
AUC value of 0.971, also improved the power in discrimi-
nating between diabetic subjects and non-diabetic controls 
(Fig. 2b). Further, glutamic acid (5) and glutamine (7) 
were significantly decreased (0.72-fold) and increased 
(1.19-fold) in DR subjects, respectively (Table S2). How-
ever, these metabolites showed poor discriminatory power 
for discriminating between subjects with and without DR, 
with an AUC of 0.656.

The combination of those DR subjects’ specific metabo-
lites improved the power to discriminate DR subjects from 
diabetic patients, with a combined AUC value of 0.739 
(Fig. 2c). To maximize the differences in metabolite levels 
between patients with and without DR, the ratio of the lev-
els of glutamine to glutamic acid was calculated (Table 1). 
This ratio was significantly different among the experi-
mental groups: 1.31 for non-diabetic controls, 8.79 for dia-
betic patients without DR, and 13.24 for patients with DR. 
ROC curve analysis was performed using the glutamine/
glutamic acid ratios of subjects with and without DR, for 
an AUC of 0.742 (Fig. 2d). According to these results, the 
glutamine/glutamic acid ratio was the best biomarker for 
distinguishing patients with DR among diabetic subjects.

Fig. 1  Principal component analysis (PCA) (a, c) and orthogonal partial least squares discriminant analysis (OPLS–DA) (b, d) score plots for 
plasma of non-diabetic control, no DR, and DR subjects analyzed by GC–TOF–MS (a, b), and UPLC–Q–TOF–MS (c, d)
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3.4  Amino acid quantification for validation

Amino acid quantification was performed on 48 pairs of 
non-DR and DR subjects. As a result, the plasma glutamine 
concentration in non-DR subjects was 430.17 ± 115.91 

and 489.19 ± 90.59 nmol/mL in DR subjects (p = 0.002, 
by t-test). The concentration of glutamic acid in non-DR 
subjects was 165.86 ± 62.55 and 150.16 ± 63.99 nmol/mL 
in DR subjects (p = 0.242). The glutamine/glutamic acid 
ratio was 3.00 ± 1.46 in non-DR subjects and 3.77 ± 1.51 

Fig. 2  Combined ROC curves of potential metabolite biomark-
ers distinguishing non-diabetic versus diabetic subjects and no DR 
versus DR subjects. a Four amino acids which potential metabolite 
biomarkers that shows most high fold changes between non-diabetic 
and diabetic subjects were combined. b Three carbohydrates poten-
tial metabolite biomarkers that shows most high fold changes between 
non-diabetes and diabetes patients were combined. c Two amino 

acids which potential metabolite biomarkers that shows significance 
of changes between no DR and DR subjects were combined. d ROC 
curve of glutamine to glutamic acid ratio. The ROC curves of each 
metabolites and combined ROC curves were overlain on single plots. 
The AUC values of each metabolites are shown in inside of ROC 
curve
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in DR subjects (p = 0.013), consistent with the results from 
the metabolomic study.

4  Discussion

Metabolomics is a powerful approach for studying patho-
physiological processes, and has been used to identify com-
plex endogenous metabolic phenotypes in various diseases 
such as diabetes mellitus. Diseases can be characterized by 
metabolic alterations in key regulatory pathways. Diabetes-
related complications such as retinopathy are intensified due 
to dysfunctions in multiple metabolic pathways (Filla and 
Edwards 2016; Sas et al. 2015).

From the plasma metabolomic analysis of non-diabetic 
controls and diabetic patients with and without DR, vari-
ous metabolites were selected as candidate biomarkers by 
multivariate analysis, and we generated a metabolic pathway 
to show the relationships among these metabolites (Fig. 3). 
These metabolites belong to pathways of amino acid, energy, 
carbohydrate, and lipid metabolism, which are known to be 
closely related to insulin resistance and secretion (Floegel 
et al. 2013; Greenfield et al. 2009; Koves et al. 2008; Mon-
tonen et al. 2007). The relative levels of these metabolites 
were dramatically different between non-diabetic controls 
and the other experimental groups.

The large differences may be due to the duration of dia-
betes; in this study, patients both with and without DR had 
suffered from type 2 diabetes for longer than 20 years, and 
metabolic changes persistently occurred with this long-
standing disease. Among these metabolic changes, four 
amino acids, asparagine (6), aspartic acid (2), glutamine (7), 
and glutamic acid (5), and three carbohydrates, 1,5-anhydro-
glucitol (14), fructose (15), and myo-inositol (20), differed 
significantly between diabetic patients and non-diabetic sub-
jects (Table S2 and Fig. 3).

ROC curves are the most common tool for evaluating 
prediction power, and AUC is used for measuring predic-
tion. These kinds of prediction metrics can provide insights 
into the use of metabolite biomarkers in disease prediction 
(Klein and Shearer 2016). The combined AUC of the four 

amino acids and three carbohydrates was 1.00 and 0.971, 
respectively (Fig. 2a, b). From these prediction models from 
multivariate analysis and ROC curve construction, the com-
bination of these multiple metabolite biomarkers could pro-
vide improved specificity compared with single-metabolite 
biomarkers for distinguishing diabetic patients from non-
diabetic controls.

The key finding of the current study was the identifica-
tion of a blood-derived biomarker that distinguishes DR 
cases among long-standing type 2 diabetes patients. Only a 
few studies have considered investigating metabolic mark-
ers of DR. However, most of these studies were limited to 
using vitreous humor (Filla et al. 2014; Klein and Shearer 
2016; Paris et al. 2016). Invasive procedures are required 
for obtaining vitreous humor, so it cannot be used in a gen-
eral outpatient setting. For these reasons, it is necessary to 
identify biomarkers of diagnostic value in easily accessible 
samples such as blood.

Based on our results, plasma glutamine and glutamic acid 
were selected as biomarker candidates for distinguishing DR 
cases. The ROC curve analysis revealed that the combination 
of these two metabolites improved specificity, but a more 
improved result was obtained by using the value of the glu-
tamine/glutamic acid ratio to discriminate between patients 
with and without DR (Fig. 2c, d).

The roles of plasma glutamine and glutamic acid in DR 
have not yet been elucidated. However, there is some evi-
dence for their involvement in the development of diabetes 
and diabetes-related complications. Cheng et al. reported 
that plasma glutamine, glutamate, and the glutamine/gluta-
mate ratio were strongly associated with insulin resistance 
traits in two different cohorts, the Framingham Heart Study 
and the Malmö Diet and Cancer Study (Cheng et al. 2012). 
In particular, this study revealed an association between a 
high glutamine/glutamate ratio and lower risk of diabetes 
incidence. However, this pattern was inconsistent between 
the cohorts (Cheng et al. 2012). In addition, similarly altered 
patterns of plasma amino acids, including glutamine, aspara-
gine, and aspartic acid, in diabetic patients compared with 
non-diabetic subjects were also reported in another study 
(Zhou et al. 2013). Furthermore, glutamine/glutamic acid 

Table 1  Mean concentrations of 
potential metabolite biomarkers 
distinguishing non-diabetic 
control, no DR, and DR subjects 
as quantified by GC–TOF–MS 
analysis

*p-value < 0.05 by t-test between CON and No DR groups
# p-value < 0.05 by t-test between No DR and DR groups

No. Metabolite Mean concentration (ng/80 µL serum)

CON No DR DR

1 Asparagine 8.06 ± 0.38 9.56 ± 1.37* 9.80 ± 1.08
2 Aspartic acid 10.01 ± 0.33 9.44 ± 0.19* 9.40 ± 0.14
3 Glutamine 52.62 ± 20.91 135.36 ± 35.74* 160.05 ± 40.49#

4 Glutamic acid 50.17 ± 21.09 16.62 ± 5.97* 13.50 ± 4.81#

5 Glutamine/glutamic acid 1.31 8.79* 13.24#
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metabolism connected to various cellular functions such as 
protein synthesis, muscle growth, ureogenesis in the liver, 
insulin secretion in pancreatic β-cell, hepatic and renal glu-
coneogenesis, neurotransmitter synthesis, and glutathione 
production (Newsholme et al. 2003). Particularly, regula-
tion of insulin secretion from pancreatic β-cell is considered 
as targets for diabetes therapies (Newsholme et al. 2005). 
In β-cell, glutamine is carried by blood and accumulated 
on plasma membrane, then further converted to glutamic 
acid (Jenstad and Chaudhry 2013). Through the intercon-
nected coupling mechanisms between various molecules and 
enzymes such as glucose, glutamine, glutamic acid, leucine, 

GABA, and glutamate dehydrogenase, insulin secretion is 
regulated. The glutamic acid concentration is also one of the 
most important indicators of diabetic retinas. Many other 
studies have suggested that diabetes is accompanied by an 
accumulation of glutamate in the retina, which causes neu-
rotoxicity and the development of DR (Kowluru et al. 2001; 
Li and Puro 2002; Lieth et al. 2000). Although, a direct rela-
tionship between retinal glutamic acid and plasma glutamic 
acid has not been well studied, we could carefully suggested 
that plasma glutamine/glutamic acid level may have close 
relation with insulin secretion and retina accumulation.

Fig. 3  A schematic diagram of a proposed metabolic pathway using metabolites shows significantly different levels among experimental groups 
including non-diabetic control, no DR, and DR subjects
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The results of our study have some notable differences 
from previous studies. This study was conducted by dis-
tinguishing between diabetic patients with and without 
DR, even though the mean disease duration was more than 
20 years. This study design was based on the assumption 
that people who have not had complications even after a long 
period of type 2 diabetes possess genetic or environmental 
protective characteristics. Therefore, the present study may 
have important implications for understanding the patho-
physiology of the development and progression of diabetic 
complications and for determining and predicting the long-
term prognosis of DR.

The study also involved the meticulous collection of data 
from subjects based on consensus-based clinical registration 
forms and national biospecimen collection guidelines. The 
collected data were used as optimal conditions for significant 
metabolite screening by controlling the clinical variables as 
much as possible through PSM. Therefore, even though a 
small number of subjects were used for the study, markers 
with high diagnostic value could be screened. To our knowl-
edge, this study is the first to confirm that glutamic acid and 
glutamine are closely related to DR outcome in humans.

The limitations of this study are that it was a single-center 
study, so the number of subjects was rather small; and cross-
sectional analysis using baseline data made it difficult to 
identify causal relationships. However, we are recruiting 
more patients based on this study and continue to follow 
their clinical courses. If future research findings accumu-
late, we believe that we can overcome the limitations of the 
current study design and obtain a more detailed basis for 
DR and the microvascular complications of type 2 diabetes.

In conclusion, this study suggests that metabolic biomark-
ers of DR, especially the glutamine/glutamate ratio, could 
be used as indicators for the long-term prognosis associated 
with DR in long-standing type 2 diabetes patients.
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