# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate

#### Prashantha Karunakar,<sup>a</sup> V. Krishnamurthy,<sup>a</sup> C. R. Girija,<sup>b</sup>\* V. Krishna,<sup>c</sup> V. P. Vaidya<sup>d</sup> and A. J. Yamuna<sup>d</sup>

<sup>a</sup>Department of Biotechnology, PES Institute of Technology, BSK III Stg, Bangalore 560 085, India, <sup>b</sup>Department of Chemistry, SSMRV College, 4th T Block, Jayanagar, Bangalore 560 041, India, <sup>c</sup>Department of Biotechnology and Bioinformatics, Kuvempu University, Shankarghatta 577 451, India, and <sup>d</sup>Department of Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta 577 451, India Correspondence e-mail: girija.shivakumar@rediffmail.com

Received 17 January 2013; accepted 29 January 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.038; wR factor = 0.102; data-to-parameter ratio = 11.9.

In the title compound,  $C_{14}H_{14}BrNO_5$ , the ester group is disordered [occupancy ratio 0.52 (2):0.48 (2)]. The major component is nearly coplanar with the benzofuran plane, subtending a dihedral angle of 7.84 (2)°, while the amide group is twisted out of the benzofuran plane making a dihedral angle of 39.69 (2)°. An intramolecular N-H···O hydrogen bond occurs. In the crystal, pairs of weak C-H···O hydrogen bonds link the molecules into inversion dimers, which are further linked *via* strong N-H···O hydrogen bonds, generating a zigzag chain extending along [100].

#### **Related literature**

For the biological activity of benzofuran derivatives, see: Oter et al. (2007) & Habermann et al. (1999).



#### Experimental

Crystal data  $C_{14}H_{14}BrNO_5$  $M_r = 356.17$ 

```
Monoclinic, P2_1/c
a = 14.1960 (7) Å
```

b = 4.8050 (2) Å c = 22.128 (1) Å  $\beta = 90.653 (1)^{\circ}$   $V = 1509.29 (12) \text{ Å}^{3}$ Z = 4

#### Data collection

| Bruker Kappa APEXII CCD              | 14023 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 2660 independent reflections           |
| Absorption correction: multi-scan    | 1969 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2008)               | $R_{\rm int} = 0.029$                  |
| $T_{\min} = 0.426, T_{\max} = 0.500$ |                                        |
|                                      |                                        |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$   $wR(F^2) = 0.102$  S = 1.07 2660 reflections 223 parameters73 restraints

| l able 1      |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$                                                                                        | D-H                           | $H \cdot \cdot \cdot A$          | $D \cdots A$                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------------|--------------------------------------|
| $\begin{array}{c} N1 - H1 \cdots O4 \\ N1 - H1 \cdots O2^{i} \\ C10 - H10 B \cdots O4^{ii} \end{array}$ | 0.89(1)<br>0.89(1)<br>0.97(1) | 2.40 (3)<br>2.27 (2)<br>2.66 (2) | 2.909 (4)<br>3.021 (4)<br>3.427 (4) | 117 (3)<br>142 (3)<br>135 (3)        |
|                                                                                                         | ( )                           | ( )                              | ( )                                 |                                      |

Mo  $K\alpha$  radiation

 $0.35 \times 0.30 \times 0.30$  mm

H atoms treated by a mixture of

refinement  $\Delta \rho_{\text{max}} = 0.62 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$ 

independent and constrained

 $\mu = 2.74 \text{ mm}^{-1}$ 

T = 293 K

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y - 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and Mercury (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Chennai, India, for the data collection. PK and CRG also thank the Rashtriya Sikshana Samithi Trust (RSST) and the Principal, Sri Sivananda Sarma Memorial Rashtriya Vidyalaya (SSMRV) College, Bangalore, for their constant support and encouragement in carrying out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5285).

#### References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Habermann, J., Ley, S. V., Scicinski, J. J., Scott, J. S., Smits, R. & Thomas, A. W. (1999). J. Chem. Soc. Perkin Trans. 1, 17, 2425–2427.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Oter, O., Ertekin, K., Kirilmis, C., Koca, M. & Ahmedzade, M. (2007). Sens. Actuators B, 122, 450–456.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supplementary materials

Acta Cryst. (2013). E69, o342 [doi:10.1107/S1600536813002997]

# Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate

## Prashantha Karunakar, V. Krishnamurthy, C. R. Girija, V. Krishna, V. P. Vaidya and A. J. Yamuna

#### Comment

Benzofuran derivatives are an important class of heterocyclic compounds that are known to possess variety of biological properties. Substituted benzofurans also find their application in different field such as fluorescent sensor (Oter *et al.*, 2007), antioxidants, brightening agents, a variety of drugs and agriculture (Habermann *et al.*, 1999). In the title compound the ester group is nearly planar with the benzofuran plane with a dihedral angle of 7.84 (2)° while the amide group is twisted out of the benzofuran plane with a dihedral angle of 39.69 (2)°.

The crystal packing is mainly governed by intra- and inter-molecular interactions. An intra-molecular N1—H1···O4 hydrogen bond (Table 1, Figure 2) acting as conformational lock is found between carbonyl O4 and H1 atom of the amide group. The crystal structure is stabilized by inter-molecular interactions N1—H1···O2 (Table 1, Figure 3) resulting in molecular chains along *a* axis. The structure is further stabilised by inter-molecular C10—H10B···O4 interaction (Table 1, figure 3) resulting in the formation of centrosymmetric dimers about the inversion centers.

#### **Experimental**

A mixture of ethyl 3-amino-5-bromobenzofuran-2-carboxylate (2.84 g, 0.01 mol), anhydrous potassium carbonate (2.76 g, 0.02 mol) and ethyl chloroformate (5 ml) in dry benzene (30 ml) was heated under reflux for 8 h. The reaction mixture was filtered and potassium salts were washed with benzene. The filtrate on removal of benzene furnished the desired compound as a yellow solid. It was recrystallized from ethanol (3 g, 84%), m.p. 93–94°C.

#### Refinement

All carbon-bound hydrogen atoms were placed in calculated positions with C-H distances of 0.95 - 0.99 Å and refined as riding with  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl and x = 1.2 for all other H-atoms. The N-bound H atom positions were determined from difference electron density map and refined freely. One of the ethoxy groups (O5, C10, and C11) was disordered. The disorder was resolved and the final occupancy factors of the components were in the ratio 51:49. The thermal parameters of the atoms of the disordered groups were restrained within an effective standard deviation of 0.02 Å<sup>2</sup>.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and Mercury (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



## Figure 1

The molecular structure of the title compound, showing the atom-labeling scheme with displacement ellipiods drawn at 50% probability level.



# **Figure 2** A view of the N-H…O intramolecular interaction (dotted lines) in the crystal structure of the title compound.



## Figure 3

A view of the N—H…O and C—H…O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.

#### Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate

| Crystal data                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{14}H_{14}BrNO_5$<br>$M_r = 356.17$<br>Monoclinic, $P2_1/c$                                                                                                                                                                                                        | F(000) = 720<br>$D_x = 1.567 \text{ Mg m}^{-3}$<br>Melting point: 570.17 K<br>Me K = 1 istica 1 = 0.71072 Å                                                                                                                                                              |
| Hall symbol: -P 2ybc<br>a = 14.1960 (7)  Å<br>b = 4.8050 (2)  Å<br>c = 22.128 (1)  Å<br>$\beta = 90.653 (1)^{\circ}$<br>$V = 1509.29 (12) \text{ Å}^{3}$                                                                                                              | Mo Ka radiation, $\lambda = 0.71073$ A<br>Cell parameters from 4262 reflections<br>$\theta = 2.3-23.0^{\circ}$<br>$\mu = 2.74$ mm <sup>-1</sup><br>T = 293 K<br>Needle, pale yellow                                                                                      |
| Z = 4<br>Data collection                                                                                                                                                                                                                                              | $0.35 \times 0.30 \times 0.30$ mm                                                                                                                                                                                                                                        |
| Bruker Kappa APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scan<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2008)<br>$T_{\omega} = 0.426$ , $T_{\omega} = 0.500$ | 14023 measured reflections<br>2660 independent reflections<br>1969 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.029$<br>$\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$<br>$h = -16 \rightarrow 16$<br>$k = -5 \rightarrow 3$<br>$l = -26 \rightarrow 26$ |
| $I_{\rm min} = 0.420, I_{\rm max} = 0.500$                                                                                                                                                                                                                            | $i = 20 \rightarrow 20$                                                                                                                                                                                                                                                  |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.102$                               | neighbouring sites                                         |
| S = 1.07                                        | H atoms treated by a mixture of independent                |
| 2660 reflections                                | and constrained refinement                                 |
| 223 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 1.449P]$           |
| 73 restraints                                   | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} = 0.002$                        |
| direct methods                                  | $\Delta  ho_{ m max} = 0.62 \  m e \  m \AA^{-3}$          |
|                                                 | $\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R* factors *R* are based on *F* with *F* set to zero for parative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|-------------|--------------|-----------------------------|-----------|
| C1   | 0.2061 (3)   | 0.6782 (7)  | 0.72919 (15) | 0.0527 (9)                  |           |
| C2   | 0.2889 (3)   | 0.6822 (9)  | 0.76285 (17) | 0.0676 (11)                 |           |
| H2   | 0.2934       | 0.7955      | 0.7968       | 0.081*                      |           |
| C3   | 0.3644 (3)   | 0.5218 (10) | 0.74686 (17) | 0.0698 (11)                 |           |
| Н3   | 0.4204       | 0.5228      | 0.7691       | 0.084*                      |           |
| C4   | 0.3527 (3)   | 0.3576 (8)  | 0.69566 (16) | 0.0526 (9)                  |           |
| C5   | 0.2708 (2)   | 0.3532 (7)  | 0.66123 (14) | 0.0439 (8)                  |           |
| C6   | 0.1954 (3)   | 0.5175 (7)  | 0.67849 (15) | 0.0474 (8)                  |           |
| H6   | 0.1394       | 0.5185      | 0.6563       | 0.057*                      |           |
| C7   | 0.2883 (2)   | 0.1515 (6)  | 0.61445 (14) | 0.0424 (8)                  |           |
| C8   | 0.3765 (2)   | 0.0536 (7)  | 0.62420 (16) | 0.0508 (9)                  |           |
| С9   | 0.4290 (3)   | -0.1488 (9) | 0.58970 (19) | 0.0630 (10)                 |           |
| C12  | 0.1724 (2)   | 0.2280 (7)  | 0.53506 (14) | 0.0432 (8)                  |           |
| C13  | 0.0721 (3)   | 0.2372 (8)  | 0.44862 (16) | 0.0632 (10)                 |           |
| H13A | 0.1022       | 0.4094      | 0.4365       | 0.076*                      |           |
| H13B | 0.0132       | 0.2823      | 0.4680       | 0.076*                      |           |
| C14  | 0.0547 (4)   | 0.0582 (11) | 0.39524 (19) | 0.0908 (15)                 |           |
| H14A | 0.1136       | 0.0126      | 0.3768       | 0.136*                      |           |
| H14B | 0.0154       | 0.1555      | 0.3667       | 0.136*                      |           |
| H14C | 0.0237       | -0.1096     | 0.4076       | 0.136*                      |           |
| N1   | 0.2276 (2)   | 0.0576 (6)  | 0.56904 (13) | 0.0486 (7)                  |           |
| 01   | 0.41846 (17) | 0.1771 (6)  | 0.67389 (11) | 0.0614 (7)                  |           |
| O2   | 0.16059 (19) | 0.4717 (5)  | 0.54388 (12) | 0.0640 (7)                  |           |
| O3   | 0.13305 (17) | 0.0840 (5)  | 0.48991 (10) | 0.0550 (6)                  |           |
| O4   | 0.3952 (2)   | -0.2753 (7) | 0.54795 (14) | 0.0803 (9)                  |           |

| Br1  | 0.10487 (3) | 0.90618 (9) | 0.754534 (18) | 0.0721 (2)  |          |
|------|-------------|-------------|---------------|-------------|----------|
| 05   | 0.5138 (10) | -0.195 (5)  | 0.6161 (9)    | 0.081 (4)   | 0.52 (2) |
| C10  | 0.5720 (9)  | -0.418 (4)  | 0.5900 (9)    | 0.090 (3)   | 0.52 (2) |
| H10A | 0.5659      | -0.5801     | 0.6159        | 0.108*      | 0.52 (2) |
| H10B | 0.5444      | -0.4668     | 0.5511        | 0.108*      | 0.52 (2) |
| C11  | 0.6683 (13) | -0.373 (5)  | 0.5813 (11)   | 0.114 (5)   | 0.52 (2) |
| H11A | 0.6970      | -0.5406     | 0.5670        | 0.171*      | 0.52 (2) |
| H11B | 0.6974      | -0.3182     | 0.6188        | 0.171*      | 0.52 (2) |
| H11C | 0.6765      | -0.2275     | 0.5519        | 0.171*      | 0.52 (2) |
| O5′  | 0.5217 (11) | -0.153 (6)  | 0.6020 (9)    | 0.080 (4)   | 0.48 (2) |
| C10′ | 0.5794 (10) | -0.328 (4)  | 0.5639 (9)    | 0.088 (3)   | 0.48 (2) |
| H10C | 0.5601      | -0.5219     | 0.5656        | 0.105*      | 0.48 (2) |
| H10D | 0.5787      | -0.2656     | 0.5223        | 0.105*      | 0.48 (2) |
| C11′ | 0.6704 (12) | -0.285 (5)  | 0.5926 (11)   | 0.109 (5)   | 0.48 (2) |
| H11D | 0.7170      | -0.3945     | 0.5724        | 0.163*      | 0.48 (2) |
| H11E | 0.6675      | -0.3409     | 0.6343        | 0.163*      | 0.48 (2) |
| H11F | 0.6870      | -0.0919     | 0.5904        | 0.163*      | 0.48 (2) |
| H1   | 0.236 (3)   | -0.114 (4)  | 0.5551 (16)   | 0.066 (12)* |          |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C1   | 0.068 (2)   | 0.044 (2)   | 0.0463 (19) | -0.0026 (17) | 0.0021 (18)  | -0.0018 (16) |
| C2   | 0.086 (3)   | 0.066 (3)   | 0.051 (2)   | -0.004 (2)   | -0.004 (2)   | -0.0180 (19) |
| C3   | 0.071 (3)   | 0.080 (3)   | 0.057 (2)   | -0.005 (2)   | -0.023 (2)   | -0.012 (2)   |
| C4   | 0.054 (2)   | 0.053 (2)   | 0.051 (2)   | -0.0006 (18) | -0.0075 (17) | -0.0055 (17) |
| C5   | 0.050 (2)   | 0.0392 (19) | 0.0427 (17) | -0.0039 (15) | -0.0093 (15) | 0.0021 (14)  |
| C6   | 0.051 (2)   | 0.0416 (18) | 0.0492 (19) | -0.0017 (16) | -0.0061 (15) | 0.0027 (16)  |
| C7   | 0.049 (2)   | 0.0352 (18) | 0.0432 (18) | 0.0007 (15)  | -0.0098 (15) | 0.0003 (14)  |
| C8   | 0.048 (2)   | 0.051 (2)   | 0.053 (2)   | 0.0035 (17)  | -0.0099 (16) | -0.0051 (17) |
| C9   | 0.054 (2)   | 0.063 (3)   | 0.071 (3)   | 0.010 (2)    | -0.008 (2)   | -0.008 (2)   |
| C12  | 0.048 (2)   | 0.0358 (19) | 0.0461 (18) | 0.0001 (15)  | -0.0073 (15) | -0.0025 (15) |
| C13  | 0.073 (3)   | 0.056 (2)   | 0.060 (2)   | 0.011 (2)    | -0.026 (2)   | -0.001 (2)   |
| C14  | 0.116 (4)   | 0.096 (4)   | 0.060 (3)   | 0.015 (3)    | -0.034 (3)   | -0.008 (3)   |
| N1   | 0.0601 (18) | 0.0319 (16) | 0.0532 (17) | 0.0075 (13)  | -0.0205 (14) | -0.0060 (13) |
| 01   | 0.0541 (15) | 0.0690 (17) | 0.0606 (15) | 0.0056 (13)  | -0.0196 (12) | -0.0128 (13) |
| O2   | 0.087 (2)   | 0.0361 (14) | 0.0685 (16) | 0.0102 (13)  | -0.0289 (14) | -0.0078 (12) |
| O3   | 0.0703 (16) | 0.0411 (13) | 0.0530 (14) | 0.0065 (12)  | -0.0255 (12) | -0.0052 (11) |
| O4   | 0.0720 (19) | 0.082 (2)   | 0.087 (2)   | 0.0160 (16)  | -0.0124 (16) | -0.0337 (18) |
| Br1  | 0.0910 (4)  | 0.0599 (3)  | 0.0658 (3)  | 0.0063 (2)   | 0.0203 (2)   | -0.0064 (2)  |
| 05   | 0.051 (4)   | 0.102 (7)   | 0.089 (8)   | 0.024 (4)    | -0.008 (4)   | -0.026 (6)   |
| C10  | 0.061 (4)   | 0.116 (8)   | 0.093 (7)   | 0.018 (5)    | 0.000 (5)    | -0.025 (6)   |
| C11  | 0.103 (8)   | 0.135 (12)  | 0.104 (9)   | 0.043 (7)    | 0.002 (7)    | -0.048 (8)   |
| O5′  | 0.054 (4)   | 0.109 (7)   | 0.078 (7)   | 0.023 (4)    | -0.009 (4)   | -0.027 (6)   |
| C10′ | 0.064 (4)   | 0.114 (8)   | 0.086 (7)   | 0.037 (5)    | -0.003 (5)   | -0.026 (6)   |
| C11′ | 0.085 (7)   | 0.126 (12)  | 0.116 (9)   | 0.032 (7)    | 0.038 (6)    | -0.039 (9)   |

Geometric parameters (Å, °)

| <u></u> <u>C1C6</u> | 1.369 (5)  | C13—O3        | 1.451 (4)  |
|---------------------|------------|---------------|------------|
| C1—C2               | 1.385 (5)  | C13—C14       | 1.480 (5)  |
| C1—Br1              | 1.897 (4)  | C13—H13A      | 0.9700     |
| C2—C3               | 1.369 (6)  | C13—H13B      | 0.9700     |
| С2—Н2               | 0.9300     | C14—H14A      | 0.9600     |
| C3—C4               | 1.389 (5)  | C14—H14B      | 0.9600     |
| С3—Н3               | 0.9300     | C14—H14C      | 0.9600     |
| C4—O1               | 1.366 (4)  | N1—H1         | 0.886 (10) |
| C4—C5               | 1.384 (5)  | O5—C10        | 1.476 (14) |
| C5—C6               | 1.386 (5)  | C10—C11       | 1.401 (16) |
| С5—С7               | 1.442 (4)  | C10—H10A      | 0.9700     |
| С6—Н6               | 0.9300     | C10—H10B      | 0.9700     |
| C7—C8               | 1.352 (5)  | C11—H11A      | 0.9600     |
| C7—N1               | 1.392 (4)  | C11—H11B      | 0.9600     |
| C8—O1               | 1.379 (4)  | C11—H11C      | 0.9600     |
| C8—C9               | 1.448 (5)  | O5′—C10′      | 1.451 (14) |
| С9—О4               | 1.201 (5)  | C10′—C11′     | 1.448 (16) |
| C9—O5′              | 1.342 (15) | C10′—H10C     | 0.9700     |
| C9—O5               | 1.350 (14) | C10'—H10D     | 0.9700     |
| C12—O2              | 1.199 (4)  | C11′—H11D     | 0.9600     |
| C12—O3              | 1.333 (4)  | C11′—H11E     | 0.9600     |
| C12—N1              | 1.354 (4)  | C11'—H11F     | 0.9600     |
| C6—C1—C2            | 122.3 (3)  | C13—C14—H14A  | 109.5      |
| C6—C1—Br1           | 119.4 (3)  | C13—C14—H14B  | 109.5      |
| C2—C1—Br1           | 118.3 (3)  | H14A—C14—H14B | 109.5      |
| C3—C2—C1            | 121.0 (3)  | C13—C14—H14C  | 109.5      |
| С3—С2—Н2            | 119.5      | H14A—C14—H14C | 109.5      |
| C1—C2—H2            | 119.5      | H14B—C14—H14C | 109.5      |
| C2—C3—C4            | 116.4 (4)  | C12—N1—C7     | 123.7 (3)  |
| С2—С3—Н3            | 121.8      | C12—N1—H1     | 116 (3)    |
| С4—С3—Н3            | 121.8      | C7—N1—H1      | 118 (2)    |
| O1—C4—C5            | 111.7 (3)  | C4—O1—C8      | 105.3 (3)  |
| O1—C4—C3            | 125.0 (3)  | C12—O3—C13    | 116.8 (3)  |
| C5—C4—C3            | 123.3 (4)  | C9—O5—C10     | 116.7 (14) |
| C4—C5—C6            | 119.1 (3)  | C11—C10—O5    | 119.5 (12) |
| C4—C5—C7            | 104.7 (3)  | C11—C10—H10A  | 107.5      |
| C6—C5—C7            | 136.1 (3)  | O5-C10-H10A   | 107.5      |
| C1—C6—C5            | 117.9 (3)  | C11—C10—H10B  | 107.5      |
| С1—С6—Н6            | 121.0      | O5-C10-H10B   | 107.5      |
| С5—С6—Н6            | 121.0      | H10A—C10—H10B | 107.0      |
| C8—C7—N1            | 124.6 (3)  | C10-C11-H11A  | 109.5      |
| C8—C7—C5            | 106.7 (3)  | C10-C11-H11B  | 109.5      |
| N1—C7—C5            | 128.7 (3)  | H11A—C11—H11B | 109.5      |
| C7—C8—O1            | 111.6 (3)  | C10—C11—H11C  | 109.5      |
| C7—C8—C9            | 129.1 (3)  | H11A—C11—H11C | 109.5      |
| O1—C8—C9            | 119.3 (3)  | H11B—C11—H11C | 109.5      |
| O4—C9—O5′           | 122.1 (10) | C9—O5'—C10'   | 116.8 (15) |
|                     |            |               |            |

| O4—C9—O5      | 126.6 (10) | C11′—C10′—O5′    | 99.7 (13)   |
|---------------|------------|------------------|-------------|
| O4—C9—C8      | 122.8 (3)  | C11′—C10′—H10C   | 111.8       |
| O5′—C9—C8     | 114.4 (11) | O5'—C10'—H10C    | 111.8       |
| O5—C9—C8      | 110.1 (10) | C11′—C10′—H10D   | 111.8       |
| O2—C12—O3     | 124.8 (3)  | O5'—C10'—H10D    | 111.8       |
| O2—C12—N1     | 125.5 (3)  | H10C—C10′—H10D   | 109.6       |
| O3—C12—N1     | 109.7 (3)  | C10'—C11'—H11D   | 109.5       |
| O3—C13—C14    | 107.5 (3)  | C10'—C11'—H11E   | 109.5       |
| O3—C13—H13A   | 110.2      | H11D—C11′—H11E   | 109.5       |
| C14—C13—H13A  | 110.2      | C10'—C11'—H11F   | 109.5       |
| O3—C13—H13B   | 110.2      | H11D—C11′—H11F   | 109.5       |
| C14—C13—H13B  | 110.2      | H11E—C11′—H11F   | 109.5       |
| H13A—C13—H13B | 108.5      |                  |             |
|               |            |                  |             |
| C6—C1—C2—C3   | -0.5 (6)   | C7—C8—C9—O5′     | 164.7 (13)  |
| Br1—C1—C2—C3  | 179.9 (3)  | 01               | -13.8 (13)  |
| C1—C2—C3—C4   | -0.1 (6)   | C7—C8—C9—O5      | -178.0 (12) |
| C2—C3—C4—O1   | -177.6 (4) | 01               | 3.5 (13)    |
| C2—C3—C4—C5   | 0.7 (6)    | O2—C12—N1—C7     | -9.0 (6)    |
| O1—C4—C5—C6   | 177.7 (3)  | O3—C12—N1—C7     | 170.8 (3)   |
| C3—C4—C5—C6   | -0.8 (6)   | C8—C7—N1—C12     | -138.4 (4)  |
| O1—C4—C5—C7   | 0.1 (4)    | C5—C7—N1—C12     | 45.2 (5)    |
| C3—C4—C5—C7   | -178.3 (4) | C5—C4—O1—C8      | -0.3 (4)    |
| C2-C1-C6-C5   | 0.4 (5)    | C3—C4—O1—C8      | 178.2 (4)   |
| Br1-C1-C6-C5  | -180.0 (2) | C7—C8—O1—C4      | 0.3 (4)     |
| C4—C5—C6—C1   | 0.2 (5)    | C9—C8—O1—C4      | 179.1 (3)   |
| C7—C5—C6—C1   | 176.8 (4)  | O2—C12—O3—C13    | 0.4 (5)     |
| C4—C5—C7—C8   | 0.1 (4)    | N1-C12-O3-C13    | -179.4 (3)  |
| C6—C5—C7—C8   | -176.9 (4) | C14—C13—O3—C12   | 167.0 (4)   |
| C4—C5—C7—N1   | 177.0 (3)  | O4—C9—O5—C10     | 2 (2)       |
| C6—C5—C7—N1   | 0.1 (6)    | O5′—C9—O5—C10    | -78 (7)     |
| N1—C7—C8—O1   | -177.4 (3) | C8—C9—O5—C10     | 173.7 (11)  |
| C5—C7—C8—O1   | -0.3 (4)   | C9—O5—C10—C11    | 136 (2)     |
| N1—C7—C8—C9   | 4.1 (6)    | O4—C9—O5′—C10′   | -3 (2)      |
| C5—C7—C8—C9   | -178.8 (4) | O5—C9—O5′—C10′   | 109 (8)     |
| C7—C8—C9—O4   | -5.6 (7)   | C8—C9—O5'—C10'   | -173.0 (13) |
| O1—C8—C9—O4   | 175.9 (4)  | C9—O5'—C10'—C11' | -178 (2)    |

# Hydrogen-bond geometry (Å, °)

| D—H···A                               | D—H      | H···A    | $D \cdots A$ | D—H···A |
|---------------------------------------|----------|----------|--------------|---------|
| N1—H1…O4                              | 0.89(1)  | 2.40 (3) | 2.909 (4)    | 117 (3) |
| N1—H1···O2 <sup>i</sup>               | 0.89(1)  | 2.27 (2) | 3.021 (4)    | 142 (3) |
| C10—H10 <i>B</i> ····O4 <sup>ii</sup> | 0.97 (1) | 2.66 (2) | 3.427 (4)    | 135 (3) |

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+1, –*y*–1, –*z*+1.