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Objective: To examine whether prefrontal electroencephalography (EEG) can be used
for screening dementia.

Methods: We estimated the global cognitive decline using the results of Mini-Mental
Status Examination (MMSE), measurements of brain activity from resting-state EEG,
responses elicited by auditory stimulation [sensory event-related potential (ERP)],
and selective attention tasks (selective-attention ERP) from 122 elderly participants
(dementia, 35; control, 87). We investigated that the association between MMSE
and each EEG/ERP variable by using Pearson’s correlation coefficient and performing
univariate linear regression analysis. Kernel density estimation was used to examine the
distribution of each EEG/ERP variable in the dementia and non-dementia groups. Both
Univariate and multiple logistic regression analyses with the estimated odds ratios were
conducted to assess the associations between the EEG/ERP variables and dementia
prevalence. To develop the predictive models, five-fold cross-validation was applied to
multiple classification algorithms.

Results: Most prefrontal EEG/ERP variables, previously known to be associated with
cognitive decline, show correlations with the MMSE score (strongest correlation has
|r| = 0.68). Although variables such as the frontal asymmetry of the resting-state EEG
are not well correlated with the MMSE score, they indicate risk factors for dementia. The
selective-attention ERP and resting-state EEG variables outperform the MMSE scores
in dementia prediction (areas under the receiver operating characteristic curve of 0.891,
0.824, and 0.803, respectively). In addition, combining EEG/ERP variables and MMSE
scores improves the model predictive performance, whereas adding demographic risk
factors do not improve the prediction accuracy.

Conclusion: Prefrontal EEG markers outperform MMSE scores in predicting
dementia, and additional prediction accuracy is expected when combining them with
MMSE scores.

Significance: Prefrontal EEG is effective for screening dementia when used
independently or in combination with MMSE.

Keywords: dementia, Alzheimer’s disease, electroencephalography, electrophysiology, event-related potential,
Mini-Mental Status Examination

Frontiers in Aging Neuroscience | www.frontiersin.org 1 April 2021 | Volume 13 | Article 659817

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.659817
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.659817&domain=pdf&date_stamp=2021-04-13
https://creativecommons.org/licenses/by/4.0/
mailto:jaeukkim@kiom.re.kr
https://doi.org/10.3389/fnagi.2021.659817
https://www.frontiersin.org/articles/10.3389/fnagi.2021.659817/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Doan et al. Prediction, Dementia, Prefrontal Electroencephalography, Event-Related Potential

INTRODUCTION

Dementia is a clinical syndrome that comprises a group of
neurodegenerative disorders related to cognitive decline that
influence memory, language presentation, social abilities, and
executive functions, et cetera (McKhann et al., 2011; DSM-5).
With the progression of cognitive decline, dementia patients
gradually experience memory deficits, communication disorders,
and difficulty performing activities of daily living and eventually
become fully dependent on caregivers (Chertkow et al., 2013).
Alzheimer’s disease (AD) is the most common cause of dementia,
representing 60%–70% of cases. Other common causes of
dementia include cerebrovascular disease, Lewy Bodies disease,
and frontotemporal dementia (World Health Organization,
2020).

Aging is the major risk factor for dementia, which has a
prevalence of approximately 97% in population aged 65 years and
above (Alzheimer’s Association Report, 2020). The increasing
world population and life expectancy have led to a rapid increase
in the number of dementia patients, which is estimated to
reach 82 million people worldwide by 2030 (World Health
Organization, 2020). A substantial burden on social care and
degradation of quality of life may follow. Furthermore, the
deaths attributed to AD have positioned this condition as the
fifth leading cause of death globally, causing 122,019 deaths in
2018 alone (Alzheimer’s Association Report, 2020).

Although no known treatment is highly effective for any type
of dementia, combined therapeutic tools which are available
to mitigate the after effects of cognitive impairment, especially
during the early stages of these diseases (Robinson et al.,
2015; Tisher and Salardini, 2019). Moreover, the effectiveness
of early therapeutic interventions can be increased to achieve
disease modification when neuronal degeneration has not yet
begun (Sperling et al., 2011; Tisher and Salardini, 2019). As
the disease progresses, neurons accumulate abnormal proteins,
such as beta-amyloid and tau proteins, and exhibit mitochondrial
dysfunction and calcium homeostasis dysregulation (Niedowicz
et al., 2011; Kocahan and Doan, 2017; Farooqui, 2019). In the
later stages, the brain of the patient presents neuroinflammation
and irreversible synaptic loss, leading to neuronal death and
brain tissue damage (Niedowicz et al., 2011; Kocahan and Doan,
2017; Farooqui, 2019).

Early detection of neuronal damage in the brain that enables
both timely therapeutic intervention to manage the symptoms
and adequate preparation of patients and caregivers. Early
prediction of dementia is possible when the underlying disease
is defined with tangible biomarkers. Recently, the national
institute on aging and the Alzheimer’s association proposed an
AD research framework using diagnostic biomarkers that are
standardized in terms of beta-amyloid deposition, pathologic tau,
and neurodegeneration, representing a shift from syndrome to
biological constructions (Sperling et al., 2011; Jack et al., 2018).
Beta-amyloid plaques and neurofibrillary tau tangles uniquely
characterize AD among various neurodegenerative disorders
that may progress to dementia (McKhann et al., 2011; Jack
et al., 2018). Although these biomarker profiles are stated as
core neuropathologic changes for defining AD and related

terms in the research framework, they remain incomplete and
inadequate for clinical practice (Jack et al., 2018). Furthermore,
they are clinically accessible only at advanced hospitals and are
frequently costly, invasive, and time consuming. Therefore, the
development of cheap, fast, and easily accessible diagnostic and
screening tools is needed (Humpel, 2011; Zv̌ěrová, 2018).

At present, the most widely used tool for screening dementia
is the Mini-Mental Status Examination (MMSE), which exhibits
good internal consistency and concurrent validities (Boban
et al., 2012; Baek et al., 2016). MMSE has been used as a
clinical index to evaluate global cognitive performance with
five domains: orientation, registration, attention and calculation,
memory, and language (Folstein et al., 1975). Each MMSE
domain functionally reflects neural activities by specific cognitive
processing mechanisms. The noninvasive methods of EEG or
ERPs can electrically record these neural activities. Several
studies have validated the correlation between MMSE scores
and EEG/ERPs variables. For instance, the study of Garn et al.
(2014) explained 36%–51% of the variances associated with
quantitative EEG markers by using MMSE scores and exhibited
a strong correlation between MMSE scores and event-related
potential (ERP) face-name encoding task. There was a significant
negative correlation between MMSE scores with the temporal
theta to alpha ratio, with r = −0.69 in AD group (Meghdadi
et al., 2021). Significant correlations of MMSE with EEG beta
activity were also observed (Lees et al., 2016) along with
P300 latency (Tanaka et al., 1998; Lee et al., 2013). Notably,
MMSE scores were effectively correlated with prefrontal EEG
slowing biomarkers, as indicated from one of our previous
publications (Choi et al., 2019).

Meta-analysis showed that using the MMSE alone yielded
a pooled accuracy of 85%–87% for sensitivity and 82%–90%
for specificity to screen dementia (cutoff value of 24–25); after
adjusting for education level, the sensitivity and specificity were
97% and 70%, respectively (Creavin et al., 2014). In another
review of the conversion from mild cognitive impairment
(MCI) into AD dementia, the MMSE provided 27%–89%
pooled sensitivity with 32%–90% specificity (Arevalo-Rodriguez
et al., 2015). Although these meta-analyses have demonstrated a
moderate to high accuracy of the MMSE for screening dementia,
the cross-validation approach has frequently been neglected; this
has led to questions regarding the overfitting of the selected
models. In the medical sciences, a cross-validation approach
is being increasingly adopted to obtain an unbiased prediction
accuracy with high reliability (Wong and Yeh, 2020). Even
though MMSE is the most prevalent screening tool for dementia,
it suffers from some limitations such as barriers due to language
or educational background, the learning effect, or low sensitivity
in the early stage of cognitive decline (Scazufca et al., 2009; Duff
et al., 2012; Carnero-Pardo, 2014; Gross et al., 2018).

Electroencephalography (EEG) may overcome or supplement
the limitations of conventional screening tools such as the
MMSE for the early detection of dementia, as it is non-
invasive, relatively inexpensive, and portable, while allowing
repeated measurements with none or minimal learning effects
(Ben-David et al., 2011). Numerous studies have demonstrated
that resting-state EEG biomarkers or event-related potential
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(ERP) components obtained from EEG signals are reliable
for distinguishing dementia from normal controls or other
neurological disorders. For instance, by using quantitative EEG
features with artificial neural networks, the classification of MCI
from elderly normal individuals produced 95.87% sensitivity and
91.06% specificity (Rossini et al., 2008) and a classification model
between AD and MCI achieved 94.10% accuracy (Buscema
et al., 2007). Further, 92.2% accuracy was obtained for an Area
Under the Receiver Operating Characteristic curve (AUROC)
of 0.965 by using the cognitive data cluster of the Consortium
to Establish a Registry for the Alzheimer’s Disease (CERAD)
neuropsychological battery, MMSE, and clinical dementia rating;
however, in combination with a quantitative EEG analysis of
the absolute band power at rest, 95.3% accuracy was achieved
with an AUROC of 0.983 when distinguishing AD patients
from non-AD persons (Fonseca et al., 2011). In addition, the
N200 ERP component can identify memory changes better than
MMSE (Papaliagkas et al., 2008).

With the recent advances in hardware and signal processing
techniques, EEG systems with fewer channels have become
emerging research topics as they can improve the simplicity
and convenience of data acquisition and analysis in clinical
environments. For instance, single-channel EEG signals have
been tested for the detection of MCI, reaching 87.9% accuracy
by using a support vector machine with leave-one-out cross-
validation (Khatun et al., 2018). Similarly, single-channel EEG
features, such as the power spectrum or amplitude, and ERP
features (e.g., latency) have been used to distinguish early AD
from normal controls, while reaching 81.90% accuracy (Cho
et al., 2003). More recently, Choi et al. (2019) used the prefrontal
EEG signals (channels Fp1 and Fp2 in the 10–20 system) and
obtained a correlation of up to 0.757 in the regression model to
predict the MMSE score for older individuals.

In this study, we intended to examine whether prefrontal
EEG can be used for screening dementia. First, we examined
the correlations between the MMSE score and selected
EEG/ERP variables. Second, we compared the distributions
of selected variables between the dementia and cognitively
normal persons. Third, we estimated the associations of these
variables with dementia using logistic regression. Finally, we
developed prediction models for dementia by combining
variables from resting-state EEG, sensory event-related
potential (ERP), and selective-attention ERP results. We
compared the model prediction accuracies with and without
the MMSE score and demographic information, and we
verified the applicability of the models by performing a double
cross-validation test.

MATERIALS AND METHODS

Subjects
From September to October 2017, 155 elderly individuals from
four health centers (two geriatric hospitals: sites 1 and 2; two
public health centers: sites 3 and 4) were recruited for this study.
The participants, aged 50 years or older, were located in Uiryeong
County, Korea. This observational study was performed as part

of the Brain Aging Map Project, a community welfare project
conducted in Uiryeong County. Four clinical research nurses
were trained to operate EEG systems and other devices and
performed participation scheduling, data acquisition, and result
consultations. County dwellers were recruited through phone
calls, brochures, flyers, and poster advertisements.

The individuals participated voluntarily for approximately,
90 min to measure global cognitive decline [MMSE-DS, a
Korean version of the MMSE (Tae et al., 2010)], geriatric
depression [KGDS, a Korean version of the Geriatric Depression
Scale (GDS; Kim et al., 2001; Bae and Cho, 2004)], and
EEG/ERP examinations, among others. All the confirmed
demented patients were clinically diagnosed in the current
centers by their clinicians or by previous medical exams
conducted from other hospitals. Medical records including the
diagnostic details for dementia patients were not provided
in this study. Despite this limitation, dementia patients were
confirmed according to a standardized diagnostic guideline,
according to ‘‘Clinical practice guideline for dementia by
Clinical Research Center for Dementia of South Korea’’ (Bon
et al., 2011). This so-called CREDOS CPG was established
in 2011, and offers clinical standards for AD dementia and
vascular dementia in South Korea; dementia is diagnosed by
comprehensive assessment of dementia, which includes history-
taking, neurological examinations, neuropsychological tests,
physical evaluation, brain imaging, and laboratory tests. The
Diagnostic and Statistical Manual of Mental Disorders IV (DSM-
IV; American Psychiatric Association, 2013) was used for the
dementia criteria (Bell, 1994), and the International Statistical
Classification of Diseases and Related Health Problems 10th
edition (ICD-10) was used to classify the disease stage (World
Health Organization, 1992). All the normal individuals were
recruited from public health centers with the assumption that
they showed no evidence of dementia. The following individuals
and subjects were excluded from the study: those who had
a meal or performed intensive physical exercise within 1 h
before beginning the experiments; those who had insufficient
sleep (<4 h) during the previous night; those with physical
abnormalities that impeded adequate EEG electrode placement;
and those not apt for the study as assessed by the clinical
research nurses.

Consent was obtained after providing complete descriptions
about the purpose of the study to the participants or their
caregivers. The study protocol was approved by the Institutional
Review Board of the Korea Institute of Oriental Medicine
(KIOM; approval number: I-1807/007-003). The study was
performed in accordance with the Declaration of Helsinki.
Figure 1 shows the consolidated standards of reporting trials
(CONSORT) diagram corresponding to this study.

The demographic data, including age, sex, education level,
comorbidities, and current treatments, were obtained from
the participants. Subsequently, they underwent the MMSE-DS,
KGDS, and EEG/ERP experiments.

EEG/ERP Acquisition and Experiments
The brain activity was noninvasively recorded via EEG at two
prefrontal monopolar scalp electrodes (channels Fp1 and Fp2)
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FIGURE 1 | Consolidated Standards of Reporting Trials (CONSORT) diagram illustrating enrollment and exclusion criteria for this study.

according to the International 10-20 system, with the right
earlobe electrode serving as a reference. The EEG system used
was the NeuroNicle FX2 (LAXTHA, Daejeon, South Korea) with
band-pass filtering from 3–43 Hz and input voltages of ±393
µV (input noise below 0.6 µVrms). The signals passed through
an infinite impulse response, including Butterworth highpass
and lowpass filters with cutoff frequencies of 2.6 and 43 Hz,
respectively. In addition, a bandstop filter was set between
55 and 65 Hz. All the EEG electrode contact impedances were
maintained below 10 kΩ. The data were digitized in continuous

recording mode at a 250 Hz sampling frequency and a 15-bit
resolution (Choi et al., 2019). To eliminate muscle and eye
movement artifacts and monitor sleepiness in the subjects,
qualified operators inspected the individuals and EEG traces
during the recordings. The operator guided the participants to
remain comfortably seated with their eyes closed and alerted
them whenever signs of behavioral or EEG drowsiness were
detected. Thirty-three subjects were excluded from the study
due to noise, artifacts, and incomplete demography information
(Figure 1; Choi et al., 2019).
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Electroencephalography (EEG) signals from the participants
were acquired while they remained seated in an upright position
under three sequential conditions: (1) spontaneous brain activity
to establish background EEG signals in a resting state for
5 min (resting-state EEG); (2) sensory-evoked potentials (sensory
ERP) for 8 min; and (3) a selective attention task to acquire
the corresponding ERPs (selective-attention ERP) for 5 min.
All participants were tested for auditory hearing ability before
operating the experiments.

To elicit the sensory ERP, each participant was instructed
to avoid motion while perceiving eight intonations from
auditory stimuli at 125, 250, 500, 750, 1,500, 2,000, 3,000,
and 4,000 Hz. The sequence of intonation was allocated by a
pseudo-random function, in which the same intonation was
not provided consecutively over the 480 stimuli presented. The
pseudorandomized eight intonations function as non-repeated
stimuli, which helps to avoid the sensory adaptation effect and
therefore maintain the response sensitivity. Sensory adaptation
leads to the attenuation of neuronal responsiveness over time
after the sensory neurons are exposed to a repeated stimulation
(Pérez-González and Malmierca, 2014). Another reason for
selecting eight intonations, lies in the fact that hearing loss
due to aging generally occurs in high frequency and low
frequency regimes, which would be reflected in the frequency
response pattern of sensory ERP (Ciorba et al., 2011; Rigters
et al., 2016). Each participant received the auditory stimuli
through earphones at a volume level of 70 dB. The duration
of each stimulus was 50 ms, with rise and fall times being
within 1 ms and the interval between consecutive stimuli
being 1 s.

To elicit the selective-attention ERP, we adopted an active
auditory oddball task presenting 64 rare random-sequenced
target stimuli of 2,000 Hz (1/5 ratio) and 256 monotonic standard
auditory stimuli of 750 Hz (4/5 ratio). The stimulus presentation
was the same as that adopted to elicit the sensory ERP. The
participants were asked to press a response key upon recognition
of the target stimuli. The recordings were conducted while the
participants kept their eyes closed in a soundless room with
regular illumination.

Preprocessing and Variable Extraction
We tested data for contamination due to muscle and eye
movement of the (Fp1, Fp2) prefrontal EEG signals as we
did not reject any artifact in the signal processing. First, we
checked that none of the EEG data were contaminated by
large amounts of artifacts. Specifically, none of the participants
contained more than 10% of epochs exceeding 200 µV in
maximum amplitude; this value was a common exclusion
threshold of each epoch due to serious artifacts (Noh et al.,
2006). When applying a stricter voltage threshold of 100 µV,
we still found no participants for whom 10% of the epochs
exceeded this threshold. Therefore, none of the eye-closed
resting-state EEG data were rejected due to artifacts in
this study.

Frequency-domain (or spectral-domain) features are typically
used in the quantitative analysis of EEG rhythms. To transform
an EEG signal from the time domain into the frequency

domain, a Fourier transform of the autocorrelation function was
employed to provide the power spectral density. In the eye-closed
resting EEG, intrinsic oscillation reflective of an idling cortical
state becomes dominant, and the dominant peak frequency is
usually located in the 4–13 Hz band. Previous reports have
commonly revealed that the dominant oscillatory frequencies
that appear in the alpha band during normal aging become lower
in cognitively disordered patients (Jackson and Snyder, 2008;
Jelic and Kowalski, 2009).

Some of the variables used in the resting-state EEG results are
explained further. The resting-state EEG markers were derived
from a frequency-domain analysis of EEG data measured over
5 min. Concretely, the median frequency measures the average
frequency and the peak frequency measures the frequency
at the maximum peak, in the dominant intrinsic oscillatory
frequency band of 4–13 Hz of the EEG power spectrum. The
alpha-to-theta ratio measures the power ratio of alpha rhythms
(8–12.99 Hz) to theta rhythms (4–7.99 Hz). The EEG power
spectrum was obtained by fast Fourier transform of the EEG
signal using a rectangular window. The median frequency was
calculated in two steps. Step 1: all spectral power values in the
4–13 Hz frequency domain were summed and divided by 2.
Step 2: the frequency at which the cumulative power in the
4–13 Hz frequency domain first, exceeded the value calculated
in step 1 was selected. The peak frequency was determined
as the frequency at which the power of the EEG spectrum
in the 4–13 Hz frequency domain was largest. The absolute
power was calculated in the following four frequency regions:
delta (0–3.99 Hz), theta (4–7.99 Hz), alpha (8–12.99 Hz), and
beta (13–30 Hz). The power data were then logarithmically
transformed to fulfill the normal distributional assumptions
required for parametric statistical analysis (Choi et al., 2020). The
alpha-to-theta ratio was obtained by dividing the alpha power
by the theta power, and the frontal asymmetry was obtained by
taking the difference between the right and left alpha powers and
dividing by their sum.

The ERP markers were derived from event-related potentials
extracted by the conventional ensemble averaging method in
EEG with stimuli. Sensory ERP variables that are exogenous
sensory components represent sensory processes that mainly
depend on the stimuli physical parameters and also can be
influenced by cognitive processes (Pratt, 2012). The selective
attention ERP components measure higher processes of cognitive
function, which are related to endogenous cognitive activity
(Woodman, 2010). Five variables were considered from the
sensory ERP results: The average voltage peak (amplitude),
average response time, amplitude deviation, response time
deviation, and center-to-edge amplitude difference. Four
variables were extracted from the selective-attention ERP results:
the number of correct responses, response time, weighted error
percentile, and voltage peak difference between the response and
background ERPs. Voltage peak is the maximum amplitude of
the ERP signal. The response time is the time corresponding
to the voltage amplitude peak and is calculated relative to
the stimulus onset. All markers were averaged over the left
and right signals. The extracted variables are summarized in
Table 1.
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TABLE 1 | EEG/ERP variables considered in this study.

Type Variable Notation Unit Definition/description Alteration in dementia
patients

Resting-
state
EEG

Median frequency MEF Hz Frequency at which the
cumulative power spectral
density between 4 and
13 Hz is divided into two
equal amounts (the 50%
quantile).
Median frequency is
obtained by
f = MEF∑

f = 4
PSD [f ] =

f = 13∑
f = MEF

PSD [f ]

Median frequency and peak
frequency decrease in dementia
patients (Garcés et al., 2013;
Nina et al., 2014; Babiloni et al.,
2018; Rossini et al., 2020)

=
1
2

f = 13∑
f = 4

PSD [f ]

PSD, power spectral
density

Peak frequency – Hz Frequency at which peak
power occurs in 4–13 Hz

Peak power – µV2 Maximum PSD amplitude in
4–13 Hz

Shift to lower frequency in peak
power in dementia patients
(Raicher et al., 2008; Rodriguez
et al., 2011)

Alpha power Alpha (avg.) µV2 Alpha band (8–12.99 Hz)
power averaged over left
and right hemispheres

General reduction in alpha band
power is an EEG hallmark in AD
(Li et al., 2020)

Theta power Theta (avg.) µV2 Theta band (4–7.99 Hz)
power averaged over left
and right hemispheres

Theta power significantly
increases in patients with AD
dementia. There are significant
correlation between relative
theta power and multiple
neuropsychological measures
and total tau proteins
(Rodriguez et al., 2011; Vecchio
et al., 2011; Musaeus et al.,
2018)

Beta power Beta (avg.) µV2 Beta band (13–30 Hz)
power averaged over left
and right hemispheres

Decrement in relative and
absolute beta band power was
found in dementia patients
(Coben et al., 1983;
Holschneider and Leuchter,
1995; Christov and Dushanova,
2016)

Alpha-to-theta ratio Alpha/theta – Ratio of alpha to theta band
power
Alpha-to-theta
ratio = alpha/theta

Lower alpha-to-theta ratio in
early and moderate AD patients
(Cibils, 2002; Schmidt et al.,
2013; Choi et al., 2019)

Frontal asymmetry – – Asymmetry ratio of alpha
band power between right
and left hemispheres:
FA = (R − L)/(R + L),
R(L), absolute alpha band
power from right (left)
hemisphere

Alpha asymmetry is mainly
reported in depression-related
diseases as greater alpha
power in the left frontal region in
patients with major depression
(Jesulola et al., 2017; Roh
et al., 2020)

Sensory
ERP

Voltage amplitude
peak

Amplitude µV Voltage peak of ERP
responses averaged over
different frequencies

Sensory ERP components were
found to be relatively low in
sensitivity to detect changes in
dementia (Hirata et al., 2000;
Olichney et al., 2011)

(Continued)
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TABLE 1 | Continued

Type Variable Notation Unit Definition/description Alteration in dementia
patients

Response time – ms Mean time delay between stimulus and
response (i.e., voltage peak) averaged
over different frequencies

Delayed response across
different auditory and visual
oddball tasks in dementia
patients (Cecchi et al.,
2015; Gu et al., 2018)

Voltage amplitude
deviation

Amplitude
(deviation)

µV Standard deviation between voltage
peaks over different frequencies

–

Response time
deviation

Response
time
(deviation)

ms Standard deviation between response
times over different frequencies

–

Center-to-edge
amplitude
difference

Amplitude
(edge-
center
ratio)

– Mean voltage peaks at 500, 750,
1,500, and 2,000 Hz minus mean
voltage peaks at 125 and 4,000 Hz
divided by their sum

–

Selective-
attention
ERP

Number of correct
responses

# of correct – Number of correct responses for target
stimulus (2,000 Hz tone) distinguished
from background stimulus (750 Hz
tone)

Reduced accuracy in
ERP-related tasks in
dementia patients
(Mathalon et al., 2003;
Cecchi et al., 2015; Gu
et al., 2018)

Response time Resp. Time s Time between auditory stimulation and
voltage peak of EEG voltage oscillations

Response time to evoked
auditory stimuli increases in
dementia patients (Yener
and Başar, 2010; Gu et al.,
2018)

Weighted error
percentile

wER – wER = (no. errors + 4 × (64 − no.
correct recognitions)/(256 + 64 × 4)
No. of target (background) stimuli = 64
(256)

–

Amplitude
difference between
response and
background ERP

Amp (resp)
– Amp (bg)

µV Difference in voltage peaks of EEG
oscillations between target and
background stimuli

Patients with AD dementia
showed lower amplitude for
ERP features (Vecchio and
Määttä, 2011; Cecchi et al.,
2015)

Eight variables from resting-state EEG, five from sensory ERP, and four from selective attention ERP. EEG, electroencephalography; ERP, event-related potential.

Statistical Analysis
The significant level for all statistical tests is set to α = 0.05.
The demographic and neuropsychological characteristics were
summarized as the means and standard deviations (SDs) or
medians and ranges (from minimum to maximum values) for
continuous variables, and as the frequencies and proportions
for categorical variables for the dementia and non-dementia
groups. Either an independent two-sample t-test or a Mann-
Whitney-Wilcoxon rank-sum test was performed after checking
the normality of each group of data based on the Shapiro-Wilk
test to assess the differences in the continuous variables across
dementia and non-dementia individuals. The chi-squared (χ2)
test or the Fisher’s exact test was used to check the independence
of the categorical variables from the dementia status. The
association between the MMSE score and each EEG/ERP variable
was evaluated using the Pearson’s correlation coefficient (ρ̂) and
slope of each EEG measurement (β̂) obtained from univariate
linear regression analysis.

The distribution of every EEG/ERP variable for the dementia
and non-dementia individuals was obtained using kernel density
estimation to visualize the natural differences in both groups for
illustrative purposes. Univariate and multiple logistic regression

analyses were conducted to estimate the unadjusted or adjusted
odds ratios for dementia in each EEG/ERP variable to assess
the associations between the EEG/ERP variables and dementia
prevalence. In the multiple logistic regression analysis, sex, age,
education level, and GDS score were used as covariates. The
underlying diseases of the participants described in Table 2
were not considered as covariates due to the small sample size.
Furthermore, the MMSE score was included as an additional
covariate in the regression model to identify the independent
association of the EEG/ERP variables for dementia.

Dementia prediction models were developed based on all
EEG/ERP and demographic variables (age, sex, and education
level) that are directly associated with cognitive status. The
MMSE score was also used as a single predictor to compare
the performances of the models using EEG/ERP features
or to investigate the improvement of the predictive models
using EEG/ERP features in combination with the MMSE
score. All continuous predictors were standardized to a mean
of 0 and SD of 1 for data preprocessing. For the model
comparisons, we generated 12 datasets based on combination
of the variable groups: MMSE score, demographics, resting-
state EEG, sensory ERP, and selective attention ERP. The
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TABLE 2 | Demographic information and neuropsychological test results of dementia and non-dementia subjects.

Total (n = 122) No (n = 87) Yes (n = 35) Test Statistic

Age [years]
Mean (SD) 71.0 (±11.9) 68.2 (±11.2) 78.1 (±10.7)
Median [range] 73.9 [42.3–95.9] 68.7 [48.3–90.6] 78.6 [42.3–95.9] W = 777.0, p = 0.0000

Sex
Male 30 (25%) 22 (25%) 8 (23%)
Female 92 (75%) 65 (75%) 27 (77%) χ2

(df = 1) = 0.0, p = 9.605E-1
Education level [year]

Mean (SD) 6.0 (±5.0) 7.1 (±5.0) 3.4 (±3.9) W = 2,148.5, p = 0.0003
Median [range] 6.0 [0.0–18.0] 6.0 [0.0–18.0] 0.0 [0.0–12.0]

Systolic BP [mmHg]
Mean (SD) 125.6 (±16.4) 125.1 (±15.5) 126.9 (±18.6) t120.0 = –0.6, p = 0.5716
Median [range] 123.5 [80.0–170.0] 123.0 [80.0–170.0] 130.0 [98.0–169.0]

Diastolic BP [mmHg]
Mean (SD) 73.5 (±11.7) 74.3 (±12.0) 71.4 (±10.8) t120.0 = 1.3, p = 0.2091
Median [range] 70.0 [41.0–100.0] 73.0 [41.0–100.0] 70.0 [45.0–95.0]

MMSE score
Mean (SD) 23.2 (±5.7) 25.3 (±4.6) 18.0 (±5.0) W = 2630.0, p < 1E-6
Median [range] 25.0 [5.0–30.0] 27.0- [12.0–30.0] 18.0 [5.0–28.0]

GDS score
Mean (SD) 12.2 (±6.5) 10.7 (±6.0) 16.0 (±6.1) W = 810.5, p = 0.0001
Median [range] 11.0 [1.0–28.0] 9.0 [1.0–24.0] 16.0 [2.0–28.0]

Diabetes
No 101 (83%) 73 (84%) 28 (80%) χ2

(df = 1) = 0.1, p = 0.8010
Yes 21 (17%) 14 (16%) 7 (20%)

Hypertension
No 60 (49%) 46 (53%) 14 (40%) χ2

(df = 1) = 1.2, p = 0.2774
Yes 62 (51%) 41 (47%) 21 (60%)

Hyperlipidemia
No 105 (86%) 73 (84%) 32 (91%) FE-test, p = 0.3900
Yes 17 (14%) 14 (16%) 3 (9%)

Thyroid disease
No 115 (94%) 81 (93%) 34 (97%) FE-test, p = 0.6718
Yes 7 (6%) 6 (7%) 1 (3%)

Mental disorder
No 93 (76%) 81 (93%) 12 (34%) χ2

(df = 1) = 44.5, p < 1E-6
Yes 29 (24%) 6 (7%) 23 (66%)

Nervous system disease
No 111 (91%) 79 (91%) 32 (91%) FE-test, p = 1.0000
Yes 11 (9%) 8 (9%) 3 (9%)

Circulatory disease
No 118 (97%) 84 (97%) 34 (97%) FE-test, p = 1.0000
Yes 4 (3%) 3 (3%) 1 (3%)

The values represent the mean (±SD), median and range (minimum–maximum) for the continuous variables and N (%) for the categorical variables. The test statistics and p-values for
the continuous variables were obtained from an independent two sample t-test (t value with degree of freedom, df) or a Mann-Whitney-Wilcoxon rank sum test (W) after checking the
normality of each group of data based on the Shapiro-Wilk test. For the categorical variables, the p-values were derived from the chi-squared test statistics. FE-test: Fisher’s exact
test.

interaction terms between sex and other variables were
included as predictors in each candidate model containing
demographic features.

In total, 122 participants were randomly split, with 80% being
in the training set (n = 98) and 20% in the test set (n = 24). The
dementia cases in both the training and test sets were distributed
proportionally to the total sample size. Before assigning data to
the training and test sets, the total dataset was stratified by the
dementia status. Consequently, 20% of the data were randomly
selected according to each stratum, and then the selected data
from both strata were merged into the test dataset. The rest 80%
of the data of both strata were merged into the training set.
We trained several learning algorithms using a five-fold cross-
validation approach, for which the training dataset was again
stratified according to the dementia status; subsequently, the

randomly generated fold identifiers were given to each stratified
group. The learning algorithms employed in this study included
binary logistic regression with stepwise variable selection based
on Akaike information criteria; penalized logistic regression
including ridge, elastic net, and least absolute shrinkage selection
operator (Friedman et al., 2020); random forest algorithm
(Wright et al., 2020); and extreme gradient boosting (Chen et al.,
2020). The model performance was evaluated using the AUROC
and binomial deviance. The optimal model (with the highest
AUROC and lowest binomial deviance) was selected within each
combination of learning algorithms and 12 datasets, and its
prediction power was evaluated with the test set. All statistical
analyses and predictive model development were conducted
using the statistical software R (version 4.0.2, released 2019-06-
22; R Core Team, 2020).
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RESULTS

‘‘Subject Characteristics’’ section describes the basic
characteristics of the participants with regard to their
demographics, neuropsychological information, and
comorbidities. ‘‘Correlation Between MMSE Score and EEG
Measures’’ section demonstrates the correlation between
the EEG/ERP variables and conventional MMSE scores for
screening dementia using linear regression analysis. ‘‘Densities
of EEG/ERP Variables Between Dementia and Non-dementia
Subjects’’ section reports the distribution of each EEG/ERP
variable by its density in the dementia and non-dementia
groups. ‘‘Relation Between EEG/ERP Variables and Dementia’’
section clarifies the relations between the EEG/ERP variables
and dementia, using the estimated odds ratios in the unadjusted
and the two adjusted models based on logistic regression.
Finally, ‘‘Prediction Models for Dementia’’ section provides an
evaluation of the various dementia prediction models based on
the EEG/ERP variables, MMSE scores, and demographic data.

Subject Characteristics
The overall demographic information, neuropsychological
characteristics, and comorbidities of the 122 persons enrolled
in this study are listed in Table 2. Among the participants,
87 were non-dementia individuals, and the remaining
35 were confirmed dementia patients. Further, 25% of the
participants were male and the remaining 75% were female.
The ages of the dementia and non-dementia groups were
78.1 ± 10.7 and 68.2 ± 11.2 years (mean ± standard deviation),
respectively, and their education levels were 3.4 ± 3.9 and
7.1 ± 5.0 years (p < 0.05), respectively. The MMSE score
was 18.0 ± 5.0 for the dementia patients and 25.3 ± 4.6 for
the non-dementia individuals and ranged from 5.0–30.0
(p < 0.05). Thus, the dementia patients exhibited lower MMSE
scores and education levels and higher mean ages than the
non-dementia individuals (Pedraza et al., 2013; Qin et al.,
2020). Moreover, the GDS score was higher in the dementia
individuals (16.0 ± 6.1, mean ± standard deviation) than in
the non-dementia subjects (10.8 ± 6.2). The physiological and
psychological information, such as blood pressure, diabetes,
hypertension, and mental disorders, showed no statistically
significant differences.

Correlation Between MMSE Score and
EEG Measures
We investigated the relations between the MMSE score and
prospective EEG/ERP variables from the resting-state EEG,
sensory ERP, and selective-attention ERP using linear regression
models and the Pearson correlation coefficients, obtaining
the results shown in Figure 2. Weak to moderate linear
correlations are observed between the MMSE score and
EEG/ERP variables.

Among the resting-state EEG variables, the median frequency,
peak frequency, and alpha-to-theta ratio show positive moderate
linear correlations with the MMSE score, with average Pearson
correlation coefficient (ρ̂) of 0.55–0.68 and average regression
coefficients (β̂) of 2.55–10.29. The theta power shows a negative

linear correlation with the MMSE score, with ρ̂ = −0.43 and
β̂ = −4.34. Individual variables from the sensory ERP show
weak negative correlations with the MMSE scores, with ρ̂ from
−0.12 to −0.24. For the selective-attention ERP variables, the
MMSE scores show moderate linear correlations with the most
variables, including positive correlations with the number of
correct responses and amplitude difference between responses,
with ρ̂ = 0.58 and ρ̂ = 0.27, respectively, and negative correlations
with the response time and weighted error percentile, with ρ̂

ranging from−0.40 to−0.68.

Densities of EEG/ERP Variables Between
Dementia and Non-dementia Subjects
We determined the distribution of each EEG/ERP variable
based on its density in the dementia and non-dementia
groups, obtaining the results shown in Figure 3. Overlapping
distributions are observed for some variables obtained from
the resting-state EEG and sensory ERP results. However, the
variables exhibiting moderate correlations with the MMSE score
(reported in ‘‘Correlation Between MMSE Score and EEG
Measures’’ section) consistently show significant differences
between the dementia and non-dementia groups. Specifically,
the median frequency, peak frequency, alpha-to-theta ratio,
and theta power from the resting-state EEG results; average
response time from the sensory ERP results; and all selective-
attention ERP variables exhibit significant differences between
the dementia and non-dementia groups. Overall, the observed
differences in the distributions of the EEG/ERP variables
reflect the different cognitive statuses of the dementia and
non-dementia groups.

Relation Between EEG/ERP Variables and
Dementia
We obtained the forest plots shown in Figure 4 for the estimated
odds ratios and the 95% confidence intervals of the EEG/ERP
variables for predicting dementia. Three logistic regression
models were considered, namely, the unadjusted model (first
model); the first model adjusted for sex, age, education level, and
GDS score (second model); and the second model also adjusted
for the MMSE score (third model).

In the first model, most variables from the resting-state EEG
and selective-attention ERP reflect the risk of dementia, with
odds ratios and 95% confidence intervals, significantly different
from 1. Specifically, small peak frequency, median frequency,
alpha-to-theta ratio, frontal asymmetry, and large theta band
power in the resting-state EEG results indicate increased risk of
dementia with mean odds ratios of 0.255, 0.285, 0.289, 0.546, and
1.699 (p-values from 1.09E-2 to 5.58E-7), respectively. Similarly,
all variables from the selective-attention ERP contribute with
mean odds ratios from 0.349–0.521 and from 2.130–2.364
(p-values from 1.96E-2 to 4.31E-5). In addition, the delayed
average response time between the left and right hemispheres
in sensory ERP also indicates increased risk of dementia
with a mean odds ratio of 1.967 (p-value of 1.25E-3). The
detailed odds ratios and p-values are presented in Appendix
Table A1.
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FIGURE 2 | Scatterplots between Mini-Mental Status Examination (MMSE) scores and electroencephalography (EEG)/event-related potential (ERP) variables. The
red and blue circles indicate the dementia and non-dementia subjects, respectively. The red line and shaded area show the estimated regression curves and 95%
confidence intervals derived from univariate regression analysis. The estimated Pearson correlation coefficient (ρ̂), regression coefficient (β̂), and p-value (P) for each
EEG/ERP variable are shown with their 95% confidence intervals (MEF, median frequency; wER, weighted error percentile).

In the second model, only the median frequency, peak
frequency, alpha-to-theta ratio, and frontal asymmetry in the
resting-state EEG results and the average response time in the

sensory ERP results are effective to identify dementia after
adjustment, with odds ratios and 95% confidence intervals
different from 1. Notably, the bounds of the 95% confidence
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FIGURE 3 | Estimated densities of EEG/ERP variables in dementia and non-dementia subjects. Q indicates values divided into four quantiles (MEF, median
frequency; wER, weighted error percentile; SD, standard deviation).

intervals of these variables in the second model are wider than
those in the first model, but they still reflect the risk factors
of dementia with p < 0.05. Hence, the median frequency,
peak frequency, alpha-to-theta ratio, frontal asymmetry and
average response time tend to be independent from the
demographic risk factors and may represent risk factors
of dementia.

In the third model, most variables correlated with the
MMSE score no longer represent risk factors, and only a few

variables, including the peak frequency and frontal asymmetry
in the resting-state EEG results and average response time
in the sensory ERP results enable identification of dementia.
Interestingly, frontal asymmetry shows no correlation with the
MMSE score, but it represents a considerable risk factor for
dementia after adjustment for demographic covariates and the
MMSE score.

Variables such as the median frequency, peak frequency,
and alpha-to-theta ratio in the resting-state EEG results
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FIGURE 4 | Estimated odds ratios and 95% confidence intervals derived from three logistic regression models. The first, second, and third columns show the
results from the unadjusted univariate logistic regression model; the model adjusted for sex, age, education level, and geriatric depression scale (GDS) score; and the
model adjusted for all these covariates and the MMSE score, respectively. The size of each circle indicates the magnitude of the estimated odds ratio, and the line
across the circle represents its 95% confidence interval. The color map represents the magnitude of the log-transformed p-values (−2log p) for the odds ratios (MEF,
median frequency; wER, weighted error percentile). The quantitative results are summarized in Appendix Table A1.

present moderate to strong correlations with the MMSE score
(reported in ‘‘Correlation Between MMSE Score and EEG
Measures’’ section) and provide consistent odds ratio values
for classifying dementia. On the other hand, the frontal
asymmetry in the resting-state EEG results and the average
response times from the left and right hemispheres in the
sensory ERP results show no or weak correlations with the
MMSE score. Nevertheless, they exhibit valid odd ratios for
classifying dementia, suggesting that they could be candidate
biomarkers for dementia screening independently from the
MMSE score.

Prediction Models for Dementia
We categorized the prediction model results into five groups
(Table 3). The first group contained univariate analysis of
MMSE, multivariate analysis of individual sets of MMSE plus
demographic information, resting-state EEG, sensory ERP, and
selective-attention ERP. The logistic regression model using
the ordinary least squares approach for parameter estimation
predicted dementia using only the MMSE score, achieving
a 0.803 AUROC and 23.845 deviance. Adding demographic
information to the MMSE score did not improve the accuracy.
In fact, the prediction model based on logistic regression plus
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TABLE 3 | Evaluation results of prediction models according to type of data and classification model.

Logistic regression Logistic regression Random forest Extreme gradient
(Ordinary least square) + Elastic net boosting

AUROC Deviance AUROC Deviance AUROC Deviance AUROC Deviance

MMSE 0.803 23.845 - - - - - -
DM + MMSE 0.664 31.380 0.803 25.234 0.748 26.200 0.752 26.995
RSEEG 0.824 23.037 0.824 22.183 0.773 23.843 0.807 23.929
sensERP 0.697 30.332 0.647 28.832 0.605 28.465 0.500 28.979
attERP 0.891 20.363 0.882 21.608 0.857 20.679 0.882 24.134
RSEEG + sensERP + attERP 0.739 42.722 0.849 21.146 0.832 22.569 0.849 21.193
DM + RSEEG + sensERP + attERP 0.571 73.514 0.832 21.439 0.832 21.954 0.832 21.295
MMSE + RSEEG 0.798 25.300 0.849 22.141 0.807 21.581 0.849 22.123
MMSE + sensERP 0.807 25.795 0.798 23.338 0.790 22.598 0.756 29.949
MMSE + attERP 0.803 23.845 0.849 23.064 0.798 24.330 0.739 26.390
MMSE + RSEEG + sensERP + attERP 0.782 40.182 0.866 20.855 0.866 20.875 0.866 20.986
DM + MMSE + RSEEG + sensERP + attERP 0.605 86.032 0.849 22.048 0.866 21.140 0.874 21.150
Significant-variables 0.874 20.628 0.891 19.397 0.798 22.908 0.874 20.461

The MMSE score, demographic information (i.e., sex, age, education level, interaction between sexes, and other variables), resting-state EEG (eight variables), sensory ERP (five
variables), and selective-attention ERP (four variables) were the data sources. For the models with demographic variables, the terms corresponding to the interaction between sex
and other variables were included in each model. DM, Demographic information; RSEEG, resting state EEG; sensERP, sensory ERP; attERP, selective-attention ERP. For models with
demographic variables, the terms corresponding to the interaction between sex and other variables are included in each model.“Significant-variables” models contain MEF, peak
frequency, alpha/theta, frontal asymmetry from resting state EEG, response time from sensory ERP, and number of correct responses, response time and weighted error percentile
from attention ERP. The bold fonts indicate outstanding prediction accuracies.

elastic net using the MMSE score and demographic information
provided equal AUROCs of 0.803 with deviances of 25.234.
In this first group, the predictor based on selective-attention
ERP variables yielded the highest AUROC of 0.891 and lowest
deviance of 20.363 using logistic regression. In addition, the
resting-state EEG variables enabled higher accuracy than the
MMSE score or the MMSE score combined with demographic
information.

The second group combined resting-state EEG, sensory ERP,
and selective-attention ERP before and after adding demographic
information. Loosely speaking, these prediction models failed to
improve accuracy compared with the models from the EEG/ERP
variables in the first group.

The third group combined the MMSE score with different
EEG/ERP variables. Combining the MMSE score with resting-
state EEG or sensory ERP provided better prediction accuracy
than using the EEG variables from the single groups or the
MMSE score alone, reaching an AUROC of 0.849 and a
deviance of 22.141 when using logistic regression and elastic
net regularization. In comparison with selective-attention ERP
alone, combining the MMSE score with selective-attention ERP
or with all three EEG/ERP variables did not increase the
prediction accuracy.

The fourth group combined demographic information with
the MMSE score, resting-state EEG, sensory ERP, and selective-
attention ERP. This group provided a lower AUROC with
higher deviance than the third group, in which demographic
information was neglected.

Finally, the fifth group (‘‘significant-variables’’ model)
contained eight most likely potential markers among all the
variables, including MEF, peak frequency, alpha-theta, and
frontal asymmetry from resting state EEG, response time
from sensory ERP, and number of correct responses, response
time, and weighted error percentile from selective-attention
ERP. These variables were shown to have high correlations

with MMSE score (‘‘Correlation Between MMSE Score and
EEG Measures’’ section), less overlapping in their distribution
between dementia and non-dementia groups (‘‘Densities of
EEG/ERP Variables Between Dementia and Non-dementia
Subjects’’ section), and indicated as risk factors of dementia
after adjusting for covariates (‘‘Relation Between EEG/ERP
Variables and Dementia’’ section). This combination provided
a similar AUC of 0.891 but lower deviance of 19.397 using
logistic regression with elastic net in comparison with selective-
attention ERP cluster (deviance 20.363) using logistic regression
with ordinary least square. In this ‘‘significant-variables’’
model based on the elastic net, the accuracy went up
to 92.7%.

The prediction model results show that the groups of resting-
state EEG and selective-attention ERP variables predict dementia
better than the MMSE score. In addition, the EEG/ERP variables
combined with the MMSE score further improve dementia
prediction, except for selective-attention ERP, whereas adding
demographic information to either the EEG/ERP variables or
MMSE score does not improve the prediction accuracy. The
ineffectiveness of demographic information may be due to
the diversity of the participants and the small sample size.
The evaluation results of the prediction models are summarized
in Table 3.

DISCUSSION

In this study, spontaneous resting state EEG, sensory ERP and
selective-attention ERP were used as three methods to obtain the
important brain oscillations (Başar et al., 2016). Both EEG and
ERP variables have been investigated as potential biomarkers to
detect MCI and its progression to AD dementia, as well as to
directly detect AD dementia (Herrmann and Demiralp, 2005;
Uhlhaas and Singer, 2006; Jackson and Snyder, 2008). In resting-
state EEG, frequency components shift from high-frequency
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bands (i.e., alpha and beta) to lower frequency bands (i.e., delta
and theta), and the alterations develop gradually according to
the disease severity (Jelles et al., 2008; Smailovic and Jelic,
2019). Similarly, the peak frequency, median frequency, and
alpha-to-theta ratio in dementia patients drift towards lower
frequencies compared with non-dementia individuals (Raicher
et al., 2008; Dauwels et al., 2010; Schmidt et al., 2013). In ERP,
amplitude reduction and increased latency have been reported
(Başar et al., 2010), as well as reduced accuracy and increased
response time in a target detection task (Cecchi et al., 2015) in
dementia patients. Our findings are consistent with the results of
these studies.

The MMSE has been used widely in clinical practice as
an effective and sensitive test to detect and screen cognitive
impairment and dementia (Benson et al., 2005; Arevalo-
Rodriguez et al., 2015). The MMSE enables dementia detection
with 92% accuracy, 78%–84% sensitivity, and 87%–91%
specificity (cutoff value of 23/24) (Tsoi et al., 2015). However, the
MMSE has bias according to the socio-educational backgrounds
of participants, practice effect, and low sensitivity in the early
stage of cognitive decline (Scazufca et al., 2009; Duff et al., 2012;
Carnero-Pardo, 2014). These disadvantages can be overcome
while enhancing the diagnostic accuracy by combining the
MMSE score with EEG/ERP data.

Selective-attention ERP examines the cognitive performance
using auditory oddball paradigm, which elicits P300 in response
to the target intonations through the use of prompt button
pushing. This motoric response can cause a distinct movement-
related potential, which has been reported to interfere with the
topography of P300 and alter its amplitude in comparison with
the silent-count task (Salisbury et al., 2001; van Vliet et al., 2014;
Kim et al., 2020). Despite these reported influences on P300 with
button-pushing behavior, for old participants with as many as
64 deviant stimuli, the button-press was an optimal task touse
the counts of correct and erroneous responses as the two salient
variables in evaluating cognitive performance.

Selective-attention ERP variables include the number of
correct responses, response time, weighted error percentile,
and amplitude difference between deviant and background
stimuli. Selective attention ERP has been shown to provide
the highest AUROC values, while demonstrating the best
dementia predictor among all the possible combinations of
dementia risk factors. Selective-attention ERP or attention
components of P300 have been studied as indicators for cognitive
processing. Selective-attention ERP endogenous components
reflect the ability of cognitively processing the stimulus based
on the levels of attention and arousal (Polich and Kok,
1995). A prolonged P300 response time implies that more
time is required to process information, which represents
an index of abnormal cognition ability (Williams et al.,
1991; van Deursen et al., 2009). P300 amplitude reduction
in dementia patients shows that lower attentional resources
were devoted to the task performance (van Deursen et al.,
2009; Hedges et al., 2016). Furthermore, decreasing number
of correct answers and increasing weighted error percentile
in the dementia group as compared to those in the normal
group indicate a reduction in attentional maintenance and

action control ability during cognitive processing throughout
the task (Vecchio and Määttä, 2011). All changes in selective-
attention ERP variables indicate a decrease in intrinsic brain
activation to the responses in demented patients. Selective-
attention ERP provides a sensitive and reliable measure
for the early detection of cognitive impairment related to
AD (Cecchi et al., 2015; Gu et al., 2018). Our findings
upheld the literature associated with using attention ERP for
detecting dementia.

As indicated by the significant odds ratios before and after
adjusting for sex, age, education level, and GDS score, the
EEG/ERP variables show high correlations with the MMSE score
and indicate dementia risk factors. Furthermore, variables with
low correlations with the MMSE score (e.g., frontal asymmetry
in resting-state EEG) may be suitable for classifying dementia
independently from the MMSE score, as indicated by the
significant odds ratios that are obtained after adjusting for the
covariates plus the MMSE score. Frontal asymmetry has been
used as an indicator of depression due to the hyperactivity of
the right prefrontal lobe and the withdrawal behavior to aversive
stimuli (Thibodeau et al., 2006; Jesulola et al., 2015). However,
to the best of our knowledge, frontal asymmetry has not been
reported as a candidate indicator of dementia. Thus, our findings
establish a new direction for research on dementia by considering
frontal alpha asymmetry.

Considering dementia and its relation to depression, half of
the patients with late-onset depression may exhibit cognitive
impairment, and the prevalence of depression in dementia
patients is between 9% and 68% (Muliyala and Varghese, 2010).
Asymmetry in frontal cortex activity reflected in EEG signals has
been described as a potential discriminator for depression, such
that frontal alpha asymmetry has been found to be significantly
higher in depressed subjects than healthy controls (Gollan et al.,
2014; Adolph and Margraf, 2017; Brzezicka et al., 2017); however,
contradicting results have also been reported (van der Vinne
et al., 2017; Kaiser et al., 2018). Our results may suggest that the
frontal alpha asymmetry as one of the potential EEG variables for
dementia detection.

We derived prediction models using different combinations
of EEG/ERP variables, MMSE scores, and demographic data.
Selective-attention ERP variables and resting-state EEG variables
produced more accurate predictions than MMSE scores or
MMSE scores combined with demographic information. Hence,
these variables may be representative in the identification
of cognitive changes due to dementia. In contrast, adding
demographic information tended to decrease the accuracy
compared to the cases in which demographic information was
neglected. Hence, demographic information may undermine
predictive modeling of dementia.

The variable selection in the prediction model based on
the statistical test often leads to serious bias in maximizing
the performance of the predictive model, as explained by Lo
et al. (2015). To overcome this limitation, we adopted penalized
regression approaches that performed the variable selection
continuously. In our case, a model with the variables that showed
highest statistical significances resulted in best accuracy among
various prediction models (Table 3). In particular, the model
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exhibiting the highest AUROC (0.891) and lowest deviance
(19.397) employed the eight most significant-variables in the
logistic regression approach with elastic net regularization,
followed by the selective-attention ERP variables in a logistic
regression model via the ordinary least squares method. It implies
that a prediction model with only few EEG/ERP variables that
showed high statistical significance can be used for effective
screening of dementia, which would lead to the cost effective
utility of ‘‘prefrontal EEG’’ in clinics.

Overall, the logistic regression model with elastic net
regularization tended to perform better than the random forest
or extreme gradient boosting approach in terms of AUROC
and deviance from individual EEG/ERP variables with or
without MMSE. Again, adding demographic information to
this model reduced the predictive performance. The adverse
effects of demographics may be due to the diversity of
participants considered in this study regarding aspects such as
age, sex, education level, GDS score, and the underlying disease
causing dementia.

Some limitations of this study remain to be addressed.
The dementia patients in this study were registered in the
Korean National Health Insurance Service, and we were
not able to obtain further medical records of the patients,
such as imaging data, to identify the underlying causes and
statuses of dementia. Therefore, hidden comorbidities inducing
diversity of EEG/ERP features may have affected our results.
In addition, our findings cannot be generalized due to the
small sample size (122 participants) and discrepancies in
age and education level among groups. Even though we
attempted to remove confounding effects by adjusting for
age, sex, education level and depression level, the prediction
models could increase clinical usability if the data had no
such discrepancies in other risk factors between dementia
patients and normal controls. Finally, we could not examine
the exposures or suspected risk factors over time. Thus, a
prospective or case-control study with a larger and more
representative sample is still required to clinically validate
the diagnostic value of the EEG/ERP variables considered in
our study.

CONCLUSION

Prefrontal EEG variables, which are related to EEG slowing,
left–right asymmetry in the resting state, and sensory and
selective-attention ERPs, have been correlated with the MMSE
score. Logistic regression for dementia prediction shows that
most of the selected variables remain significant after adjustment
for GDS and demographic risk factors of dementia, such as
age, education level, and sex. In contrast, when the model
is adjusted for the MMSE score and demographic covariates,
these prefrontal EEG variables become non-significant, except
for the frontal asymmetry among the activity in the left
and right hemispheres, peak frequency in resting-state EEG,
and the response time in sensory ERP. The other variables
have no or minimal correlations with the MMSE score
after such adjustment. From multivariate regression models
with five-fold cross-validation, we found that the prefrontal

EEG variables outperform the MMSE score in dementia
prediction. In particular, the prediction accuracy was the
highest when using the eight variables that showed highest
statistical significances among tested EEG/ERP variables. Adding
demographic information fails to improve the prediction
accuracy. Overall, the slowing and asymmetry of prefrontal
EEG activity seem promising for dementia screening, and can
be used in combination with the MMSE score or function
as its alternative. In a future study, the clinical usability
of few-channel EEG can be improved by recruiting more
participants with balanced demographic risk factors among
patient and control groups and by including preceding stages
of dementia such as MCI; screening MCI patients effectively
allows early medical intervention that can prevent or deter the
progression to dementia.
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APPENDIX

TABLE A1 | Estimated odds ratios and 95% confidence intervals derived from three logistic regression models.

Unadjusted Adjusted Adjusted (including MMSE)

OR Wald Z OR Wald Z OR Wald Z
(95% CI) (p-value) (95% CI) (p-value) (95% CI) (p-value)

Resting state EEG
Alpha (avg.) [µV2] 0.615 (0.40, 0.93) −2.26 (2.39E−02) 0.693 (0.42, 1.12) −1.47 (1.41E−01) 0.747 (0.43, 1.26) −1.08 (2.80E−01)
Alpha/Theta 0.289 (0.16, 0.49) −4.39 (1.14E−05) 0.474 (0.24, 0.87) −2.33 (1.99E−02) 0.630 (0.32, 1.21) −1.36 (1.75E−01)
Beta (avg.) [µV2] 1.355 (0.91, 2.05) 1.49 (1.37E−01) 1.186 (0.74, 1.92) 0.71 (4.76E−01) 1.204 (0.72, 2.04) 0.71 (4.78E−01)
Frontal asymmetry 0.546 (0.34, 0.83) −2.68 (7.47E−03) 0.516 (0.30, 0.82) −2.58 (9.75E−03) 0.535 (0.30, 0.87) −2.29 (2.21E−02)
Peak frequency [Hz] 0.255 (0.14, 0.42) −5.01 (5.58E−07) 0.387 (0.20, 0.69) −3.07 (2.11E−03) 0.460 (0.24, 0.83) −2.50 (1.26E−02)
MEF [Hz] 0.285 (0.17, 0.45) −4.97 (6.64E−07) 0.387 (0.21, 0.68) −3.19 (1.40E−03) 0.555 (0.28, 1.06) −1.76 (7.79E−02)
Peak power [µV2] 0.969 (0.61, 1.42) −0.15 (8.79E−01) 0.868 (0.48, 1.45) −0.51 (6.13E−01) 0.842 (0.46, 1.43) −0.60 (5.52E−01)
Theta (avg.) [µV2] 1.699 (1.14, 2.60) 2.54 (1.09E−02) 1.143 (0.70, 1.89) 0.53 (5.94E−01) 0.952 (0.55, 1.65) −0.18 (8.60E−01)

Sensory ERP
Amplitude (deviation) [µV] 1.459 (0.99, 2.19) 1.88 (5.95E−02) 1.282 (0.80, 2.12) 1.01 (3.13E−01) 1.213 (0.71, 2.07) 0.72 (4.72E−01)
Amplitude (edge−center ratio) 1.094 (0.74, 1.63) 0.45 (6.56E−01) 0.903 (0.57, 1.43) −0.44 (6.61E−01) 0.884 (0.53, 1.47) −0.48 (6.33E−01)
Amplitude [µV] 0.931 (0.62, 1.38) −0.35 (7.24E−01) 0.875 (0.54, 1.40) −0.56 (5.78E−01) 0.768 (0.44, 1.30) −0.97 (3.32E−01)
Response time (deviation) [ms] 1.424 (0.97, 2.11) 1.79 (7.32E−02) 1.538 (0.95, 2.51) 1.75 (7.96E−02) 1.292 (0.76, 2.17) 0.96 (3.35E−01)
Response time [ms] 1.967 (1.32, 3.01) 3.23 (1.25E−03) 2.109 (1.31, 3.56) 2.96 (3.09E−03) 1.892 (1.15, 3.26) 2.42 (1.55E−02)

Attention ERP
# of correct 0.521 (0.34, 0.77) −3.18 (1.46E−03) 0.711 (0.45, 1.10) −1.54 (1.24E−01) 1.106 (0.65, 1.97) 0.36 (7.19E−01)
Amp (resp) − Amp (bg) [µV] 0.349 (0.13, 0.75) −2.33 (1.96E−02) 0.626 (0.23, 1.20) −1.13 (2.59E−01) 0.844 (0.32, 1.57) −0.43 (6.70E−01)
Resp. Time [s] 2.130 (1.42, 3.32) 3.53 (4.21E−04) 1.593 (1.01, 2.59) 1.96 (5.04E−02) 1.408 (0.86, 2.34) 1.36 (1.74E−01)
wER 2.364 (1.59, 3.66) 4.09 (4.31E−05) 1.533 (0.95, 2.51) 1.75 (8.02E−02) 0.950 (0.52, 1.69) −0.17 (8.61E−01)

The table shows the exact values for Figure 4. Due to the small sample size in this study, the covariates related to the disease status (e.g., hypertension, diabetes, and so on) were not included in the multiple logistic regression model.
OR (95% CI), Odds ratios with 95% confident interval; Wald Z (p-value), P-value obtains from Wald test.
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