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A B S T R A C T   

Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. 
Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious dis-
eases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity 
in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed 
to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and 
the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to 
evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways 
required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This 
review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and 
non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to 
the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research do-
mains for future.   

1. Introduction 

‘Chemistry’ behind the nanoparticles and their multi-dimensional 
exclusive applications is quite fascinating. Nanoparticles (materials 
having at least one dimension of <100 nm size) have been successfully 
applied in many fields of biomedical science including therapeutics e.g. 
drug screening and targeted delivery, diagnostics, vaccine production, 
surgical intervention, gene delivery, theragnostic, biomarker assisted 
mapping, toxicity of pathogenic organisms, etc. [1–4]. The 
nano-carriers/adjuvants e.g. liposomes, proteasomes, emulsions, syn-
thetic polymeric nanoparticles, nano-beads, ISCOMs, biological poly-
meric nanoparticles (exosome, bacteriophage) and inorganic 
nanomaterials have been utilized to prevent infectious and 
non-infectious diseases [5,6]. The inertia of surface modification and 
ability to effectively co-deliver the adjuvants makes nanoparticles 

potential candidate for commercial vaccines. Also, the nano adjuvants in 
vaccines protect the target antigen from degradation and enhance up-
take by immune mediators of biological systems. This approach is 
malleable, having the ability to present the antigen in a repetitive 
manner leading to stable immunogenic properties. 

Nano-vaccines have been widely experimented as prophylaxis of 
important diseases such as: bacterial (E. coli, Helicobacter sp.), viral (HIV, 
HPV, influenza), cancers (primary and metastatic), parasitic (malaria, 
toxoplasmosis, coccidiosis) and auto-immune disorders [7–9]. The 
concept of deploying nanovaccines from a broader perspective has been 
depicted in Fig. 1 schematic illustration of nano-vaccinology in a 
nutshell. Wide variety of nanoparticles as vaccine scaffolds, enzyme, 
cargo have opened a new avenue towards precision medicine. These 
vaccines could be replicated in disease models of multi-drug resistant 
pathogens, which historically have presented as a great clinical 
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challenge. Deploying biological nano-polymers like proteins, peptides, 
DNA, RNA and others have improvised the immunotherapy up to 100 
folds, compared to previous clinical options [10]. 

The efficacy of nano-assembled vaccines may be attributed to the 
improved an Fig. 1 tigen stability, minimum immuno-toxicity, sustained 
release, enhanced immunogenicity and the flexibility of physical fea-
tures (e.g. Size, morphology, surface characteristics) [11]. 
Nano-vaccines have a huge potential of relatively easy engineering. 
Moreover, tailor-made personalized immune therapy is possible by 
harnessing the potential of nano-vaccines reveals a conceptual idea. The 
challenge areas of nano-vaccines are understanding of exact mecha-
nisms for bio-distribution and possible commercialization which need to 
be well-investigated and consigned. The quantitation of host immune 
interactions on exposure to nano-based vaccine demand clinical trials 
for efficient commercialization. The exclusive manuscript reflects into 
account the novel promises, utilizations and future perspectives of 
nano-vaccines in human and animal diseases. Brief insights and way 
forward for commercialization of nano-vaccines in clilnical settings 
have been summarized in the entire research innovation. 

2. The biochemistry of nano-vaccines 

Contemporary vaccine strategies employ either killed or live atten-
uated antigens. Live attenuated vaccines may induce clinical disease 
arising from same or mutated genotypes [12]. Therefore, the level of 
desired immune response may not be achived. The nanoparticles having 
efficient surface properties, making them more suitable candidates for 
stimulating the immune system and eliciting better immunological 
response. The hydrophobicity of nanoscale materials enhances the 
expression and release of inflammatory mediators and cytokines. Su-
perior adjuvancity, owing to the exceptional surface properties of 
nanomaterials make them stand-out the conventional vaccine adjuvants 
[13]. Some of nano-based adjuvants have been officially licensed for use 
in making commercial antiviral vaccines [14]. Moreover, increment 
towards dendritic-cell mediated autophagy and presentation of antigens 
to the immune cells lead to a solid cellular and humoral immunity 
against target pathogen. 

First and second generation vaccines differ from nano-vaccines on 
the basis of low-functionalized plasmid DNA, highly labile to degrading 
enzymes, lacking the smart size and hydrophobic nature. All of these 
properties contribute to halt efficient transfection of antigens within 
target cells [15]. Moreover, the difficulty in administration and devel-
opment of slower immunological response based on time-taking chem-
ical interactions at cellular levels were major issues with DNA vaccines. 
Chitosan nanoparticles have the intrinsic ability to adhere with mucosal 
layers of host; this cationic feature makes them efficient cargo for 

antigen delivery [16]. Similarly, by virtue of ionic cross-linkages, the 
utilization of biopolymers could improvise endocytosis by host cells. 
This internalization stimulates a sustained pattern of exposure to anti-
gen presenting cells, resulting in a stable immunological response. This 
response is characterized by the interaction and front-line response by 
many immunomodulators of the host. The liposomal vaccine carriers, 
due to hydrophobic interactions, can facilitate fusion within cellular 
membranes [17]. Also, the cationic nature further enhances cytosolic 
release, which is highly desirable in DNA based vaccines. 

Most importantly, nanoparticle-based vaccines have been shown to 
stimulate longer immunological memory in the host [18]. This property, 
combined with the ability to elicit antigen-specific (IgA) mucosal im-
munity is the mainstay of popularity earned by nano-vaccines. Brief 
pathway opted by nano-vaccines to bring forward the cell mediated 
and/or humoral immunity in host are being illustrated in Fig. 3. The 
nucleic peptides might become very unstable within the host cells and 
may fail to produce desired immunological response due to proteolytic 
degradation inside the cells [13]. Nano-adjuvants provide a biologically 
compatible carrier platforms, that not only enhance antigen protection 
and sustained release, but also enhance immune stimulation in the host 
for a stable and solid immunity.The concept of deploying nanovaccines 
from a broader perspective has been depicted in Fig. 1. 

Use of natural biomolecules such as albumin, chitosan, mannose, 
peptides, enzymes, chemical immunomodulators (Interleukins, cyto-
kines) or immunoglobulins as nano-carriers for vaccines have shown 
long span, more stable and ubiquitous peripheral tissue response in 
cancer immune therapy [10]. Nano-vaccines have brought a revolution 
in the science of small by evading degrading cellular pathways and 
efficient absorption up to blood vessels [15]. Based on admirable per-
formance explored in pre-clinical and clinical trials, liposomal and VLPs 
based nano-vaccines, there are more than 10 commercial vaccines in 
human practice or clinical trials. Classical examples to VLP-based 
commercial vaccines include the porcine-circo virus vaccine, human 
cervical cancer and anti-hepatitis B nano-vaccines and multi-epitope 
anti-malarial and anti-hepatitis B vaccines [19,20]. The desired level 
of epitope density and co-stimulation is a very unique and high precision 
characteristic of nano-vaccines. Additionally, revamping the ability of 
nanomaterials to selectively enhance one of desirable, antigen specific 
immune responses in order to achieve optimal immunity holds huge 
potential in future engineered vaccines. As a case study, it is imperative 
to commend the most effective yet rapidly developed COVID-19 vaccine 
which is based on gold nanomaterials [21–23]. The plasmonic stabili-
zation and functionalization has made the vaccine perform fairly well in 
pre-clinical as well as clinical trials and safety evaluations. 

Fig. 1. A schematic illustration of nano-vaccinology in a nutshell.  
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3. Nano-vaccines against pathogens 

The world is dealing with ever rising population of super bug path-
ogens, the multi-drug resistant bacteria, rapidly mutating viruses, 
anthelmintic resistant parasites and secondary cancers. Most recently, 
COVID-19 pandemic has moved the major stakeholders to come up with 
very practical and promising candidates for prevention and therapeutic 
management of the virus [24]. The first-ever, highly progressive 
anti-Covid-19 vaccine is also based on nanomaterials [21]. Overview of 
most recent developments in nano-vaccinology during the current 
decade have been given in Table 1. 

Owing to the non-judicious use of anti-microbials, bacterial strains 
have undergone certain mutations/ modifications that have enabled 
them to degrade and render the previously used anti-microbials, totally 
ineffective. In this scenario, there is an emergent desire to come up with 
practical solutions to the resistant populations. Moreover, the nano-
particles have been successfully trialed for effective wound manage-
ment, healing and infection prevention of primary or secondary nature 
[25]. The clinical presentation and associated secondary systemic dis-
eases present a great deal of challenge, ending up in the form of high 
morbidities or even higher death rate of the patients [26]. ‘Nanotech-
nology’ has marked a ground breaking success in novel therapeutics, 
prophylaxis and management options against bacteria, viruses, parasites 
and cancers. Major types of nano-adjuvants/ nano-carriers/ 
nano-scaffolds employed for Vaccinology have been illustrated in Fig. 2. 

3.1. Nano-vaccines against bacteria 

Nano-vaccinology has also been trialed to control many human and 
animal diseases of bacterial origin, to improvise quality of living in both. 
To this end, Escherichia coli (E. coli.) is one of the most widely utilized 
model organism for different nano-vaccines. Bacteria causing drop in 
production and performance of farm animals have also been counter-
acted by employing nano-vaccines. Also, the vaccine mediated protec-
tion against MRSA has been made possible using nano-toxoid of 
polymeric nature [26]. Toxins from bacteria have also been utilized to 
produce nano-vaccines at lab scale. This development in conventional 
Vaccinology has opened enormous avenues for safer, least toxigenic, 
more immunogenic alternative for control of super bug pathogens. Also, 
the concept of nano-vaccines endorses the One Health-One Welfare, 
looking after the well-being of humans, animals and the environment at a 
shared interface. Examples of nano-vaccines against clinically important 
bacteria have been developed against E.coli, Salmonella, Helicobacter, 
Staphylococcus, Pseudomonas, Clostridium, Mycobacterium, etc. [6,27–30]. 
None of nano-vaccination has made its way to the clinical applications 
against bacterial diseases, however, by upscaling the lab studies, it is 
possible to commercialize toxoids against bacteria for human adminis-
tration. Brief pathway opted by nano-vaccines to bring cell mediated and 
humoral immunity in host are being illustrated in Fig. 2. 

3.2. Nano-vaccinology against virology 

Viral diseases have historically caused and still posing a great threat 
to the integrity of entire ecosystems. Limitation of availability, high cost 
of production and promise in emerging viral strains are major challenges 
to anti-viral drug production. However, vaccines have shown to almost 
counter these areas of concern. Heterosubtypic immune protection in 
influenza strains (H1N1, H5N1) is a much-needed approach for rapidly 
mutating viruses [31,32]. Highly significant pathogen of humans, 
including HBV, HPV, HIV, DENV-E have been prevented using precisely 
engineered nano-vaccines, that have shown to offer up to 95–100 % 
effective immune protection [33]. Anti-AIDS nano-vaccines may be 
utlilized at clilnical settings to prevent the disease and associated com-
plications at endemic regions of the world. The viral moieties in HIV are 
better functionalized and presented in a sustained manner. The 
nano-adjuvants to AIDS vaccines have shown a stable, least toxigenic 

and a long-lived immunological response, based on specific immuno-
loglobulin activation. 

‘Poliovirus’ is one of the most significant endemic pathogens of many 
developing countries. To this end, Marsian and co-workers have pro-
posed a plant-mediated nano-vaccine, by utilizing virus like particles 
[34]. A complementary approach has shown reasonable immune pro-
tection against dengue virus challenge [35]. Other viral diseases that 
have been shown to be prevented by nano-vaccines include avian 
influenza (H3N2), respiratory syncytial viruses, parainfluenza virus, Rift 
Valley Fever Virus and most importantly, the corona viruses (MERS, 
SARS) [16,36]. 

The rampant promise of nano-vaccines against a wider range of virus 
subtypes indicates high potential against viruses having aerosol route of 
transmission. Examples of pre-clinical design and evaluation of nano- 
vaccines have also been found to be successful against other coronavi-
ruses of humans in SARS-CoV-1 and MERS. This could be a way forward 
for effective prevention of emerging and re-emerging human diseases, 
for instance SARS, MERS, CoVID-19 and influenza. 

3.3. Nano-vaccines against parasites 

Drug resistance and slower development of modern anti-parasitic 
drugs are the major concerns to widespread neglected tropical dis-
eases. Parasitic diseases of prime concern like-wise: leishmaniasis, ma-
laria, toxoplasmosis, anaplasmosis, schistosomiasis, and coccidiosis 
have been treated and prevented using several forms of nanoparticles 
[33,37]. To date, there is no commercially available nano-vaccine 
against any parasite. The benefit of nanoparticles-assembled vaccines 
has shown highly desirable, Th1-mediated immunological protection 
against leishmaniasis. Recently, epitope-based nano-vaccine, using 
Self-Assembling Protein Nanoparticle approach (SAPN) has been suc-
cessfully developed against toxoplasma sp. Similarly, malaria (Ana-
plasma sp.) nano-vaccines have undergone huge development and 
several promising vaccine antigens have offered protective immunity in 
laboratory attempts [38,39]. This approach could be applied to parasitic 
vectors (mosquito, tick, flies) of human, animal and zoonotic diseases. 
There is a need to further channelize and utilize the potential of 
nano-vaccine induced mucosal immunity for development of 
anti-parasitic vaccines. 

3.4. Nano-vaccines against cancer 

‘Cancer’ is the second leading cause of deaths worldwide, claiming 
almost 10 million lives each and every year. Chances of survival are 
meagre, and quality of life is compromised in case of secondary cancers. 
To this end, ‘Nanotechnology’ has provided alternative coverage to anti- 
cancer therapy and prevention [2,5,40]. Conventional cancer vaccines 
have a moderate immune coverage due to limited antigen presentation 
at draining lymph nodes and quicker degradation [41]. Cancers of 
various organs and systems, including nervous, respiratory, reproduc-
tive, digestive, brain, endocrine and urinary systems could be prevented 
by use of nano-vaccines [8,10,42]. Also, the cancers of hereditary seat 
and secondary nature can be prevented by adopt nano-vaccines. Tumor 
cells have a heterogeneous collection of antigens, known as ‘neo-
antigens’. They have lower immune protection if delivered solely. 
Bio-conjugation with nanoparticles has exhibited improvised immune 
response, offering protection against recurrence of tumors [10]. High 
precision and tailor-made, personalized nano immune protection in 
cancer highlights the most superior application of nano-vaccines. A 
similar model for immune protection could be opted for auto-immune 
diseases in humans. 

4. Challenges and future prospects in nano-vaccines 

Engineering the surfaces of nanoparticles by chemical means may 
alter their potential bio-compatibilities [43]. The chemical 
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Table 1 
Concise report of some advancement in nano-vaccines (current decade data).  

Target pathogen/ disease Type of nanoparticle Properties Type of Immunity Reference 

Cancer Polystyrene (PSNPs) PSNP size = 40− 50nm 
Peptide antigen conjugated vaccine 

Cell-mediated [8] 

COVID-19 (SARS CoV-2/ Pandemic 
corona virus, 2019) 

Liposomes Diameter = 135− 158 nm (conjugate) 
Sub-unit vaccine 

Humoral [50] 

SARS CoV-1 (Severe Acute 
Respiratory Syndrome) 

Gold nanoparticles AuNP diameter = 40− 100 nm 
Nano-adjuvant vaccine 

Antigen specific [51] 

Influenza and circo viruses Virus-like Particles (VLPs) Self-assembling, 
Bivalent vaccine 

Cellular and humoral response [9] 

Escherichia coli Silver (Plasmonic NP) Size = 15nm 
AuNP Vaccine scaffold 

Humoral immunity [30] 

Malaria Virus-like Particles (VLPs) VLP size = 22nm 
Anti-sporozoite vaccine 

Cellular and humoral response [12] 

Coronaviruses Protein Diameter ~25nm 
SARS and MERS protein 

Neutralizing antibody response [36] 

Cancer Biopolymeric (Albumin NP) Self assembling, 
Halted primary or metastatic tumors 

Antigen specific immune therapy [10] 

Avian influenza PLGA, 
Chitosan and mannan coated 
PLGA 

Size = 719, 819 nm Antigen specific mucosal 
immunity 

[52] 

Mycobacterium tuberclosis Chitosan (Bio-polymer) Radius = 300− 400 nm 
Mannosylated chitosan based DNA vaccine 

Antigen specific and T cell 
mediated 

[53] 

Anaplasma marginale Nano-vesicles VirB9− 1 antigen with silica nano adjuvant Antibody and Cell mediated [33] 
Helicobacter pylori PLGA Size ~200 nm Cell mediated [28] 
Schistosomiasis Dendrimers Diameter = 50− 100 nm 

DNA, nano-delivered vaccine 
Cellular and humoral [37] 

Cancer Micelle Diameter = 171 ± 22 nm 
Bi-adjuvant neo-antigen nano vaccine (banNV) 

Antigen specific immune therapy [5] 

Salmonella Chitosan (Bio-polymer) Sub-unit, orally administered vaccine with 
membrane and flagellin antigens 

Cell mediated and humoral 
immunity 

[6] 

Respiratory Syncytial virus Virus-like particle (VLP) Bi-valent 
Single shot vaccine 

Cell-mediated [54] 

Mycobacterium paratuberculosis Polyanhydride NP Diameter = 200 nm 
PAN coated Lysate and Cf 

Antigen specific, Cell mediated [55] 

E. coli Polymeric (PLGA-MPLA) Biomimetic, MPLA modified, antigen loaded nano 
vaccine 

Cell mediated [27] 

Coronavirus Protein MERS-CoV vaccine Antigen specific and Th-cell 
mediated 

[56] 

Toxoplasmosis Self-Assembling Polypeptide 
nanoparticle (SAPN) 

Diameter = 38nm 
Uniform, multi-epitope 

Cell-mediated [38] 

Trypanosoma cruzi Nano-vector TcG2, TcG4 mediated Immune therapy Cell mediated [57] 
Rhabdovirus Carbon nanotube (CNT) Single walled nano tubes, bioconjugated with 

mannosylated antigen 
Cell mediated [58] 

Brucella melitensis PLGA Diameter = 126 nm OPS (antigen)-PLGA 
conjugated vaccine 

Antigen specific [59] 

Listeria monocytogenes PLGA Sub-unit vaccine Humoral [60] 
Shiga toxin by E.coli Nano multilamellar lipid vesicles 

(NMVs) 
NMV diameter = 142.2 ± 28.63 Hummoral [61] 

Leishmaniasis Virus-like Particle (VLP) Polyvalent, carbohydrate conjugate vaccine Antigen specific [62] 
Streptococcus Chitosan Peptide vaccine Antigen specific and mucosal [63] 
Rift Valley Fever Virus Chitosan (Bio-polymer) Size = 130− 140nm 

Inactivated, nano-adjuvant vaccine 
Cell mediated (Better than alum- 
based vaccine) 

[16] 

Methicillin resistant Staphylococcus 
aureus (MRSA) 

Polymeric Size = 115nm 
Nano-toxoid 

Humoral [26] 

Influenza and cancer Virus-like Particles (VLPs) Chimeric, protozoan protein decorated on VLPs 
vaccine 

Humoral and Cell mediated [64] 

Influenza virus 3M2e-rHF Self-assembling, intra-nasal vaccine Cell- mediated (Homo and hetero 
subtypic) 

[32] 

Hepatitis-B virus Ferritin Dual target, therapeutic vaccine Cell-mediated and potential of 
humoral immunity 

[65] 

Influenza A virus Virus-like proteins (VLP) Multi-valent, Self-adjuvant modular vaccine Antigen and site specific immune 
response 

[66] 

Cancer (HER2+) Viral nanoparticles (Plant-based) CPMV size = 30nm 
Bio-compatible adjuvant vaccine and therapeutic 

Specific (anti-HER2) Immune 
response 

[42] 

Leishmania major Liposomal vesicles Vesicle diameter = 100 nm Cell mediated [39] 
Brucella melitensis and Brucella abortus Calcium-phosphate (CaPN) CaPN size = 90nm 

Cross-protective nanovaccine 
Cell mediated and humoral [67] 

Bacillus anthracis Chitosan alginate (Chi-Alg) Mean size of Chi-Alg = 500nm Antigen specific, mucosal 
immunity 

[68] 

AIDS- Humman Immune Deficiency 
Virus 

Liposome Liposome vesicle size = 150 nm Cell mediated [69] 

Hepatitis B Virus (HBV) Virus-Like Particles (VLPs) Au functionalized TLR-9 agonist 
Size of HBV-VLP ~34nm 

Humoral and Cell mediated [70] 

Cancer AuNP Size ~ 200 nm 
Non-covalent based on β-Cyclodextrin, vaccine 
and therapeutic potential 

Humoral [71]  
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transformations therefore, indicate the necessity of developing the 
assays/tests indicative of owning target set of characteristics, before 
functionalization with candidate antigens/proteins. Similarly, the uni-
formity of nanomaterials and the reproducibility of experiments 
yielding nano-vaccines needs to be enhanced. This applies as a signifi-
cant quality standard for biogenic nanomaterials, where scaling-up 
uniformly is a concern. 

VLPs have shown promising performance, regarding their easy en-
gineering, exceptionally malleable size and surface properties and po-
tential immunogenic properties. However, there is a concern of 
associated ability to rapidly mutate the proteins of viral origin, being 
utilized for their synthesis [44]. Similar concerns may arise in the 
application of other nano-carriers or adjuvants adopted in the vaccine 
core antigen potentiation. Closely relevant animal models may be 

Fig. 2. Brief pathway opted by nano-vaccines to bring cell mediated and humoral immunity in host are being illustrated in Fig. 2.  

Fig. 3. Possible morphology of nano adjuvants/cargo/scaffolds embedding target antigens. 
Line 138-139: Nanotechnology has marked a ground breaking success in therapeutics, prophylaxis and management options against bacteria, viruses, parasites and 
cancers. Major types of nano-adjuvants/ nano-carriers/ nano-scaffolds employed for vaccinology have been illustrated in Fig. 3 
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devised to carry out the pre-clinical evaluation of such nano-vaccines 
[45]. Biologically mediated nanomaterials have been proven as effec-
tive carriers of chemotherapeutic and chemoprophylactic agents. 

Proven non-pathogenic viral vectors for protective immune coverage 
and sustained immunological memory may be further investigated for 
probability of efficient commercialization [46,47]. The exact biochem-
ical interactions and the active constitutents of nano-vaccines making 
them a good choice need further exploration within biological models. 
Thorough studies upto molecular pathways are warranted to understand 
the dynamics of actual mechanism behind protective immunological 
response due to nano-vaccines. Moreover, to harness the collaborative 
potential of computational modelling and simulation, its highly indi-
cated to analyze and declare most promising nano-adjuvants or pep-
tides, due to their in-silico biological structures and functions analyses. 
It is imperative to look up and further rationalize the potential aspects of 
nanomaterials, for instance the facile synthesis, requirement of lower 
doses yet alleviation of repetitive booster injections, easy routes of 
administration, etc. of nano-vaccines over conventional vaccines [48, 
49]. 

There is need to materialize the concept of nano-immunology against 
auto-immune diseases of idiopathic origin. For this purpose, the inves-
tigation and communication of biochemical and molecular pathways 
making nano-vaccines promising is imperative. The ease of adminis-
tration and efficient immunogenesis has made nano-vaccines applicable 
at aquatic eco-systems. Biological distribution of nanoparticles and up-
take by excretory systems within the host need further explanation and 
safety evaluation. Also, the commercialization of biological adjuvant- 
based nano-vaccines needs greater reproducibility and scaling-up 
future production. 

5. Conclusions 

‘Nano-vaccinology’ is the science of nanoscale particles, possessing 
huge potential. The laboratory as well as the clinical scale promise of 
nano-vaccines can push the boundaries towards an eco-friendly, more 
immunogenic, sustained and stabilized releasing novel approach against 
infectious and non-infectious diseases. Integrity, in terms of desirable 
surface properties during manufacturing and storage of nano-vaccines in 
field conditions are concerned to be addressed in commercial nano- 
vaccine production. The nano-vaccines have opened an entrance to 
boundless hopes in efficiently preventing pathogenic, cancerous and 
non-infectious diseases in immune-tolerant individuals. More research 
focus in collaboration with commercial industries can lead to rapid 
commercialization of nano-vaccines. 
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