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ABSTRACT

Somatic nuclear autoantigenic sperm protein (sNASP)
is a human homolog of the N1/N2 family of histone
chaperones. sNASP contains the domain structure
characteristic of this family, which includes a large
acidic patch flanked by several tetratricopeptide
repeat (TPR) motifs. SNASP possesses a unique
binding specificity in that it forms specific com-
plexes with both histone H1 and histones H3/H4.
Based on the binding affinities of sNASP variants
to histones H1, H3.3, H4 and H3.3/H4 complexes,
sNASP uses distinct structural domains to interact
with linker and core histones. For example, one of
the acidic patches of SNASP was essential for linker
histone binding but not for core histone inter-
actions. The fourth TPR of sNASP played a critical
role in interactions with histone H3/H4 complexes,
but did not influence histone H1 binding. Finally,
analysis of cellular proteins demonstrated that
sNASP existed in distinct complexes that contained
either linker or core histones.

INTRODUCTION

The assembly of chromatin structure requires a precise
and ordered assembly of core and linker histones with
genomic DNA. This is a fundamental process in eukary-
otic cells that allows for the enormous degree of compac-
tion that is necessary for eukaryotic genomes to be
packaged inside the nucleus and ensures that both short-
term and long-term transcriptional programs are properly
regulated and epigenetically transmitted. Proteins known
as histone chaperones play a key role in chromatin assem-
bly. Most histone chaperones bind to a specific subset of

histones, regulate aspects of histone sub-cellular dynamics
and often mediate the transfer of histones to DNA during
the formation of a nucleosome (1-3).

Based on sequence and structural similarity, histone
chaperones can be grouped into several families (4-6).
One is the N1/N2 family of histone chaperones. This
family is based on the Xenopus laevis N1/N2 proteins
that were originally isolated from frog oocytes. Xenopus
oocytes store a large amount of histone proteins in prep-
aration for events that occur post-fertilization. The N1/N2
proteins form a complex with the histone H3/H4
complexes that are stored in these oocytes. N1/N2 then
participates in assembling histone H3 and H4 into chro-
matin during the rapid rounds of cell division that occur
following fertilization (7-9).

The N1/N2 family histone chaperones contain a con-
served domain structure that consists of four tetratrico-
peptide repeats (TPRs) with the second TPR interrupted
by the insertion of a large domain that is highly enriched
in acidic amino acids (Figure 1A) (10). TPR domains typ-
ically mediate protein—protein interactions and fold into
two anti-parallel a-helices (11,12). Analysis of COOH-
terminal deletions of the Xenopus NI/N2 protein
indicated that the acidic domain and a large hydrophobic
region that includes the third and fourth TPRs contribute
to core histone binding (12).

Evidence now indicates that N1/N2 family histone
chaperones are involved in more aspects of chromatin
biology than just the storage of H3/H4 complexes in
oocytes. N1/N2 homologs have been identified in fungal
species where histone storage is not likely to be a relevant
function. For example, in Saccharomyces cerevisiae, Hif1p
has been shown to be an H3/H4-specific chaperone that
associates with the Hat1p-containing type B histone acetyl-
transferase complex that is involved in the acetylation of
newly synthesized histone H4 (13,14). In addition, the N1/
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Figure 1. Mutational analysis of SNASP histone binding specificity. (A) Schematic diagrams of the sNASP variants. Each of the constructs also
contains an NH,-terminal His-tag. (B) For the biochemical assays, the sSNASP constructs were expressed from E. coli, purified by Ni*'-chelate
chromatography and resolved by SDS-PAGE using Coomassie blue staining. Proteins were visualized by Coomassie blue staining. (C) Surface
plasmon resonance (SPR) binding sensorgrams displayed for various concentrations of SNASP-N injected over a H3.3/H4 tetramer sensor chip
(black lines). The data were globally fit to a 1:1 Langmuir binding model (red lines) and the residuals plotted above the kinetics plot. For SPR
measurements, the sSNASP variants were further purified over a size-exclusion chromatography (SEC) column described in the ‘Materials and
Methods’ section.
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N2 homolog in Schizosaccharomyces pombe, Sim3p, has
been found to be involved in the assembly of the centro-
meric histone H3 variant (10).

The mammalian homologs of N1/N2 are known as
NASP (nuclear autoantigenic sperm protein)(15). NASP
is found as two differentially spliced isoforms. The longer
form is known as testicular NASP (tNASP) and the
smaller form is somatic NASP (sNASP). The tNASP
form can be found in the testis, embryonic tissues and
some transformed cells. SNASP appears to be expressed
in all dividing cells (16). NASP plays an essential role in
mammals as demonstrated by the early embryonic lethal-
ity of a mouse knockout model (17). In addition, RNAI
knockdown experiments in human tissue culture cells
indicate that NASP is important for cell cycle progression
(17). Also, NASP is a DNA damage-dependent target of
the ATM/ATR checkpoint kinases and siRNA experi-
ments indicate that NASP is necessary for proper DNA
damage repair (18).

Despite its obvious similarity with the N1/N2 proteins,
sNASP was originally identified as a linker histone-specific
chaperone (16). In fact, SsNASP displays binding affinity to
histone H3/H4 complexes and to histone H1 (19,20). To
understand the mechanisms that underlie this unique bind-
ing specificity, a critical issue to resolve is whether the
binding of SNASP to linker and core histones is linked
or whether these interactions occur independently.
Through a targeted mutational analysis, we determined
that SsNASP interacts with linker and core histones through
distinct structural domains. In addition, characterization
of cellular sSNASP indicates association with linker and
core histones occurs in the context of distinct complexes.
Therefore, SNASP may play a central role in coordinating
the dynamics of both core and linker histones.

MATERIALS AND METHODS
Plasmid DNA construction

The full-length human sNASP (449 amino acids), which
contains a six-residue histidine tag (His-tag) at the NH»-
terminus, was produced in Escherichia coli as described
previously (19). Six mutant constructs of sNASP were
generated. TPR1A, TPR3A and TPR4A were generated
by the partial overlapping PCR method. Primers were
designed to be complementary to the sequences flanking
the regions that were targeted for deletion: SNASP-TPRI1A
(deleted residues 43-76), TPR3A (deleted residues
203-236) and TPR4A (deleted residues 255-278) motifs.
The upstream primer partially overlaps with the down-
stream primer to prevent primer self-complementarity.
PCR products were then subjected to endonuclease
Dpn-1 digestion to remove template DNA and pro-
pagated in E. coli. DH10B competent cells were used for
DNA sequencing and further analysis. SNASP-12E/K was
generated by site-directed mutagenesis from pDEST17/
sNASP using the Quikchange protocol (Stratagene). The
DNA fragments that encoded NH,- (sSNASP-N, residues
1-278) or COOH-termini (sNASP-C, residues 279-449)
and flanking attB sequences were generated by PCR and
then introduced into donor vector pPDONR 221 by the BP

recombination reaction. After being propagated and veri-
fied, the donor clones containing the desired gene se-
quences were subjected to LP recombination reactions
and subsequently cloned into destination vector
pDEST-17. All sNASP constructs were confirmed by
DNA sequencing. In addition, mutant constructs were
introduced into destination vector pT-REX-DEST 31
(Invitrogen) which allows the expression in mammalian
cells. As with the E. coli expressed proteins, these con-
structs also contain an NH,-terminal His-tag that allows
for visualization and protein purification.

Protein expression and purification

Plasmids that contain sequences including full-length SNASP
and its mutants were each transformed into E. coli BL21 Al
competent cells to allow for r-arabinose-inducible expres-
sion. Protein expression and subsequent purification (see
Figure 1B) was performed following procedures as
described (19).

Surface plasmon resonance

The sNASP variants were further purified using size-
exclusion chromatography (SEC) over a Superdex S-300
16/60 column equilibrated with 25 mM Tris—HCI, pH 7.0,
300mM NaCl, 0.1mM EDTA and 0.05% NP-40. A
similar protocol was used to purify full-length SNASP in
our previous study (19). Recombinant human histones
H1° H3.3 and H4 were purchased from New England
Biolabs and used without further purification. Histones
H3.3 and H4 were incubated overnight at room tempera-
ture in the supplied buffer to form the tetramer. The H3.3/
H4 complex was purified over a Superdex 200 10/300 GL
SEC column using the above buffer. Surface plasmon res-
onance (SPR) experiments were performed using a
Biacore 3000 instrument (GE Healthcare) at 25°C. The
histones were coupled to CM5 sensor chips and experi-
ments were performed as previously described (19). The
binding sensorgrams were pooled, trimmed and fit as pre-
viously described (19). The binding constants were derived
from data performed in triplicate.

Cell culture and transfections

U20S cells that were engineered for tetracycline-inducible
expression were cultured in McCoy’s media supplemented
with 10% FBS at 37°C in 5% CO, supply. The U20S cells
were transfected with pT-REX-DEST 31 plasmids
(Invitrogen) carrying the His-tag full-length sNASP or
mutants using the Fugene reagent kit (Roche). Stably
transfected clones were selected against 200 pg/ml G418.
Stable clones that can be induced by tetracycline were
confirmed by western blot.

Whole cell extracts and in vivo pull down

Cells (2-4 x 107 cells/ml) were collected 24 h after tetracyc-
line induction. Cells were washed once with PBS and then
frozen with liquid nitrogen. After being thawed on ice, cell
pellets were resuspended in an equal volume of whole cell
extract buffer (25% glycerol, 420mM NaCl, 1.5mM
MgCl,, 0.2mM EDTA. 20mM HEPES pH 7.6 and



0.1% Triton X-100) and incubated on ice for 20 min. After
incubation, they were pelleted again. The supernatants
were saved as whole cell extracts. Whole cells extracts
from cells expressing full-length sSNASP or its mutants
were incubated with 50 uL Ni**-NTA beads (settled vol-
ume, Qiagen) for 2 h at 4°C. Beads were washed five times
with wash buffer (50 mM NaPO, pH 7.5, 300 mM NacCl,
10% Glycerol, 10mM Imidazole and 0.05% NP-40).
Bound proteins were eluted with SDS dye followed by
boiling. Western blotting was used to determine bound
proteins. Anti-histone antibodies were obtained from
Abcam and anti-NASP antibody was as described previ-
ously (19).

Co-immunoprecipitation

Mouse anti-H1 antibody (Abcam) was immobilized with
coupling gel from ProFound™ Mammalian Co-
immunoprecipitation Kit (Pierce, Rockford, IL). Eighty
microliters of coupling gel was incubated with 500 ul of
elution fraction from the full-length sNASP pull down.
The gel was then washed six times with 1 ml of 1x PBS
to remove unbound protein. Bound proteins were eluted
by boiling in 80pul of 2x SDS loading dye (0.12M
Tris-HCI, pH 6.8, 4% SDS, 20% glycerol, 0.002%
bromophenol blue and 5% [B-mercaptoethanol). The
bound proteins were resolved by SDS-PAGE and detected
by western blot analysis.

Size exclusion chromatography of sSNASP complexes

The elution fraction (0.250 ml) from the full-length SNASP
pull down was applied to a size exclusion chromatography
(SEC) column (10 x 300mm Superose 6 column, GE
Healthcare) equilibrated with buffer consisting of 25 mM
Tris (pH 7.0), 0.1 mM EDTA, 10% glycerol and 50 mM
NaCl. The column was run at a flow rate of 0.30 ml/min
and 0.25ml fractions were collected. The elution profiles
of proteins were determined by western blot analysis.

RESULTS

A variety of in vitro biochemical approaches have shown
that SNASP forms high-affinity complexes with both his-
tone H1 and histone H3/H4 complexes (19,20). However,
how these binding affinities relate to the association of
sNASP with histones in vivo has not been well character-
ized. For example, there may be distinct pools of SNASP,
one of which is bound to histone H1 and a second that is
bound to histones H3/H4. The binding of H1 and H3/H4
could be mutually exclusive and, thus, these histones could
compete for binding to NASP. Alternatively, these
separate pools could function independently to regulate
linker and core histone dynamics. Another possibility is
that sSNASP may simultaneously bind to a combination of
HI1, H3, H4 and H3/H4 complexes. These SNASP/H1/H3/
H4 complexes might then be involved in the coordinated
assembly of core and linker histones.

Nucleic Acids Research, 2012, Vol. 40, No.2 663

sNASP interacts with linker and core histones through
distinct domains

As a first step in determining how sNASP interacts with
different histone populations, we have generated a series
of deletion mutations of sSNASP to identify the specific
domains responsible for binding to the linker and core
(H3.3, H4 and H3.3/H4 tetramer) histones. We have
designed, expressed and purified a series of sSNASP con-
structs that created targeted deletions and mutations to
localize the binding activities of sNASP to specific
domains of the protein (Figure 1A and B). These con-
structs included an NH,-terminal fragment that included
all four TPR repeats and the acidic domain (sSNASP-N,
residues 1-278), a COOH-terminal fragment that started
after the final TPR repeat and included the nuclear local-
ization sequence (NLS, sNASP-C, residues 279-449), in-
dividual deletions of the three intact TPR repeats (TPR1
A, TPR3 A and TPR4 A) and a mutant in which 12 of the
glutamic acid residues in the acidic domain were changed
to lysine residues (sNASP-12 E/K). The acidic domain
mutant was constructed in this way for a number of
reasons. First, attempts to delete the acidic domain were
unsuccessful as these proteins were unstable in E. coli.
Second, the acidic domain contains 21 glutamic acid
residues and 7 aspartic acid residues with many of the
glutamic acid residues clustered together to form patches
of negative charge. We mutated these clusters in such a
way as to eliminate the long contiguous stretches of acidic
residues. In addition, the glutamic acid residues chosen for
mutation spanned the length of the acidic domain. Finally,
we chose to convert the glutamic acid residues to lysine as
these are roughly isosteric changes that, while reversing
the charge of the residue, retain the potential for surface
charges that may be important for protein folding.
Quantitative binding studies of the interactions of the
sNASP variants to human histones H1°, H3.3, H4 and
H3.3/H4 tetramers were measured using SPR. We have
included the uncomplexed histones H3.3 and H4 in this
analysis as it is not clear whether the association of
sNASP with the core histones occurs only after the for-
mation of H3/H4 dimers or tetramers. For example, the
association of NI family histone chaperones with Hatl
histone acetyltransferase complexes occurs at an early
step in the chromatin assembly pathway that may
precede H3/H4 complex formation (13,21). Therefore,
sNASP may interact with surfaces on individual histones
that are not available in histone complexes. An example of
a SPR binding sensorgram for the sNASP-N:H3.3/H4
interaction is given in Figure 1C and the binding constants
listed in Table 1. Full-length sSNASP binds to histone H1°
with k., and koy rates of 1.54x10*M~'s™' and
1.48 x 10~*s™', respectively. The calculated binding affin-
ity (K; = kog/kon) for this interaction is 9.6nM.
Full-length sNASP interacts with H3.3 with a k,, of
1.68 x 10°M~'s™" and a ko of 1.58 x 10725~ giving a
K, of 940 nM. Full-length sSNASP binds to H4 with an
~4-fold higher K, of 236nM (kon = 3.01 x 10°M~'s™!
and ko = 7.10 x 107*s7") in comparison to the sNASP:
H3.3 interaction. Finally, full-length sNASP binds to
H3.3/H4 tetramers with a k,, of 4.47 x 10°M~'s7! and
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Table 1. SPR binding constants of NASP variants to human histones
H1° H3.3, H4, and H3/H4 tetramer®

kon M7's™) ko (871 Kq (nM)° var/wt®
H1 binding
sNASP 1.54 3)x 10 148 (2)x107* 9.6 +0.2 1
SNASP-N 486 (4)x10* 891 (9 x107* 183 +0.3 1.9
sNASP-C ND! ND NB® NB
SNASP-12E/K 225 4)x 10" 6.77 (10)x 10™*  30.1 £ 5.6uM 3100
TPRIA 2.86 (4)x 10°  8.58 (12)x 10™* 300 + 6.0 31
TPR3A 337 (2)x 10" 145 2)x 107 43.0+0.7 4.5
TPR4A 151 ()x10° 217 () x107* 144 +0.5 1.5
H3.3 binding
sNASP 1.68 3)x 10° 158 (1)x 107> 940 + 16 1
SNASP-N 337 29) x 104 201 ) x 107> 59.6 + 0.8 0.063
sNASP-C ND ND NB NB
SNASP-12E/K  1.24 (8) x 10> 4.69 (6)x 10~ 3780 + 270 4.0
TPRIA 1.01 (17) x 10 3.01 (7)x 107> 298 + 8.1 0.32
TPR3A 3.66 (65)x 10° 196 2)x10™%  53.6 + 1.3 0.057
TPR4A 3.03 B x 10" 652 (2)x107*  21.5+0.7 0.023
H4 binding
sNASP 3.01 3)x 10 7.10 ®)x 107 236 + 3.3 1
sNASP-N 1.86 (18) x 10* 2,14 (1)x 10> 115+ 1.2 2.1
SNASP-C ND ND NB NB
SNASP-12E/K 170 (11) x 10 7.64 (4) x 107™* 449 £ 3.8 1.9
TPRIA 275 34 x 10> 117 ()x 107> 425+6.5 1.8
TPR3A 1.37 (57)x 10> 235 (2)x 107> 1720 + 73 .
TPR4A 3.24 (47) x 10° 1.47(1)x 1073 454 +7.9 1.9
H3.3/H4 tetramer binding
sNASP 447 (83)x 10° 2,16 (3)x 107> 483 + 88 1
SNASP-N 443 (6)x10° 550 (2)x 107> 1240 + 18 2.6
sNASP-C ND ND NB NB
SNASP-12E/K  1.56 8)x 10> 833 (7)x 107™* 534 +5.1 1.1
TPRIA 3.65 (40)x 10> 1.55 (1)x 1073 4250 + 440 8.8
TPR3A 447 (10)x 10> 1.99 3)x 107> 445+ 12 0.9
TPR4A 1.52 (40) x 10" 185 (2)x 1073 122+ 6uM 250

Values in parentheses are the standard deviation of the mean of
standard errors in the final

ISPR experiments were performed in 25mM Tris-HCI, pH 7.0, 0.3 M
NacCl, 0.1 mM EDTA, and 0.05% NP-40 at 25.0 + 0.1°C.

b _

Kd - koff/kon-

“Var/wt = Kgvariant/Kgwild-type.

IND, Not determined.

°NB, No detectable binding at concentrations used.

a ko of 2.16 x 1073571 resulting in a K4 of 483nM. The
Kgs of full-length sNASP for human H1° and H3.3/H4
tetramers are within a factor of 2 compared with our
previous SPR results measuring the binding interactions
of full-length sNASP to bovine H1 and chicken H3/H4
tetramers (19). These results highlight the broad
cross-species binding affinities of human sNASP to
linker and core histones that were either isolated from
natural sources or recombinantly expressed and purified.
It is interesting to note that the binding affinity of the
sNASP:H3.3/H4 tetramer interaction falls in between the
binding affinities observed for the individual SNASP:H3.3
and sNASP:H4 core histone interactions. The full-length
sNASP rate constants to human H1°, H3.3, H4 and H3.3/
H4 tetramers serve as reference points to compare the mu-
tations made in the domain structure of sNASP.

While the COOH-terminal fragment of sNASP was
unable to bind to any of the histones, the NH,-terminal
fragment of SNASP (sNASP-N) bound to histone H1°
with an affinity approaching that of the full-length
sNASP (1.9-fold weaker). The binding of sSNASP-N to
H4 or H3.3/H4 tetramers was reduced approximately 2-
and 3-fold, respectively. Surprisingly, the sNASP-N

interaction to H3.3 has ~16-fold higher binding affinity
than the full-length SNASP:H3.3 interaction. The changes
in K5 of SNASP-N to the histones occur through faster
on- and off-rate constants with the exception of the
sNASP-N:H3.3/H4 on rate. These results suggest that
the COOH-terminus of sNASP contributes equally to
core and linker histone binding, but with an overall
minor effect. The exception is with H3.3 where the
COOH-terminus has a negative impact on this interaction.

We were able to further localize the domains of SNASP
that are involved in linker and core histone interactions.
The TPR1 domain contributed more for H1 binding than
core histone binding as deletion of this domain resulted in
a 31-fold decrease in binding affinity to H1, while only a
8.8-fold decrease was observed for the H3.3/H4 complexes
(Table 1). The TPR1 domain exhibited only a 1.8-fold
decrease when removed for the H4 interaction, but its’
removal resulted in a 3-fold increase in binding affinity
for the H3.3 interaction. A similar trend was observed
for the TPR3 domain of sNASP with it being more im-
portant for H1 binding (4.8-decrease upon removal) than
the H3.3/H4 tetramer, which had a similar binding affinity
relative to full-length sNASP. In addition, the TPR3
domain of SNASP has a positive influence on the inter-
action with histone H4 (7.3-fold decrease) and a negative
influence for the interaction with histone H3.3 (18-fold
increase relative to the full-length SNASP interaction).

Importantly, we also identified residues and domains
that play a critical role in the binding to specific histone
types. In this respect, two sNASP mutants were particu-
larly informative, SNASP 12 E/K and sNASP TPR4A.
The affinity of sSNASP 12 E/K for histone H1 decreased
>3000-fold while its affinities for H3.3/H4 tetramers, H4
or H3.3 were nearly unchanged or moderately changed
(1.1-, 1.9- or 4.0-fold decrease, respectively). Conversely,
deletion of the fourth TPR repeat domain (sNASP
TPR4A) had a dramatic effect on H3.3/H4 tetramer
affinity (250-fold decrease) with small 1.5- and 1.9-fold
effects on histone Hl and H4 binding affinities. These
results suggest that sNASP wuses distinct residues,
domains and/or mechanisms to interact with the individ-
ual linker and core histones and aggregated species (H3.3/
H4 tetramer or dimer).

Binding of sSNASP to linker and core histones in vivo

To determine whether the effect of the SNASP mutations
on histone binding in the cell matched with the in vitro
results, we constructed a set of cell lines (derived from
U20S cells) that expressed these mutations. Of note, the
U20S cells express various isoforms of the linker and H3
histones. As with the bacterially expressed proteins, these
SNASP constructs also contained an NH,-terminal six-
residue histidine tag (His-tag) that allowed for protein iso-
lation. Whole cell extracts were made from cells expressing
the sSNASP constructs indicated in Figure 1A. The His-tag
sNASP protein in these extracts was then bound to Ni*'-
chelate chromatography columns. Following washing,
the bound proteins were eluted with imidazole. As
expected, full-length sSNASP bound histones H1, H3 and
H4 (Figure 2). It is interesting to note that very little
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Figure 2. Binding of sNASP to histones in vivo. U20S cell lines were isolated that allow for the Tet-inducible expression of His-tag full-length
SNASP or various mutant forms of sSNASP (as indicated at the top of each column). Whole cell extracts were made from each cell line and passed
through a Ni*'-chelate affinity column. After extensive washing, proteins bound to the column were eluted with buffer containing a high concen-
tration of imidazole. An aliquot of the whole cell extract (IN, 10%), the flow-through fraction (FT, 10%) and bound (elution) fraction (EL, 25%)
were resolved by SDS-PAGE and analyzed by western blot probed with the antibodies indicated to the right of the blots.

histone H3 and H4 were found in the flow-through frac-
tion. As these whole cell extracts contain non-chromatin-
associated proteins, this observation was consistent with
previous reports that suggest that a significant fraction
of the soluble H3 and H4 in cells is bound to sNASP-
containing complexes (21-24). The sNASP 12E/K
mutant displayed a similar level of interaction with H3
and H4 but no longer bound to histone H1. This agrees
with the in vitro result where this mutant was specifically
defective in histone H1 binding (Table 1). Also in agree-
ment with the in vitro results, the SNASP TPRIA dis-
played diminished binding to both H3/H4 and HI1. The
sNASP TPR4A mutant, which was defective in H3/H4
binding in vitro, displayed little binding to these histones
in vivo. Surprisingly, this mutant also showed a significant
loss histone H1 binding. While the binding of sNASP
mutants to linker and core histones in the cell were, in
general, qualitatively similar to that observed for the re-
combinant sSNASP constructs, it is important to note that
the analysis of native complexes is not quantitative. The
interaction between sSNASP and histones in the cell occurs
in the context of numerous other factors that are interact-
ing with both sNASP and the histones. Therefore, the
mutations in sNASP are likely to influence both the
direct interactions with the histones and also the inter-
actions with the other present in vivo.

sNASP is found in distinct complexes containing either
linker or core histones

The observation that the binding of sNASP to HI and
H3/H4 involved separable domains raises the important
issue of whether sSNASP interacts with linker and core
histones independently or whether it can bind simultan-
eously to both types of histone. To address this question,
we used gel filtration chromatography (Superose 6) to re-
solve native SNASP-containing complexes present in the
elution fraction from the full-length sSNASP Ni**-chelate

column pull down. Comparing the elution profiles of
sNASP, core histones and linker histone provided infor-
mation on the distribution of the histones in specific
sNASP-containing complexes. As seen in Figure 3A, the
bulk of the sSNASP eluted in a fairly broad peak that was
centered at ~150kDa (peaked at fraction 58). The
majority of the histone HI (H1.2) was found in a
narrower peak, centered on fraction 62, which overlapped
with part of the SNASP peak. Based on the elution pos-
ition where sNASP and histone H1.2 overlapped, this
complex had an apparent molecular weight <150kDa.
The remainder of the SNASP peak co-eluted with histone
H4. The elution of the SNASP/H4 overlap indicated an
apparent molecular weight for this complex >150kDa.
Intriguingly, there was no apparent overlap in the peaks
of H4 and H1.2. We did observe that a small fraction of
the H1.2 and H4 eluted together in a very high-molecular-
weight complex (fraction 28). This complex may be due to
a low level of contaminating chromatin as we also ob-
served a trace of histone H2B that eluted only in this
fraction. The size exclusion chromatography results sug-
gested that, while SNASP is associated with both core and
linker histones, there is little or no sSNASP that is simul-
taneously bound to both types of histone.

To confirm the size exclusion chromatography results,
we also performed a co-immunoprecipitation experiment
in which the elution fraction from the Ni*"-chelate column
containing full-length sNASP was incubated with anti-
bodies directed against histone H3. If sNASP exists in
complexes containing H3, H4 and HI, we would expect
that immunoprecipitation of histone H3 would also pull
down sNASP, histone H4 and histone H1. However, as
seen in Figure 3B, only sNASP and histone H4 were
co-immunoprecipitated with the histone H3. An analo-
gous co-immunoprecipitation experiment using o-histone
H1 antibodies was uninformative as there was a significant
level of non-specific interaction between the «o-HI
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Figure 3. sNASP can bind to linker and core histones simultaneously. (A) The Ni*'-chelate column elution fraction isolated from the full-length
sNASP whole cell extract was resolved by size exclusion chromatography (Superose 6). The indicated fractions were analyzed by western blots and
probed using antibodies that recognized sNASP, histone H1.2, histone H4 and histone H2B (as marked). Arrows on the top of the blots indicate the
void volume and elution position of molecular weight standards. (B) The Ni*"-chelate column elution fraction isolated from the full-length SNASP
whole cell extract shown in Figure 2 was immunoprecipitated with an o-H3 antibody. The input flow-through and bound fractions were analyzed as

described in Figure 2.

antibodies and SNASP. These observations are consistent
with the results of the size exclusion chromatography and
indicate that sSNASP was found in distinct complexes that
contain either core or linker histones but not in complexes
that included both histone types simultaneously.

DISCUSSION

Binding specificity is a signature characteristic of histone
chaperones. SNASP possesses a unique specificity in that it
binds with high affinity to both histone H1 and histone
H3/H4 complexes. One important question that we have
addressed is whether the binding to discreet types of
histones occurs through a common mechanism. The ob-
servation that different domains are necessary for the
interaction between sNASP and core or linker histones
strongly suggests that distinct mechanisms underlie its
binding to different classes of histone.

Currently, there are no crystal or solution structures for
any of the N1/N2 family members or complexes with
histones. To provide a structural template to map the
domain mutagenesis study of sNASP for its interaction
with the histones, we submitted the primary sequence
of full-length sSNASP to the Robetta server using default
parameters and it generated a de novo structural model
using the Rosetta algorithm developed by Baker and
co-workers (25).

Figure 4 displays the structural model of full-length
SNASP. The predicted sNASP structure has an extended
topology that can be broken into an NH,- and

COOH-terminal lobes connected by a coiled-coil domain
(CCD). The NH»-terminal lobe is structurally larger than
the COOH-terminal lobe. The predicted structure consists
of large amounts of a-helical secondary consistent with
circular dichroism measurements (20). Primary sequence
algorithm predicts residues 281-323 with high probability
to form a CCD (26). TPR1 does not adopt a classical TPR
fold, but has extended packing against other «-helices in
the NH,-terminal lobe. TPR3 and TPR4 do fold into TPR
motifs packing against each other and parts of the NH,-
terminal lobe and the CCD. SEC (Figure 3) (20,21) and
analytical ultracentrifugation (20,21) experiments indicate
the quaternary structure of SNASP to be a dimer with a K,
of 100nM. Rosetta built only a monomer, but with the
extended structure of this model, we posit the dimer inter-
face localizes to the CCD (residues 281-323) in a similar
fashion as the structure of NAP-1 dimer determined by
Luger and co-workers (27). The sNASP structural model
provides a visual representation to map our domain mu-
tational study with high confidence.

The computationally derived structure of SNASP has
several attractive features that correlate well with our mu-
tational study and with previous data regarding linker and
core histone interactions with SNASP. First, the
COOH-terminus of the sSNASP structural is separated in
distance from the NH,-terminus and our mutational data
here demonstrated that this region was not critical for the
interaction of SNASP with either linker or core histones or
previously for nucleosome assembly (28), whereas the
NH,-terminus lobe to residue 322 was essential. Second,
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Figure 4. Structural model of a SNASP monomer generated by Rosetta (25). (A) Ribbon representation of sNASP highlighting the TPR motifs
(TPRI in blue from residues 39-75, TPR3 in yellow from residues 196-236, and TRP4 in purple from residues 242-278), coiled-coil domain (CCD in
green from residues 281-323), and the glutamates residues, drawn as CPK models, mutated to lysines in the SNASP-12E/K construct. The NH,- and
COOH-termini are labeled accordingly. The predicted binding sites of the linker and core histone sites are indicated. (B) The linear Poisson—
Boltzman equation was solved for sNASP using APBS (30) with 150mM monovalent salt at 25° C. The solvent accessible surfaces areas are
displayed and colored blue (+5 kT/e) and red (=5 kT/e). The electrostatic potential gradient for sNASP is displayed as a blue (+2 kT/e) and red
mesh (—2 kT/e). Predicted structures and electrostatic potentials were viewed and rendered using PyYMOL (31). The ribbon and electrostatic diagrams
are oriented in the same manner and the two structural views are related by an 180° rotation around the vertical axis.

the deletion mutations of sSNASP indicate that H1 binding
localizes primarily to an acidic domain (residues 116-172),
whereas the core histones localize to the regions around
TPR3 and TPR4. The linker and core binding sites on the
sNASP structural model are also distant from each other.
Crystal structural determinations of free sNASP and
sNASP complexes with Hl and H3/H4 are underway.
Given that we do not observe sNASP complexes that
contain both linker and core histones, it will be interesting
to determine whether binding to one type of histone causes
structural alterations that preclude simultaneous binding
to the other. It should be noted that studies demonstrated
that it was the tails, not the winged helix domain, of H1
that interact with SNASP (20).

Given the overall negatively charged sSNASP molecule
(isoelectric point, pl, of 4.35) and highly positively charged
molecules of the linker and core histones (pIs ranging
from 10.8 to 11.4), favorable electrostatics are large com-
ponents of their binding associations. Calculation of the
linear Poisson—Boltzmann equation (at 150 mM salt and
25°C) using the predicted sNASP structure highlights the
large negative surface area and field potential around the

NH,-lobe localizing to the acidic insertion in TPR2 (30).
This acidic domain was more important for the binding of
sNASP to histone H1 than H3/H4 as determined using the
sNASP-12E/K mutation. The sNASP-12E/K mutation
increased the pl from 4.35 of wild-type sSNASP to 4.72.
These data suggest that the sNASP:HI association is
largely driven by more favorable electrostatic interactions
than the sNASP:H3/H4 associations. A model whereby
more favorable electrostatics drives the SNASP-H1 inter-
action could resolve some previously contradictory obser-
vations. Despite the fact that recombinant sSNASP binds
to histone HI with a significantly higher affinity than to
H3/H4, chromatography-based methods only detect the
association of SNASP with H3/H4. For example, histone
H1 is not retained on Ni**-chelate resin in the presence of
recombinant His-tag sNASP. Also, recombinant sSNASP
and histone H1 do not co-purify during size exclusion
chromatography (19). However, these columns are run
in buffers containing a relatively high ionic strength
(300mM NaCl) to prevent non-specific binding of the
purified histones to the column resins. Therefore, if the
sNASP-H1 binding were primarily based on ionic
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interactions, these are likely to be disrupted by the salt
concentration of the buffer systems, which would then
prevent detection of complex formation.

The fourth TPR repeat domain is essential for the inter-
action of sNASP with histone H3/H4 complexes.
TPR repeats are found in many proteins and often
mediate protein—protein interactions (11). TPR repeats
have not previously been shown to mediate specific inter-
actions with histones. However, a TPR repeat domain of
SMYD3, a lysine methyltransferase that can specifically
methylate histone H3 lysine 4, has been proposed to
form a large part of the substrate binding site for this
enzyme (29).

The binding stoichiometries of sNASP in its inter-
actions with linker and core histones remain a difficult
and open-ended question. The most definitive data regard-
ing binding stoichiometries of sSNASP to H3.1/H4 were
measured using sedimentation equilibrium experiments
using analytical ultracentrifugation (SE-AUC) (21). The
SE-AUC data fit to a complicated binding equilibrium
of sSNASP:H3.1:H4 in molar ratios of 1:1:1 (38.5%),
2:2:2 (44.9%) and 1:2:2 (16.6%) (21). The SE-AUC ex-
periments cannot distinguish between a monomer/dimer
of sNASP binding to a H3.1/H4 dimer or a H3.1/H4
tetramer (21). A similar complication would exist using
SE-AUC experiments by adding another component of
the linker histone H1. Our size exclusion chromatography
results are consistent with the possibility that native
sNASP also exists as dimers but the resolution of this
technique is not sufficient to make a definitive deter-
mination. If the cellular SNASP is present as dimers, our
results suggest that these SNASP dimers are homomeric
with respect to their histone substrates. That is, the lack
of overlap between H1 and H4 in the sNASP com-
plexes indicates that heteromeric complexes where one
sNASP molecule is associated with histone H1 and the
other is associated with H3/H4 may not exist at significant
levels.

When combined, our results suggest a model of
sNASP-histone interactions where sSNASP exists in mul-
tiple states. The size exclusion chromatography observa-
tion that histone H1 and histone H4 overlap with distinct
parts of this SNASP peak but do not overlap with each
other suggests that there are discreet pools of SNASP that
are associated with either histone H1 or histone H3/H4.
These sNASP complexes may serve as a reservoir for
newly synthesized (or newly displaced) histones prior to
chromatin assembly. These SNASP complexes might then
directly interact other factors involved in chromatin assem-
bly as the histones are directed into specific assembly
pathways (3,21). This model is consistent with the role
of N1/N2 in the storage of histones in Xenopus oocytes
as well as with the association of the S. cerevisiae homolog
of SNASP, Hiflp, with the type B histone acetyltransferase
Hatlp that is involved in the acetylation of newly
synthesized histones (7,9,13). The ability of SNASP to as-
sociate with both linker and core histones places this
histone chaperone in a position to play a critical role in
coordinating the assembly of higher order chromatin
structure.
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