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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no modifying
treatments available. The molecular mechanisms underpinning disease pathogenesis are
not fully understood. Recent studies have employed co-expression networks to identify
key genes, known as “switch genes”, responsible for dramatic transcriptional changes
in the blood of ALS patients. In this study, we directly investigate the root cause of
ALS by examining the changes in gene expression in motor neurons that degenerate in
patients. Co-expression networks identified in ALS patients’ spinal cord motor neurons
revealed 610 switch genes in seven independent microarrays. Switch genes were
enriched in several pathways, including viral carcinogenesis, PI3K-Akt, focal adhesion,
proteoglycans in cancer, colorectal cancer, and thyroid hormone signaling. Transcription
factors ELK1 and GATA2 were identified as key master regulators of the switch
genes. Protein-chemical network analysis identified valproic acid, cyclosporine, estradiol,
acetaminophen, quercetin, and carbamazepine as potential therapeutics for ALS.
Furthermore, the chemical analysis identified metals and organic compounds including,
arsenic, copper, nickel, and benzo(a)pyrene as possible mediators of neurodegeneration.
The identification of switch genes provides insights into previously unknown biological
pathways associated with ALS.

Keywords: ALS, amyotrophic lateral sclerosis, co-expression networks, network analysis, neurodegeneration,
switch genes, motor neuron disease

INTRODUCTION

Amyotrophic lateral sclerosis, also known as motor neuron disease, is a fatal neurodegenerative
disease affecting the upper and lower motor neurons leading to muscle atrophy, paralysis, and
death, usually within 2–5 years from symptoms onset (Ingre et al., 2015). Currently, there are
no disease-modifying therapies available. Riluzole and edaravone are the only drugs approved
for disease management; however, these drugs produce only modest effects on symptoms
and life expectancy (Nagoshi et al., 2015). The lack of sensitive and specific biomarkers has been

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 March 2022 | Volume 15 | Article 825031

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.825031
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.825031&domain=pdf&date_stamp=2022-03-15
https://creativecommons.org/licenses/by/4.0/
mailto:judy.potashkin@rosalindfranklin.edu
https://doi.org/10.3389/fnmol.2022.825031
https://www.frontiersin.org/articles/10.3389/fnmol.2022.825031/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Bottero et al. Amyotrophic Lateral Sclerosis Disease Mechanisms

a significant hurdle in the development of therapeutic strategies.
To date, the most promising biomarkers are the neurofilament
light (NfL) and the phosphorylated neurofilament heavy subunit
(pNFh). Several studies have reported higher expression levels
of NfL and pNFh in the cerebrospinal fluid (CSF) and blood
of ALS patients compared to healthy controls (Boylan et al.,
2013; Benatar et al., 2018). Nonetheless, these markers have
been reported as helpful in identifying patients with Alzheimer’s
disease, thereby limiting the specificity of diagnosing ALS
(Preische et al., 2019).

Epidemiological studies have indicated numerous risk factors
associated with ALS, including older age, male sex, family history,
diabetes, dietary factors, and physical fitness, suggesting the
disease is mainly multifactorial (McCombe and Henderson,
2010; Ingre et al., 2015; Couratier et al., 2016). Indeed,
around 90%–95% of the cases are sporadic. The most common
mutations in ALS are the hexanucleotide repeat expansion in
the C9ORF72 gene and polymorphisms in superoxide dismutase
(SOD1; Hardiman et al., 2017). In addition, genome-wide
association studies have identified more than 30 genetic factors
implicated in ALS, reflecting the complexity and multifactorial
nature of the disease (Hardiman et al., 2017).

Several molecular mechanisms have been implicated in
the pathogenesis and progression of ALS. Inflammation,
mitochondrial dysfunction, protein misfolding, RNA
metabolism, and lipid metabolism are examples of a wide
range of dysregulated pathways identified in ALS studies.
Network-based analysis has been instrumental in elucidating
disturbances in these pathways. For instance, a transcriptomic
meta-analysis identified the dysregulation of lipid metabolism
as an early pathological alteration in the spinal cord of
SOD1 mice (Fernandez-Beltran et al., 2021). Interestingly,
lipid metabolic pathways, including cholesterol biosynthesis,
ceramide metabolism, and eicosanoid synthesis, were associated
with disease progression. Furthermore, interactome and
transcription factor analysis from human pluripotent stem cells
from ALS patients with FUS and SOD1 mutations revealed
unique pathways associated with these genetic mutations. For
example, herpes simplex virus infection was predominantly
associated with FUS mutations, whereas dysregulation of
metabolic pathways and neuroactive ligand-receptor interactions
were connected to mutations in SOD1 (Dash et al., 2020). In
addition, an integrative transcriptomic analysis identified
15 small bioactive molecules as potential drug candidates for
ALS (Park et al., 2021).

Recently, analysis of co-expression networks to identify genes
associated with drastic gene expression changes, best known
as ‘‘switch genes’’, has shown promise in identifying disease
mechanisms in several neurodegenerative diseases. For example,
co-expression network analyses identified key switch genes in
the brain of Alzheimer’s disease, frontotemporal dementia, and
vascular dementia (Potashkin et al., 2019, 2020). More relevant to
the present study, analysis of co-expression networks identified
sex-specific switch genes and pathways in the blood of ALS
patients (Santiago et al., 2021). This study expands our analyses
to identify switch genes and pathways in spinal cord motor
neurons in ALS patients. The identification of switch genes

may unveil previously unknownmechanisms in the development
of ALS.

MATERIALS AND METHODS

Database Mining
The NCBI GEO database1 and ArrayExpress database2 were
searched on August 2021 for studies in which transcriptomic
data were available from ALS patients. The database was queried
using the search terms ‘‘ALS’’, ‘‘neuron’’, and ‘‘Homo sapiens’’
(Organism) for the study types expression profiling by array
and expression profiling by high-throughput sequencing. Only
datasets containing transcriptomic data from spinal cord motor
neurons were selected for analysis. Seven arrays containing
samples from patients’ spinal cords were identified (Table 1).
GSE52946 was the only high throughput sequencing study
included in this study. The sample population of each dataset
is presented in Table 2. Raw data from the expression arrays
were imported into SWIM. The SWIM algorithm consists of
several steps, as we previously described (Potashkin et al., 2019,
2020). The fold-change thresholds used were 2, 3, 4, 1.5, 2.5, 1.75,
and 4.5 for the arrays GSE833, GSE19332, GSE20589, GSE26927,
GSE56500, GSE68605, and GSE52946, respectively. Different
thresholds were used to obtain a significant number of switch
genes from each array.

Swim Analysis to Identify Switch Genes
Raw gene expression data from the seven arrays were imported
into SWIM. The SWIM algorithm consists of several steps.
Briefly, in the preprocessing stage, genes with no or low
expression are removed. In the filtering step, the fold changes
were set for each array, and genes that were not significantly
expressed between ALS subjects compared to controls are
removed. The False discovery rate method (FDR) was used
for multiple test corrections. Pearson correlation analysis
was performed to build a co-expression network of genes
differentially expressed between ALS subjects and controls. The
k-means algorithm was used to identify communities within
the network as previously demonstrated (Fiscon et al., 2018).
SWIM uses a Scree plot to determine the number of clusters
and the clusters with the lowest number of sum of the square
error (SSE) values among the replicates is designated as the
number of clusters. A heat cartography map is built using
a clusterphobic coefficient Kπ and the global-within module
degree Zg. The coefficient Kπ measures the external and internal
node connections whereas Zg measures the extent each node is
connected to others in its community. A node is considered a
hub when Zg > 5. The average Pearson correlation coefficient
(APCC) between the expression profile of each node and its
nearest neighbors is used to build the heat cartography map.
Using the APCC, three types of hubs are defined; date hubs
that show low positive co-expression with their partners (low
APCC), party hubs that show high positive co-expression (high
APCC), and nodes that have negative APCC values are called

1https://www.ncbi.nlm.nih.gov/gds
2https://www.ebi.ac.uk/arrayexpress/
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TABLE 1 | Gene expression studies analyzed by the switch miner software.

Arrays Platform Description ALS/control References

GSE833 A-AFFY-32 - Affymetrix GeneChip HuGeneFL
Array

Gray matter of lumbar spinal cord.
Familial and sporadic.

6/4 Dangond et al. (2004)

GSE19332 A-AFFY-44 - Affymetrix GeneChip Human
Genome U133 Plus 2.0

Isolated motor neurons in
CHMP2B-related ALS cases

3/7 Cox et al. (2010)

GSE20589 A-AFFY-44 - Affymetrix GeneChip Human
Genome U133 Plus 2.0

Motor neuron from cervical spinal cord
in SOD1-ALS.

3/7 Kirby et al. (2011)

GSE26927 A-MEXP-931 - Illumina HumanRef-8
v2 Expression BeadChip

Cervical spinal cord 10/10 Durrenberger et al. (2012,
2015)

GSE56500 A-AFFY-143 - Affymetrix GeneChip Human
Exon 1.0 ST Array version 1

Lower motor neurons
laser-microdissected from spinal cords
of sporadic or familial ALS patients

6/6 Highley et al. (2014)

GSE68605 A-AFFY-44 - Affymetrix GeneChip Human
Genome U133 Plus 2.0

laser captured lower motor neurons
from ALS with C9ORF72 mutation.

8/3 Cooper-Knock et al. (2015)

GSE52946 GPL11154 Illumina HiSeq2000 (Homo Sapiens) Whole lumbar spinal cord homogenate 10/10 Butovsky et al. (2015)

TABLE 2 | Sample population.

Arrays Samples # samples Age (years) PMI (h) Disease duration (years) Gender (F/M)

GSE833 Control 4 56 10 - NA
ALS 6 61 10 NA NA

GSE19332 Control 7 NA NA - NA
ALS 3 NA NA NA NA

GSE20589 Control 7 69 17 - 3/4
ALS 3 55 33 1.9 3/0

GSE26927 Control 10 67 9 - 0/10
ALS 10 68 28 2.45∗ 3/7

GSE56500 Control 6 62 NA - 1/5
ALS 6 60 NA NA 2/4

GSE68605 Control 8 60 NA - 3/1
ALS 3 66 NA 2.1 5/3

GSE52946 Control 10 53 NA - NA
sALS 10 58 NA 1.9 2/8
fALS 4 37 NA 0.75 1/3

PMI: Postmortem interval in hours. ∗The disease duration was disclosed for 6 out of 10 patients only. NA: not available.

fight-club hubs. In the final step, switch genes are identified that
are a subset of the fight-club hubs that interact outside of their
community. Switch genes are defined as not being a hub in their
cluster (low Zg <2.5), having many links outside their cluster
(Kπ >0.8, when Kπ is close to 1 most of its links are external
to its module), and having a negative average weight of incident
links (APCC <0). Switch genes are defined as the set of genes
that interact outside their community, are not in local hubs and,
are mainly anti-correlated with their interaction partners (Fiscon
et al., 2018).

Pathway Enrichment Analysis
Official gene symbols for the switch genes were imported into
NetworkAnalyst for network and pathway analyses (Zhou et al.,
2019). Each dataset of switch genes was analyzed separately. The
minimum connected network was used for analysis. The Kyoto
Encyclopedia of Genes and Genome (KEGG) pathway database
was used as an annotation source (Kanehisa and Goto, 2000).

Gene-Transcription Factors Interaction
Analysis
Gene-transcription factors interactome was performed in
NetworkAnalyst. Transcription factor and gene target data were

derived from the Encyclopedia of DNA Elements (ENCODE)
ChIP-seq data, ChIP Enrichment Analysis (ChEA), or JASPAR
database (Lachmann et al., 2010; Wang et al., 2013; Fornes
et al., 2020). ENCODE uses the BETA Minus Algorithm in
which only peak intensity signal <500 and the predicted
regulatory potential score <1 is used. ChEA transcription factor
targets database inferred from integrating literature curated
Chip-X data. JASPAR is an open-access database of curated,
non-redundant transcription factor-binding profiles. A Venn
diagram analysis was performed with the transcription factors
identified with each database. Transcription factors were ranked
according to network topology measurements, including degree
and betweenness centrality.

Gene-miRNA Interaction Analysis
The gene-miRNA interactome was performed in
NetworkAnalyst. The Gene-miRNA interactome was carried
out from comprehensive experimentally validated miRNA-gene
interaction data collected from TarBase v.8.0 and miRTarBase
v.8.0 (Chou et al., 2016, 2018; Karagkouni et al., 2018). miRNAs
were ranked according to network topology measurements such
as degree and betweenness centrality. Venn diagram analysis
was used to identify the shared and unique set of miRNAs
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between ALS analyses. miTALOS 2.0 localized miRNA targets
in signaling pathways (Kowarsch et al., 2011; Preusse et al.,
2016). This software is publicly available and can be accessed at
http://mips.helmholtz-muenchen.de/mitalos/#/search.

The functional analysis of the miRNA was performed
using the prediction tool TargetScan from the miTALOS
2.0 website accessible at http://mips.helmholtz-
muenchen.de/mitalos/#/search (Kowarsch et al., 2011; Preusse
et al., 2016).

Gene-Chemical Analysis
Protein-chemical associated analysis was performed in
NetworkAnalyst, which uses the literature curated gene-chemical
database Comparative Toxicogenomics, a genomic resource
available to the public that is derived from genes and proteins of
toxicologic significance to humans (Mattingly et al., 2003).
Chemicals were ranked according to network topology
measurements, degree, and betweenness centrality.

RESULTS

Database Mining for ALS Transcriptomic
Studies
We interrogated the Array Express and NCBI GEO databases
to identify gene expression studies from ALS patients and
age-matched controls. We focused our analysis on spinal cord
motor neurons studies containing samples from ALS patients.
As a result, seven gene expression data sets from ALS patients
and age-matched healthy controls were identified and considered
further (Tables 1, 2). The overall strategy of the study is
illustrated in Figure 1.

Identification of Switch Genes in Spinal
Cord Motor Neurons From ALS Patients
The raw gene expression datasets from spinal cords motor
neuron tissue from ALS patients were imported into SWIM.
Then, the analysis was performed comparing ALS to healthy
controls. In the first step, genes were retained (red bars) or
eliminated (gray bars) according to the selected fold-change
threshold (Figures 2, 3A).

In the second step, the average Pearson correlation
coefficient allowed the identification of correlation communities
(Figures 3B, 4). The nodes with a negative correlation value
with their interaction partner, known as fight-club hubs, are
depicted in R4 in blue. Two parameters identify the plane: Zg
(within-module degree) and Kπ (clusterphobic coefficient),
and it is divided into seven regions, each defining a specific
node role (R1-R7). High Zg values correspond to nodes that
are hubs within their module (local hubs), whereas low Zg
values correspond to nodes with few connections within their
module (non-hubs within their communities, but they could
be hubs in the network). Each node is colored according to its
average Pearson Correlation coefficient (APCC) value. Region
R4 represents the switch genes.

In the third step, the expression profiles of switch genes
are clustered according to rows (switch genes) and columns
(samples) of the switch genes expression data (biclustering;

FIGURE 1 | Overall study design. ArrayExpress and NCBI GEO databases
were searched for human transcriptomic studies in ALS. SWIM analysis was
performed to identify switch genes, which were further analyzed for functional
pathways, regulatory transcription factors, miRNAs, and chemical
associations using NetworkAnalyst.

Figures 3C, 5). Switch genes identified from the arrays
GSE833, GSE20589, and GSE56500 were primarily upregulated
in ALS subjects, whereas the ones identified from the arrays
GSE19332 and GSE26927 mainly were downregulated.

In the final step, the robustness of the analysis is determined
(Figures 3D, 6). Fight-club hubs differ from date and party
hubs, and switch genes are significantly different from random,
confirming the analysis’s robustness.

SWIM analysis identified 14, 161, 109, 59, 137, 95, and
5 switch genes for the datasets GSE833, GSE19332, GSE20589,
GSE26927, GSE56500, GSE68605, and GSE52946 respectively.
The switch genes identified in the seven datasets are listed in
Supplementary Table 1. A Venn diagram analysis performed
on the switch genes identified from the seven datasets showed
limited overlapping. No switch genes were shared between three
or more datasets. Ten genes were shared between two datasets:
ASPM, DNTTIP1, ENC1, PABPC1L, POR, and ZNF688, AVL9,
FABP6, HOXDA, and ZNF649.
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FIGURE 2 | The panels (A–F) represent the results for GSE833, GSE19332,
GSE20589, GSE26927, GSE56500, and GSE68605, respectively.
Distribution of log2 fold change values where the red bars are selected for
further analysis. The x-axis represents the fold-change value (log2 of the
fold-change) that is the ratio of the average expression data in ALS patients
compared to the average expression data in normal controls computed for
protein-coding and non-coding RNAs. The y-axis represents the frequency of
the obtained fold-change values. The gray bars represent the fold-change
values associated with protein-coding and non-coding RNAs that will be
discarded according to the selected threshold. The red bars represent the
fold-change values associated with protein-coding and non-coding RNAs
that were retained for further analysis.

Pathway Enrichment Analysis
Switch genes obtained from the seven datasets were imported
into NetworkAnalyst to identify the associated functional
role and biological processes. This analysis identified 51,
36, 53, 48, 86, 43, and 10 pathways associated with the
switch genes from the datasets GSE833, GSE19332, GSE20589,
GSE26927, GSE56500, GSE68605, and GSE52946, respectively
(Supplementary Table 2). The top three pathways obtained
with each set of switch genes are listed in Table 3. A
Venn diagram analysis was performed to determine the
overlapping pathways. Interestingly, six pathways were shared
between six datasets: viral carcinogenesis, PI3K-Akt signaling
pathway, focal adhesion, proteoglycans in cancer, colorectal
cancer, and thyroid hormone signaling. There were no shared
pathways with the dataset GSE52946. Switch genes identified
in the dataset GSE52946 were enriched in several pathways
including, proteasome, legionellosis, PPAR signaling, antigen

processing, and presentation, peroxisome, IL-17 signaling,
prostate cancer, progesterone-mediated oocyte maturation,
Th17 cell differentiation, and oxidative phosphorylation.

Gene-Transcription Factor Interaction
Analysis
To identify the master regulators of switch genes, transcription
factor analysis was performed on NetworkAnalyst using three
different databases (ENCODE, ChEA, and JASPAR). A Venn
diagram analysis identified the transcription factors shared
between the three databases interrogated (Supplementary
Table 3). This analysis yielded 4, 20, 21, 11, 18, and 18
transcription factors associated with the switch genes from the
datasets GSE833, GSE19332, GSE20589, GSE26927, GSE56500,
andGSE68605, respectively. No transcription factors were shared
between the three databases used to analyze the switch genes
obtained from the array GSE52946. In addition, Venn diagram
analysis identified EGR1, ELK1, PPARG, GATA2, CREB1,
STAT3, and CEBPB as shared transcription factors regulating
the switch genes obtained from six different arrays (Table 4).
Furthermore, SREBF2, RELA, and YY1 were shared between
five datasets.

Gene-miRNA Interaction Analysis
To further study the regulation of the switch genes, a
gene-miRNA interaction network analysis was performed
in NetworkAnalyst using two different databases (TarBase
v.8.0. and miRtarBase v.8.0.). We identified 4, 66, 45, 11, 73,
36, and 1 miRNAs associated with the switch genes from the
datasets GSE833, GSE19332, GSE20589, GSE26927, GSE56500,
GSE68605, and GSE52946 respectively (Supplementary
Table 4). Venn diagram analysis identified mir-335-5p, mir-
16-5p, mir-218-5p, mir-124-3p, let-7a-5p, and mir-155-5p as
key shared miRNAs regulating the switch genes obtained from
the six different arrays (Table 5). In addition, 11 miRNAs were
involved in the regulation of the switch genes in five different
datasets.

To investigate the functional role of miRNAs in ALS, we
performed a pathway analysis using miTALOS 2.0, a web-based
platform for miRNAs functional analysis (Kowarsch et al.,
2011; Preusse et al., 2016). Functional analysis of the miRNAs
regulating the switch genes was associated with insulin signaling,
signaling pathways regulating pluripotency of stem cells, and
renal cell carcinoma (Supplementary Table 5).

Protein-Chemical Interaction Analysis
We next investigated chemicals interacting with the switch
genes. To this end, we performed a protein-chemical network
analysis importing the switch genes into NetworkAnalyst.
Each dataset of switch genes was analyzed separately. This
network analysis resulted in 22, 129, 109, 50, 118, and
83 chemicals associated with the switch genes from the datasets
GSE833, GSE19332, GSE20589, GSE26927, GSE56500, and
GSE68605, respectively (Supplementary Table 6). No chemical
was associated with the switch genes obtained from the dataset
GSE52946. Interestingly, 25 chemicals were shared between
the six analyses (Supplementary Table 6). Valproic acid,
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FIGURE 3 | GSE52946 SWIM analysis. (A) Distribution of log2 fold change values where the red bars are selected for further analysis. (B) Heat cartography maps
of nodes of the ALS/healthy correlation. (C) Dendrogram and heat map for switch genes. The suffix D indicates the samples from the ALS cohort. The colors
represent expression levels, with blue indicating downregulated and yellow indicating upregulated. (D) Robustness of the correlation network.

cyclosporine, aflatoxin B1, benzo(a) pyrene, 4-(5-benzo(1,3)
dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide, silicon
dioxide, estradiol, acetaminophen, copper sulfate, arsenic,
nickel, benzo(a)pyrene and quercetin were among the shared
chemicals. Chemicals were ranked according to network
topology measurements, including degree and betweenness
centrality.

DISCUSSION

Identification of Switch Genes and
Dysregulated Pathways in Spinal Cord
Motor Neurons of ALS Patients
In this study, we built co-expression networks using SWIM
software to identify genes associated with the transition from

healthy status to ALS. SWIM analysis identified a total of
750 switch genes in six independent microarrays containing
transcriptomic data from spinal motor neurons in ALS patients.
Venn diagram analysis yielded a limited overlap of switch
genes between the different arrays. These results may be
explained by the differences in the microarray platforms and
methods as well as genetic differences between ALS patients.
For example, GSE19332, GSE20589, and GSE68605 used
motor neurons from ALS subjects with CHMP2B, SOD1,
and C9ORF72 mutations, respectively. In addition, GSE833,
GSE56500, and GSE52946 datasets used a combination of
sporadic and familial ALS cases.

Biological and functional analysis of switch genes identified
six pathways, including viral carcinogenesis, PI3K-Akt signaling
pathway, focal adhesion, proteoglycans in cancer, colorectal
cancer, and thyroid hormone signaling, shared between the
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FIGURE 4 | The panels (A–F) represent the results for GSE833, GSE19332, GSE20589, GSE26927, GSE56500, and GSE68605, respectively. Heat cartography
map with nodes colored by their average Pearson Correlation Coefficient (APCC) value. Yellow nodes are party and date hubs, which are positively correlated in
expression with their interaction partners. Blue nodes are the fight-club hubs, with an average negative correlation in expression with their interaction partners. Blue
nodes falling in the region R4 are the switch genes characterized by low Zg and high Kπ values and are connected mainly outside their module. Thus, region
R4 represents the switch genes.

six datasets. A potential link between viral carcinogenesis and
motor neuron degeneration is intriguing, but unfortunately,

few studies have investigated this association. The human
endogenous retrovirus (HERV)-K was reported to interfere
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FIGURE 5 | The panels (A–F) represent the results for GSE833, GSE19332,
GSE20589, GSE26927, GSE56500, and GSE68605, respectively.
Dendrogram and heat map analysis for switch genes. The colors represent
different expression levels that increase from blue to yellow. The samples
marked with a D after the number are the ones from the diseased cohort. The
red, pink, and white bar at the top is an alternate marker of the cohorts.
When the sample size is large the x-axis, labels are disabled. Red and pink
denote ALS samples.

with RNA-binding and alternative splicing regulation, processes
known to play a role in neurodegeneration. For instance,
CRISPR/Cas9 gene-editing of HERV-K reduced the expression
of SF2/ASF (splicing factor 2/alternative splicing factor) and
TDP-43 mRNA levels in vitro (Ibba et al., 2018). Recently, switch
genes identified in the blood of ALS were enriched in pathways
related to viral infection (Santiago et al., 2021). Interestingly,
switch genes identified in the female datasets were associated
with the Epstein-Barr virus, hepatitis B, and hepatitis C. The
link between viral infection and carcinogenesis and ALS warrants
further investigation.

In addition to viral infection and carcinogenesis, the
PI3K-AKT pathway was identified as one of the most significant
pathways. Consistent with these findings, several studies have
identified the PI3K-AKT pathway as a critical mechanism in
the pathogenesis of ALS. For example, a network analysis
of genes dysregulated in the motor cortex and spinal motor
neurons in ALS identified the PI3K-AKT as the most significant
pathway (Recabarren-Leiva and Alarcon, 2018). Another study
reported that dysregulated expression of astrocyte elevated gene
1 (AEG1) and the inhibition of the PI3K-AKT pathway were

associated with cell death in ALS motor neurons (Yin et al.,
2015). Moreover, PI3K-AKT was the most significantly enriched
pathway identified in switch genes obtained from males with
ALS (Santiago et al., 2021). These studies suggest that targeting
the PI3K-AKT pathway may be a possible therapeutic route in
ALS. Also, studies investigating sex-specific differences in the
involvement of these pathways may provide new insights into
personalized therapies for ALS patients.

Thyroid function has been investigated in several studies of
ALS. For example, higher levels of thyroxine correlated with
prolonged survival in the SOD1-G93A mouse model of ALS
(Li et al., 2012) . Contrary to these findings, thyroid hormone
levels did not correlate with prolonged survival in a clinical
study including 278 patients with ALS (Zheng et al., 2014).
Another study reported the expression of protein µ crystalline
(CRYM), a key regulator of thyroid hormone transport, is
reduced in the corticospinal tract of ALS patients (Hommyo
et al., 2018). Based on these studies, there is no conclusive
evidence between thyroid dysfunction and the development
of ALS. Future molecular and clinical studies are needed to
investigate further the association between thyroid hormone
signaling and ALS.

Analysis of the high throughput RNA sequencing
study GSE52946 yielded five switch genes: MTRNR2L1,
MTRNR2L10, MTRNR2L2, MTRNR2L3, and MTRNR2L8.
Functional analysis revealed these genes associated with
the proteasome, legionellosis, PPAR signaling, antigen
processing and presentation, peroxisome, IL-17 signaling,
prostate cancer, progesterone-mediated oocyte maturation,
Th17 cell differentiation, and oxidative phosphorylation.
Some of these switch genes have been implicated in processes
related to ALS. For example, MTRNR2L1 is associated with
inflammation, oxidative stress, and insulin resistance (Veilleux
et al., 2015). In this context, several epidemiological studies
have suggested a link between diabetes and ALS. Interestingly,
type 2 diabetes has been found to be protective against ALS in
several populations but the molecular mechanisms underlying
this neuroprotection remain unclear (Kioumourtzoglou et al.,
2015; D’Ovidio et al., 2018; Wannarong and Ungprasert,
2020; Ferri et al., 2021). Another switch gene, MTRNR2L8,
has been implicated in atherosclerotic stroke and it may be a
therapeutic target and a diagnostic biomarker for stroke (Shen
et al., 2019; Wong et al., 2021). In this regard, cardiovascular
disease and atherosclerosis is associated with a higher risk
of ALS in some populations (Kioumourtzoglou et al., 2016;
Garton et al., 2021). Similarly, RNR1 is associated with dilated
cardiomyopathy (Schiano et al., 2021). Future prospective
longitudinal studies will be important to determine the validity
of the association between diabetes, cardiovascular disease,
and ALS.

Switch Genes Expression Regulation
Network analysis identified 18 transcription factors regulating
the switch genes from the six datasets: GATA2, ELK1, EGR1,
PPARG, CREB1, SREBF2, CEBPB, STAT1, STAT3, YY1, RELA,
GATA3, ARNT, GATA1, KLF4, SREBF1, JUN, and E2F4.
Among these transcription factors, ELK1 and GATA2 were
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FIGURE 6 | The panels (A–F) represent the results for GSE833, GSE19332, GSE20589, GSE26927, GSE56500, and GSE68605, respectively. Robustness of the
correlation network. The x-axis represents the cumulative fraction of removed nodes, while the y-axis represents the average shortest path. The shortest path
between two nodes is the minimum number of consecutive edges connecting them. Thus, each curve corresponds to the variation of the average shortest path of
the correlation network as a function of the removal of nodes specified by the colors of each curve.

shared between six out of seven arrays. Although there is no
direct evidence linking GATA2 and ELK1 with ALS, these
transcription factors have been associated with dementia and

neurodegeneration. For instance, ELK1 has been implicated
in early epigenetic changes and neuroprotection in cellular
models of Huntington’s disease (Anglada-Huguet et al., 2012;
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TABLE 3 | Top three pathways identified from each ALS/healthy switch genes
analysis.

Pathways P.Value FDR

GSE833
Pathways in cancer 2.96E-11 9.43E-09
Viral carcinogenesis 8.83E-10 1.40E-07
Proteoglycans in cancer 3.48E-08 3.69E-06
GSE19332
Endometrial cancer 5.94E-04 6.89E-02
Gap junction 5.94E-04 6.89E-02
Cell cycle 6.5E-04 6.89E-02
GSE20589
Neurotrophin signaling 8.36E-05 2.04E-02
HTLV-I infection 1.28E-04 2.04E-02
Viral carcinogenesis 3.88E-04 2.65E-02
GSE26927
Prostate cancer 1.22E-05 3.87E-03
Adherens junction 7.52E-05 1.2E-02
Jak-STAT signaling 1.43E-04 1.39E-02
GSE56500
Pathways in cancer 2.96E-11 9.43E-09
Viral carcinogenesis 8.83E-10 1.40E-07
Proteoglycans in cancer 3.48E-08 3.69E-06
GSE68605
PI3K-Akt signaling pathway 5.88E-05 1.63E-02
Glioma 1.02E-04 1.63E-02
Proteoglycans in cancer 2.45E-04 2.56E-02
GSE52946
Proteasome 3.44E-02 1
Legionellosis 4.19E-02 1
PPAR signaling pathway 5.60E-02 1

Yildirim et al., 2019). Interestingly, a neurotoxic form of ELK1 is
associated with the development of neuronal inclusions in several
neurodegenerative disorders including Lewy body, Alzheimer’s,
and Huntington’s diseases (Sharma et al., 2010). In addition,
network analysis identifiedGATA2 as an important transcription
factor regulating transcriptomic changes in Alzheimer’s disease
(Rahman et al., 2019, 2020).

Several of the transcription factors identified have been
implicated in the pathogenesis of ALS. For example, EGR1, a
transcription factor known to play a role in cellular division,
neuronal plasticity, and memory, has been proposed to be
associated with ALS risk (Recabarren-Leiva and Alarcon, 2018).
The involvement of PPARG in neuroprotection has been
extensively documented in neurodegenerative diseases (Kiaei,
2008; Prashantha Kumar et al., 2020). Activation of PPARG
has been shown to elicit neuroprotection in drosophila models
overexpressing TDP-43 or FUS and in SOD mice models (Kiaei
et al., 2005; Joardar et al., 2015; Rodriguez-Cueto et al., 2018).
The neuroprotective effects of PPARGmay be mediated through
its actions against lipid peroxidation (Benedusi et al., 2012).
Despite this evidence, a randomized trial using pioglitazone,
a PPARG agonist, in combination with riluzole, showed no
beneficial effects on the survival of ALS patients (Dupuis
et al., 2012). In addition, E2F4 is another transcription factor
associated with ALS. For example, differentially expressed genes
in induced pluripotent stem cells derived from C9ORF72-ALS
patients were regulated by E2F4/DREAM complex (Wong and
Venkatachalam, 2019).

Interestingly, CREB and SREBF2 have been documented to
interact with TDP3, a major constituent of neuronal inclusions
in ALS and frontotemporal dementia. Dysfunctional TDP-43
reduced dendritic branching of cortical neurons through
inhibition of CREB transcriptional activity (Yamashita et al.,
2014; Herzog et al., 2020). Interaction of TDP43 with SREBF2,
an important transcription factor involved in cholesterol
metabolism, mediated oligodendrocyte myelination, and
cholesterol homeostasis (Ho et al., 2021). Bioinformatic
analysis of gene expression datasets of motor neurons from
sporadic ALS patients identified RelA and NF-κB1 as key
hub genes involved in regulating the extracellular matrix
structure and function (Lin et al., 2020). Persistent activation
and nuclear translocation of STAT3 were observed in the
spinal cord of ALS patients and a SOD1-mice model of ALS
(Shibata et al., 2009, 2010; Ohgomori et al., 2017). It has been
proposed that activation of STAT3 could be a consequence of
neuroinflammation, and its modulation could enhance motor
neuron differentiation and thus be beneficial in neurotrauma
and neurodegenerative diseases (Natarajan et al., 2014;
Ohgomori et al., 2017).

We also investigated the regulation of switch genes by
miRNAs. Six miRNAs, mir-335-5p, mir-16-5p, mir-218-5p, mir-
124-3p, let-7a-5p, and mir-155-5p, were identified as shared
regulators of the switch genes between six out of seven datasets.
In addition, 11 miRNAs were shared between five datasets
(mir-24-3p, mir-7-5p, let-7b-5p, mir-93-5p, mir-1-3p, mir-15a-
5p, mir-192-5p, mir-103a-3p, mir-27a-3p, mir-26b-5p, and mir-
128-3p). Several of these miRNAs are dysregulated in animal
models and patients with ALS. For example, mir-16-5p, let-7a-
5p, and mir-26-5p were significantly downregulated in serum
samples from sporadic ALS patients suggesting their potential
as diagnostic biomarkers (Liguori et al., 2018; Joilin et al.,
2020). Interestingly, several animal studies have proposed a
neuroprotective role of mir-16 in Alzheimer’s and prion diseases
(Liu et al., 2012; Majer et al., 2012). Elevated levels of miR-124-3p
in CSF exosomes correlated with disease severity in ALS patients
(Yelick et al., 2020). Collectively, these results suggest that these
miRNAs may be useful biomarkers; however, replication and
further validation in several independent studies will be crucial
to determine their diagnostic potential for ALS patients.

Identification of Potential Therapeutics
and Environmental Risk Factors for ALS
A protein-chemical interaction analysis identified 25 shared
chemicals interacting with the switch genes in six datasets.
Some of these chemicals may be useful therapeutic agents,
whereas others may be detrimental and pose a potential risk
for ALS. Valproic acid was the most highly ranked chemical
in six datasets. Other shared chemicals were cyclosporine,
aflatoxin B1, estradiol, acetaminophen, carbamazepine, copper
sulfate, arsenic, nickel, quercetin, and benzo(a)pyrene. Several
of these drugs have been investigated for the treatment
of neurodegenerative disorders, including ALS. For example,
valproic acid protected spinal cord motor neurons against
glutamate toxicity and significantly prolonged the disease
duration in an ALS mouse model (Sugai et al., 2004). In addition,
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TABLE 4 | Transcription factors shared between at least three arrays.

Arrays Transcription factors

Shared between 6 arrays
GSE833, GSE19332, GSE20589, GSE56500, GSE68605,
and GSE26927

EGR1, ELK1, PPARG, GATA2, CREB1, STAT3, CEBPB

Shared between 5 arrays
GSE19332, GSE20589, GSE26927, GSE56500, and
GSE68605

SREBF2

GSE833, GSE19332, GSE20589, GSE56500, and
GSE68605

RELA, YY1

Shared between 4 arrays
GSE19332, GSE26927, GSE56500, and GSE68605 STAT1
GSE19332, GSE20589, GSE56500, and GSE68605 GATA3

Shared between 3 arrays
GSE833, GSE20589, and GSE68605 ARNT, MYC
GSE833, GSE20589, and GSE56500 JUN
GSE833, GSE19332, and GSE56500 E2F4
GSE833, GSE19332, and GSE20589 SREBF1
GSE19332, GSE20589, and GSE26927 GATA1

TABLE 5 | miRNAs shared between at least three arrays.

Arrays miRNAs

Shared between 6 arrays
GSE833, GSE19332, GSE20589, GSE26927, GSE56500,
and GSE68605

mir-335-5p, hsa-mir-16-5p, hsa-mir-218-5p,
hsa-mir-124-3p, and hsa-let-7a-5p

GSE19332, GSE20589, GSE26927, GSE56500,
GSE68605, and GSE52946

hsa-mir-155-5p

Shared between 5 arrays
GSE19332, GSE20589, GSE26927, GSE56500, and
GSE68605

hsa-mir-24-3p and hsa-mir-7-5p

GSE833, GSE19332, GSE20589, GSE56500, and
GSE68605

let-7b-5p, hsa-mir-93-5p, hsa-mir-1-3p, hsa-mir-15a-5p,
hsa-mir-192-5p, hsa-mir-103a-3p, hsa-mir-27a-3p,
hsa-mir-26b-5p

GSE833, GSE19332, GSE20589, GSE26927, and
GSE56500

hsa-mir-128-3p

Shared between 4 arrays
GSE19332, GSE20589, GSE56500, and GSE68605 hsa-mir-30a-5p, hsa-mir-17-5p, hsa-mir-122-5p,

hsa-mir-20a-5p, hsa-mir-26a-5p, hsa-mir-21-5p,
hsa-mir-34a-5p, and hsa-mir-203a-3p

Shared between 3 arrays
GSE20589, GSE56500, and GSE68605 hsa-mir-23b-3p and hsa-mir-375
GSE833, GSE26927, and GSE68605 hsa-mir-29a-3p
GSE833, GSE56500, and GSE68605 hsa-mir-142-3p
GSE19332, GSE20589, and GSE56500 hsa-mir-92a-3p, hsa-mir-484, hsa-mir-744-5p,

hsa-mir-19a-3p, and hsa-mir-31-5p
GSE19332, GSE56500, and GSE68605 hsa-mir-186-5p, hsa-mir-181a-5p, and hsa-mir-101-3p

the combination of valproic acid with lithium effectively delayed
disease onset, attenuated neurological symptoms, and extended
the lifespan in a mouse ALS model (Feng et al., 2008). The
neuroprotective effects of valproic acid and lithium may be
mediated via the activation of the Notch signaling pathway and
the suppression of endoplasmic reticulum stress (Naganska et al.,
2015; Wang et al., 2015a,b; Jiang et al., 2016). Nevertheless,
other animal studies using valproic acid reported neuroprotective
effects but not improvements in disease survival (Rouaux et al.,
2007; Crochemore et al., 2009).

The evidence from clinical studies using valproic acid is also
inconsistent. In a randomized trial, administration of valproic
acid at similar doses used in epilepsy had no effects on survival
or disease progression in patients with ALS (Piepers et al., 2009).

Another study showed that the combination of valproic acid with
lithium exerted neuroprotection and increased survival in ALS
patients; however, the trial stopped due to the late adverse effects
of treatment (Boll et al., 2014). Collectively, the mixed findings
using valproic acid call for a larger randomized clinical trial to
determine the efficacy in ALS patients.

Other potential drugs identified were cyclosporine,
carbamazepine, acetaminophen, and estradiol. Cyclosporine A
is a well-known immunosuppressive agent that has been shown
to protect from mitochondrial neuronal death in traumatic
brain injury and acute ischemic stroke (Gajavelli et al., 2015;
Nighoghossian et al., 2016; Matsumoto et al., 2018). In the
context of ALS, systemic administration of cyclosporine extends
the lifespan of ALS transgenic mice (Keep et al., 2001; Kirkinezos
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et al., 2004). Carbamazepine is commonly used to control
seizures in epilepsy and peripheral neuropathy caused by
diabetes (Maan et al., 2021). Administration of carbamazepine
delayed the disease onset and extended the lifespan in the
SOD1-G93A mouse ALS model (Zhang et al., 2018). To the best
of our knowledge, neither cyclosporine nor carbamazepine has
been tested in clinical trials for ALS.

Similar to our results, a network analysis of differentially
expressed genes in ALS patients’ motor cortex and spinal
cord identified acetaminophen, estradiol, progesterone, and
resveratrol as possible therapeutics (Recabarren and Alarcon,
2017; Recabarren-Leiva andAlarcon, 2018). The clinical evidence
about the therapeutic effect of acetaminophen in ALS patients is
not clear. For example, a recent meta-analysis showed a reduced
occurrence of ALS in patients taking acetaminophen but not
aspirin (Chang et al., 2020). Nonetheless, the authors noted that
the analyzed studies did not control for past medical history
and drug dosages, which may have confounded their results.
Contrary to these findings, another study concluded that intake
of aspirin or NSAIDs might shorten disease survival in ALS
patients (Qureshi et al., 2008). Further clinical studies are needed
to better understand the effects of these drugs on ALS patients.

Interestingly, estradiol was among the shared drugs identified
in the protein-drug interaction analysis. In this regard,
sex-specific differences have been linked to the pathogenesis of
ALS. Epidemiological studies from different populations indicate
that men are at higher risk of ALS than women (McCombe
and Henderson, 2010; Couratier et al., 2016). One earlier study
showed that men are at a higher risk of ALS at a younger
age but there is an equal risk between men and women above
60 years old (Haverkamp et al., 1995). In this context, it has
been proposed that estrogens may exert neuroprotection in the
brain and spinal motor neurons (Nakamizo et al., 2000; Johann
et al., 2011; Cardona-Rossinyol et al., 2013). The neuroprotective
effects of estrogen may be mediated through gene expression
regulation and its antioxidant and mito-protectant activities
(Behl et al., 2000; Dykens et al., 2005). Several studies showed
that ovariectomy accelerated disease progression, and treatment
with a high dose of 17beta-estradiol reversed these effects in
SOD1 transgenic mice (Groeneveld et al., 2004; Choi et al., 2008).
Similarly, raloxifene, a non-steroidal benzothiophene used in
the treatment of osteoporosis, mediates neuroprotection through
estrogen receptors (Arevalo et al., 2011). The neuroprotective
effect of raloxifene was confirmed in a cellular model of
ALS (Zhou et al., 2018). Consistently with these findings,
our previous study identified sex-specific switch genes and
pathways in the blood of ALS patients. Notably, estradiol
was found among the potential drugs for females with ALS
(Santiago et al., 2021). The possible neuroprotective effects of
estradiol warrant further investigation in larger clinical trials.
These studies reinforce the importance of understanding sex
differences in the development of personalized treatments for
ALS patients.

Furthermore, other chemicals interacting with the switch
genes were quercetin, copper sulfate, arsenic, nickel, and
benzo(a)pyrene. Notably, some of these chemicals may be
neuroprotective, whereas others may increase the risk for ALS.

For example, quercetin, a naturally occurring flavonoid, has been
shown to be effective against SOD1 fibrillation in biochemical
experiments and animal models of ALS (Ip et al., 2017; Bhatia
et al., 2020). In addition, quercetin attenuated aluminum-
induced neurodegeneration in the rat hippocampus (Sharma
et al., 2016).

Unlike the neuroprotective effects of quercetin, exposure
to heavy metals and organic compounds like copper, arsenic,
nickel, and benzo(a)pyrene is associated with neurodegeneration.
Elevated levels of metals including aluminum, copper, lead,
and arsenic have been found in the blood and CSF of ALS
patients (Callaghan et al., 2011; Peters et al., 2016; Patti et al.,
2020). Similarly, exposure to benzo(a)pyrene in utero has been
associated with alpha synuclein toxicity and microglial activation
in mice (Xu et al., 2021). Further, benzo(a)pyrene exposure is
associated with cognitive decline and exacerbation of Alzheimer’s
disease pathology in mice (Liu et al., 2020). Exposure to
electronic waste containing nickel and other metals is associated
with an increased risk of neurodegeneration (Zhu et al., 2021).
Environmental exposure to heavy metals is associated with
neurotoxic effects on astrocytes, key mediators of cellular
and metabolic homeostasis in the central nervous system (Li
et al., 2021). Collectively, the analysis of chemical-switch genes
interaction provides information about potential therapeutics,
neuroprotective agents, and hazardous exposure to chemicals
that may trigger neurodegeneration.

LIMITATIONS

The results from this study should be taken with caution for
several reasons. Firstly, the findings presented in this study are
the result of bioinformatic analyses using different databases
and software that relies on the accuracy of publicly available
deposited microarrays. Differences in array platforms, curation
methods, and pre-processing of arrays may have introduced
bias. In regards to the sample characteristics, some of the arrays
contained data from ALS patients with different mutations and
sporadic cases and thus differences in genetic factors could have
impacted the results. These differences in array platforms and
methods may have accounted for the non-overlap of switch
genes with the RNA sequencing dataset GSE52946. In addition,
motor neurons were collected from different locations in the
spinal cord, which may have introduced bias. Another limitation
is the use of post-mortem tissues, which may imply the use
of ALS subjects in the late stages of the disease. The switch
genes and pathways identified may be a representation of the
molecular disturbances occurring in advanced stages of ALS.
The use of tissues from pre-symptomatic and early stages ALS
subjects would be ideal to capture the dysregulated molecular
pathways in the early stages of the disease. SWIM analysis by
sex would have been ideal to determine sex-specific differences
in pathways and switch genes regulation but unfortunately, the
arrays did not contain enough samples from both males and
females. Future mechanistic studies using cellular and animal
models to investigate the functional role of the switch genes and
the therapeutic benefit of the drugs identified will be essential to
confirm the results presented in this study.
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CONCLUSIONS

Analysis of co-expression networks implemented by SWItch
Miner software could be useful in identifying the molecular
pathways disrupted in ALS. One advantage of this method
is the identification of switch genes whose expression is
associated with drastic transcriptional changes that may lead
to ALS. In this study, we identified switch genes in the spinal
motor neurons of ALS patients. Switch genes were enriched
in viral carcinogenesis, cell cycle, PI3K-Akt, focal adhesion,
proteoglycans in cancer, colorectal cancer, and thyroid hormone
signaling. Specifically, pathways related to viral carcinogenesis
and hepatitis have been identified in transcriptomic studies
from the blood of ALS patients (Santiago et al., 2021). The
precise linkage between viral infection and the development
of ALS has not been thoroughly investigated. This previously
unrecognized association between viral infection and ALS could
lead to the discovery of potential new treatments. Future
studies will be aimed at identifying shared pathways and
master regulators between virally transmitted diseases and ALS.
The chemical analysis identified several potential therapeutics,
neuroprotective agents, and potentially hazardous metals and
chemical compounds associated with neurodegeneration.
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