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Real‑time prediction of Poisson’s 
ratio from drilling parameters using 
machine learning tools
Osama Siddig1, Hany Gamal1, Salaheldin Elkatatny1,2* & Abdulazeez Abdulraheem1

Rock elastic properties such as Poisson’s ratio influence wellbore stability, in‑situ stresses estimation, 
drilling performance, and hydraulic fracturing design. Conventionally, Poisson’s ratio estimation 
requires either laboratory experiments or derived from sonic logs, the main concerns of these methods 
are the data and samples availability, costs, and time‑consumption. In this paper, an alternative 
real‑time technique utilizing drilling parameters and machine learning was presented. The main 
added value of this approach is that the drilling parameters are more likely to be available and could 
be collected in real‑time during drilling operation without additional cost. These parameters include 
weight on bit, penetration rate, pump rate, standpipe pressure, and torque. Two machine learning 
algorithms were used, artificial neural network (ANN) and adaptive neuro‑fuzzy inference system 
(ANFIS). To train and test the models, 2905 data points from one well were used, while 2912 data 
points from a different well were used for model validation. The lithology of both wells contains 
carbonate, sandstone, and shale. Optimization on different tuning parameters in the algorithm 
was conducted to ensure the best prediction was achieved. A good match between the actual and 
predicted Poisson’s ratio was achieved in both methods with correlation coefficients between 0.98 and 
0.99 using ANN and between 0.97 and 0.98 using ANFIS. The average absolute percentage error values 
were between 1 and 2% in ANN predictions and around 2% when ANFIS was used. Based on these 
results, the employment of drilling data and machine learning is a strong tool for real‑time prediction 
of geomechanical properties without additional cost.

Rock elasticity is a major identifier for rock mechanical properties and reflects the ability of the rock to recover 
from a deformation caused by external forces. Two main properties are used to define rock elasticity, Young’s 
modulus, and Poisson’s ratio. These geomechanical properties show the relationship between the forces and the 
resulted  deformation1. Young’s modulus (E) is a stiffness measure and defined by the ratio between the strain and 
the stress. While Poisson’s ratio (ν) is the ratio between lateral and longitudinal strain (ε). Rock elastic properties 
influence hydraulic fracturing design, drilling performance, in-situ stresses estimation, and wellbore  stability2–5.

In order to estimate Poisson’s ratio, there are two options, using core samples or well logs. The Poisson’s ratio 
determined by compressional tests on core plug samples is called static Poisson’s ratio, while the dynamic Pois-
son’s ratio is derived from shear and compressional acoustic wave velocities  logs6 using the following equation.

where νdyn is the dynamic Poisson’s ratio,  VS and  VP are the shear and compressional wave velocities respectively.
The advantage of νdyn over νstatic , is that it can provide a continuous profile, In addition, getting core samples 

are expensive and time-consuming. To overcome the fact that static and dynamic values for Poisson’s ratio are 
usually different from each other, many researchers presented empirical correlations between static and dynamic 
Poisson’s ratio based on linear  regression7–9. However, some of these correlations are developed using limited 
samples and for a specific type of formation as summarized in Table 1.

While νst is the static Poisson’s ratio, νdyn is the dynamic Poisson’s ratio, Vp and Vs  are the compressional and 
shear wave velocities respectively.

Artificial intelligence (AI) has a wide range of engineering, medical and industrial  applications10–12. The use 
of machine learning in the oil industry is fast growing in various sectors. These applications include but are not 

(1)νdyn =
V2
P − 2V2

s

2(V2
P − V2

s )
,

OPEN

1Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Box 5049, 
Dhahran 31261, Saudi Arabia. 2Petroleum Department, Cairo University, Giza, Egypt. *email: elkatatny@
kfupm.edu.sa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92082-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12611  | https://doi.org/10.1038/s41598-021-92082-6

www.nature.com/scientificreports/

limited to estimation and optimization of drilling  parameters13–18, drilling fluid  properties19–21, reservoir fluid 
 properties22–27, petrophysical  properties28–32, and geomechanical  properties33–36. Different models between static 
and dynamic Poisson’s ratio were developed using different machine learning methods such as an artificial neural 
network (ANN), Fuzzy Logic (FL), Functional Network (FN), and Alternating Conditional Expectation (ACE) 
as presented in Table 2.

Even though these presented models give good correlations between predicted and actual static Poisson’s 
ratio, but they still require the availability of the shear and compressional velocities, which are used to estimate 
dynamic Poison’s ratio, and may not always be available. Therefore, correlating between Poison’s ratio and drill-
ing parameters, which are available from the first encounter to the well, will be extremely beneficial. Moreover, 
successful applications of using the drilling data to obtain information that usually requires logs have been 
reported, namely bulk density and sonic velocity  logs44,45. Furthermore, the use of drilling data in the estimation 
of formation pressure and abnormal pressure zones detection is an old  technique46,47.

The approach presented in this paper is based on the idea that drilling data are always available, easier and 
earlier to obtain compared to conventional well logs and core samples. The use of drilling parameters for real-time 
estimation of Poisson’s ratio using different AI techniques is investigated and presented in this paper.

Data and methods
In order to predict Poisson’s Ratio from the drilling parameters, the following steps have been followed. Data for 
drilling parameters and Young’s modulus have been gathered for two wells. Data from one well, has been used to 
build the model using several machine learning techniques. The dataset from the second well has been hidden 
from the algorithms and not used later to validate the built model. Figure 1 summarizes the methodology used 
for efficient young’s modulus prediction.

Data description. The collected data for this study were gathered from drilling phase activities in the Mid-
dle East. The data covered the drilling parameters and the relevant Poisson’s ratio values during drilling the 
intermediate section for 12.25″ hole size for vertical profile wells. As shown in Fig. 2, the complex lithology of 
the drilled formations through Well-1 covered four formation types (shale, sandstone, and carbonate rocks).

Well-1 has a total of 2905 data points used to build the model with 70% of the data points for training and 
30% for testing the model. 2912 data points from well-2 were hidden from the AI algorithms and used later 
to validate the built model. Besides the PR that is set as targeted output, each data point contains six drilling 
parameters used as inputs. The drilling parameters, listed below, were obtained from field measurements and 
used in building this model:

• Weight on bit WOB in klb
• Torque in kft.lbf
• Standpipe pressure SPP in psi
• Rotary speed RPM (1/min)
• Drilling rate of penetration ROP in ft/h
• Drilling fluid flow Rate in gpm

Table 1.  Different empirical correlations between static and dynamic Poisson’s ratio.

Equation R2 Data points Rock types References

νst = 0.71νdyn + 0.063 0.543 8 Limestone, gypsum, basalts, granite, phonolite, 
andesite

7

νst = aVs + b
νst = cVp + d
a, b ,c and d vary with rock type

0.22–0.84 130+ Peridotite, granite, pyrite, pyrrhotite 8

νst = aνdyn − b
a and b are different for different porosity 
ranges

0.70–0.92 18 Tight sandstone, siltstone 9

Table 2.  Different correlations for static Poisson’s ratio developed using AI.

Input parameters Data points Formation R2 Methods References

VS,  VP, bulk density 77 NA 0.828 ANN, FL, FN 37

Depth, porosity, In-situ stresses, pore pressure, bulk density,  VS,  VP 602 NA 0.994 ACE 38

VS,  VP 550 Limestone 0.97 ANN 39

bulk density,  VS,  VP 610 Carbonate 0.97 ANN 40

VS,  VP 75 Carbonate NA ANN, FL 41

bulk density,  VS,  VP 692 Sandstone 0.93 ANN 42

Gamma-ray, bulk density, porosity,  VS,  VP 580 Carbonate 0.97 FN 43
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Data analysis. Before running the data into the machine learning algorithms, the datasets were cleaned 
from noise and outliers using Matlab code. Statistical analysis of the dataset used to build the models is presented 
in Table 3.

The correlation coefficients between PR and different drilling parameters are given in Fig. 3. It shows rela-
tively strong correlations between PR and some drilling parameters such as WOB, torque, and pump flow rate. 
Lower correlation coefficients for other parameters don’t necessarily imply the absence of relation between these 
inputs and PR, but rather means that the linear equation doesn’t describe the relationship between the inputs 
and the output.

Machine learning algorithms. For the purpose of constructing the models between Poisson’s ratio and 
drilling parameters, two machine-learning methods were used separately, artificial neural network (ANN) and 
adaptive neuro-fuzzy inference system (ANFIS). ANN is a very common machine-learning tool that is inspired 
by biological neurons in  brains48. ANN could function as supervised or unsupervised machine learning in 
regression, classification, and clustering  problems49. ANN is composed of different components such as neu-
rons, transfer functions, training functions, learning functions, and hidden  layers37. In literature, there are many 
reported successful applications of ANN in the oil and gas  industry32,35,36,50,51.

Adaptive neuro-fuzzy inference system (ANFIS) was developed in the 1990s and integrates the principles of 
neural networks and fuzzy logic (FL)52,53. In this method, ANN is used to set the fuzzy rules in  FL54. This inte-
gration of the two methods provides an improved  performance55. Similar to ANN, ANFIS has various reported 
applications in the oil  industry56–59.

Models evaluation. ANN and ANFIS were used for models’ construction. These algorithms use 70% of the 
dataset from well-1 to build the model and 30% of the data to test it internally for several iterations and chose 
the best fit. After having the model, data from well-2 were used as an external validation set for the models. To 
evaluate all models’ trials, two statistical parameters were used, correlation coefficient (R) and average absolute 
percentage error (AAPE). R and AAPE are calculated using Eqs. (2) and Eq. (3):
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N
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Figure 1.  Flow chart for the methodology used to generate AI-model.
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Figure 2.  Lithology column for Well-1.

Table 3.  Statistics of the data used to build the models.

WOB Torque SPP RPM ROP Flow rate PR

Minimum 1.94 4.42 2237.00 92.43 35.00 639.07 0.21

Maximum 24.12 10.66 3008.00 159.65 108.35 852.61 0.42

Mean 12.02 7.45 2606.09 128.97 66.03 728.48 0.33

Median 11.29 7.05 2615.30 134.80 70.00 700.29 0.33

Skewness 0.23 0.21 − 0.13 − 0.51 0.20 0.49 0.15

Coefficient of variation 0.58 0.23 0.07 0.12 0.26 0.10 0.12

Standard deviation 7.00 1.74 192.73 15.00 17.33 73.92 0.04

Figure 3.  The correlation coefficient of drilling parameters with Poisson’s ratio.
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where νgiven and νPredicted are the available and the predicted Poisson’s ratio respectively, and N is the total number 
of data points.

Sensitivity and optimization. Different runs were done in each method to determine the best tuning 
parameters inside the algorithms. This has been done by running the two machine learning methods inside 
multiple for-loops containing the range of tested parameters. In ANN models, a different number of neurons, 
network functions, training functions, and transfer functions were used. In ANFIS, different cluster radiuses 
and the number of iterations were used. Table 4 shows the total range of parameters used to get the best models.

Results and discussion
Avoiding overfitting. Overfitting is a very troublesome problem in machine learning, in which the model 
fits very well in training data and performs poorly in validation and testing. Overfitting results in a model that 
is limited only to the training data and could not be generalized for data from different sources. In this work, 
overfitting has been overcome by different methods.

In machine learning, when the number of parameters used to optimize the fitting, such as weights and biases, 
is too much compared to the number of data points, this will increase the chances of overfitting. As indicated in 
the data description section, more than 2000 data points were used to train the model, which is relatively a high 
number. This data quantity helped to improve model generalization. Moreover, the models were built to be as 
simple as possible. For instance, in ANN one layer of neurons was used and the number of neurons was chosen 
to be as less as possible without significantly affecting the fitting performance.

Additionally, the used algorithms have an early stopping feature to avoid overfitting. In this feature, part of 
training data is separated and will not be used to build the model instead it will be used as an early validation. 
The fitting performance for training and validation is estimated at each iteration. For each iteration in Fig. 4, both 
training and validation error is reducing till point A, after which the model starts to overfit and the validation 
error starts to increase. Due to the early stopping feature, point A parameters will be used in the model instead 
of point B, even though it has less error in training.

Artificial neural network. Sensitivity. To ensure the best results from ANN, a different number of neu-
rons, network functions, training functions, and transfer functions were used. Figures 5, 6, 7 and 8 present the 
sensitivity analysis on these parameters. Increasing the number of neurons results in better results, however, 
the computational time increases as well. In addition, there is no significant increase in correlation coefficients 
when more than 25 neurons were used as shown in Fig. 5. Except for one case, there were no significant vari-
ations when different network functions were used as demonstrated in Fig. 6. Sensitivity analyses on training 
and transfer functions showed the most variations with correlations coefficient ranging between 0.75 and 0.99 
as illustrated in Figs. 7 and 8.

Validation. The dataset from well-1 was used to build the model and to perform the sensitivity analysis. After 
the model has been built, data from well-2 have been used to validate the model. Good results have been achieved 
in both wells even though the algorithm only trained and test the model using the first well data. The correlation 
coefficients were 0.992, 0.988 and 0.980 for training, testing, and validation respectively, and the AAPE values 
were all in the range between 1 and 2%. Figure 9. Shows a comparison between actual and ANN predicted Pois-
son’s ratio for well-1 and well-2.

(3)AAPE =

∑N
i=1

νgiven i−νPredicted i

νgiven i
× 100%

N

Table 4.  Different parameters used to optimize the models.

Number of neurons

ANN ANFIS

Network functions Training functions Transfer Functions Cluster radius Number of iterations

5 fitnet trainbr logsig 0.3 100

10 newcf trainlm hardlims 0.5 300

15 newelm trainbfg poslin 0.7

35 newlrn traincgb purelin 0.9

45 newp traincgf hardlim

newdtdnn traincgp radbas

newff traingda satlins

newfftd traingdx compet

newfit trainoss netinv

newnarx trainrp satlin

newnarxsp trainscg softmax

newc trainb tribas

trainr
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Figure 4.  Early stopping to avoid overfitting.

Figure 5.  Sensitivity analysis on the number of neurons.

Figure 6.  Sensitivity analysis on different network functions.
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Adaptive neuro‑fuzzy inference system. Sensitivity. Using ANFIS, different cluster radiuses and 
number of iterations were used. Sensitivity analysis of these two parameters is presented in Figs. 10 and 11. 
Increasing the cluster radius from 0.3 to 0.9 resulted in a decrease in correlation coefficients from 0.97 to 0.88 
in training and from 0.97 to 0.86 in testing. On the other hand, increasing the number of iterations enhanced 
the results.

Validation. The same procedure used in ANN has been used in the ANFIS model’s building and validations. 
The data set from Well-1 have been used to train and test the model using different parameters and Well-2 
dataset was used to validate the built model. Even though all correlation coefficients were higher than 0.97 and 
the AAPE values were less than 2.2%, the ANN results presented earlier are better. The actual Poisson’s ratio in 
comparison with the predicted Poisson’s ratio with ANFIS is presented in Fig. 12.

Computational cost. Besides the key performance indices (correlation coefficient and average absolute 
percentage error), the computational cost is considered a very essential factor used to compare the different 
methods utilized. The calculation times (in seconds) were determined in each run for the two models in order to 
compare the calculation efficiency. As shown the Fig. 13, ANN outperformed the ANFIS model with 90% of the 
runs took less than 4.32 s while in ANFIS this value was more than 300 s.

Model. Different parameters’ combinations have been tested to ensure optimum fit. Table 5 displays ANN 
and ANFIS parameters that yielded the best matches between the predictions and given values.

The best fit was obtained using ANN with a correlation coefficient around 0.99 in training and testing and 
0.98 in the validation process and AAPE between 1 and 2%. The generated model is expressed by Eq. 4, while 
Table 6 shows the weight and biases that are used in the model.

(4)

νdyn =

[

N
∑

i=1

W2,i

(

2

1+ e−2(W11,i∗WOB+W12,i∗Torque+W13,i∗SPP+W14,i∗RPM+W15,i∗ROP+W16,i∗pump rate+b1,i)

)

]

+b2

Figure 7.  Sensitivity analysis on different training functions.

Figure 8.  Sensitivity analysis of different transfer functions.
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Figure 9.  Actual and ANN predicted Poisson’s ratio for (a) training (b) testing and (c) validation.

Figure 10.  Sensitivity analysis on cluster radius.
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Figure 11.  Sensitivity analysis on the number of iterations.

Figure 12.  Actual and ANFIS predicted Poisson’s ratio for (a) training, (b) testing and (c) validation.
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Conclusions
Conventionally, Poisson’s ratio is estimated from sonic logs data, which may not always be available. An alter-
native real-time prediction of Poisson’s ratio from drilling data has been proposed in this paper by employing 
different machine learning tools. In the light of the presented outcomes, the following statements could be used 
to conclude the study:

• Compared to other means used to predict Poisson’s ratio, drilling data is more likely to be available at an 
early stage of the well’s life without additional cost and time. Therefore, the prediction of Poisson’s ratio from 
drilling data will be very beneficial.

• Two machine learning methods were investigated and both yielded a good match, however, a slightly better 
prediction of Poisson’s ratio was achieved using ANN. The sensitivity and optimization of different parameters 
used in the algorithms have been presented and the best results were reported.

• The correlation coefficient between the actual and predicted values ranged between 0.97 and 0.99, while the 
average errors were all less than 2.2%. The best model was presented as a white-box to allow using other 
datasets.

Recommendations
Supported by the outcomes presented in this paper that confirm the ability to obtain good predictions of Poisson’s 
ratio from drilling data, it is recommended to investigated other machine learning methods. Moreover, the use of 
drilling data in the prediction of other geomechanical properties could be investigated using a similar approach. 
It is also worthy to mention that the data used in this study are from the same field, therefore, to generate general 
model data from different sources could be combined and used altogether.

Figure 13.  The ascending probability of computational time for the two methods.

Table 5.  Machine learning’s parameters with the best performance.

ANN-parameters

Number of hidden layers 1

Number of neurons 25

Types of network function newlrn

Types of training function Bayesian regularization backpropagation

Types of transfer function Log-sigmoid transfer function

Maximum number of iterations 1000

Learning Rate 0.12

Momentum constant 0.6

Minimum performance gradient 1.00E−06

Maximum value for mu 1.00E+100

ANFIS-parameters

Fuzzy inference system subtractive clustering

Cluster Radius 0.3

Epochs size 300
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SI Metric Conversion Factors

1 ft = 0.3048 m.

1 lb = 0.453592 kg.

1 lbf = 4.44822 N.

1 psi = 6894.76 Pa.

1 gal = 0.00378541  m3.
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